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Abstract

Let R be a ring, S a strictly ordered monoid, and ω : S→ End(R) a monoid homomorphism. The skew
generalized power series ring R[[S, ω]] is a common generalization of (skew) polynomial rings, (skew)
power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal’cev–Neumann Laurent
series rings. We study the (S, ω)-Armendariz condition on R, a generalization of the standard Armendariz
condition from polynomials to skew generalized power series. We resolve the structure of (S, ω)-
Armendariz rings and obtain various necessary or sufficient conditions for a ring to be (S, ω)-Armendariz,
unifying and generalizing a number of known Armendariz-like conditions in the aforementioned special
cases. As particular cases of our general results we obtain several new theorems on the Armendariz
condition; for example, left uniserial rings are Armendariz. We also characterize when a skew generalized
power series ring is reduced or semicommutative, and we obtain partial characterizations for it to be
reversible or 2-primal.
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16U80, 20M25.

Keywords and phrases: skew generalized power series ring, (S, ω)-Armendariz, semicommutative,
2-primal, reversible, reduced, uniserial.

1. Introduction

In 1974 Armendariz noted in [3] that whenever the product of two polynomials over
a reduced ring R (that is, a ring without nonzero nilpotent elements) is zero, then
the products of their coefficients are all zero, that is, in the polynomial ring R[x] the
following holds:

for any f (x)=
∑

ai x i , g(x)=
∑

b j x j
∈ R[x],

if f (x)g(x)= 0, then ai b j = 0 for all i, j.
(∗)

Nowadays the property (∗) is known as the Armendariz condition, and rings R that
satisfy (∗) are called Armendariz rings. The systematic study of Armendariz rings was
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initiated by Rege and Chhawchharia in 1997 in [37], and since then many results have
been obtained on the structure of such rings, the behaviour of the Armendariz condition
under ring constructions, and relationships of Armendariz rings to other significant
classes of rings (see the references for some literature on the subject). As observed by
Hirano in [12], the simple condition (∗) hides a remarkable connection between the
right annihilators of R and those of R[x]. Namely, a ring R is Armendariz exactly
when the map assigning to any right annihilator set A ⊆ R the set of polynomials with
coefficients in A is a bijection onto the right annihilators of R[x].

The pioneering paper [37] further proposes the study of rings with an analogue of
the Armendariz condition defined with respect to power series rings. This proposal
has been put into effect and extended: rings satisfying an Armendariz condition for
generalized power series extensions, as well as rings satisfying such a condition for
monoid rings, have been studied. The condition has also been defined and investigated
for skew polynomial rings, for skew power series rings, and for skew monoid rings
(see the beginning of Section 2 for details). But although these new classes of rings
were all defined using generalizations or analogues of the Armendariz condition, the
theory of each class was developed separately, which led to many papers with parallel
results.

In this paper we propose a unified approach to all the above-mentioned classes of
rings. The idea is to study the Armendariz condition defined for the skew generalized
power series ring R[[S, ω]], where R is a ring, S is a strictly ordered monoid, and
ω : S→ End(R) is a monoid homomorphism (the definition of R[[S, ω]]will be stated
in a moment). Since (skew) polynomial rings, (skew) power series rings, (skew)
monoid rings, and generalized power series rings are particular cases of the R[[S, ω]]
ring construction, the class of Armendariz rings as well as all the above-mentioned
classes of Armendariz-like rings are subclasses of the new class of (S, ω)-Armendariz
rings. Hence any result on (S, ω)-Armendariz rings has its counterpart in each of the
subclasses, and these counterparts follow immediately from a single proof.

In this paper we extend to (S, ω)-Armendariz rings many results known earlier
for particular types of Armendariz-like rings. Nevertheless, we wish to emphasize
that some of our results are new even for Armendariz rings; for example, we prove
that left uniserial rings are Armendariz (Corollary 6.3). It is worth noting that Lee
and Zhou [23] recently proposed an interesting unification of Armendariz rings and
power-serieswise Armendariz rings (see Section 2 for a definition). Our approach
to the unification of Armendariz-like rings in this paper is completely different from
Lee and Zhou’s, from the standpoint both of the ring extensions studied and of the
structural properties obtained.

The paper is organized as follows. In Section 2 we introduce (S, ω)-Armendariz
rings. In Section 3 we give a lattice structure to the right annihilators of a ring and
characterize (S, ω)-Armendariz rings as those rings R for which an analogue of the
Hirano map is a lattice isomorphism from the right annihilators of R to the right
annihilators of R[[S, ω]]. A detailed analysis of the map is rewarded with the removal
of the Armendariz hypothesis from the main result of [19].
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In Section 4 we study relationships between (S, ω)-Armendariz rings and
some important generalizations of commutative rings. For instance, we prove
that every (S, ω)-Armendariz ring is abelian (Proposition 4.9). Furthermore, we
characterize when a skew generalized power series ring is reduced (Theorem 4.12)
or semicommutative (Theorem 4.1), and we obtain partial characterizations for it
to be reversible or 2-primal. We pose a natural open problem (Question 4.14) on
reversible and semicommutative skew generalized power series rings. We also obtain
some information on nilpotent elements of (S, ω)-Armendariz rings and prove that
the Köthe conjecture has a positive solution in the class of S-compatible (S, ω)-
Armendariz rings (Proposition 4.5).

In Section 5 we study the behaviour of the (S, ω)-Armendariz condition under
ring extensions. In particular, we extend to (S, ω)-Armendariz rings Anderson and
Camillo’s result [1, Theorem 5] that for any ring R and any integer n ≥ 2, the factor
ring R[x]/(xn) is Armendariz if and only if R is reduced (Theorem 5.4).

In Section 6 we obtain criteria for a left or right uniserial ring to be (S, ω)-
Armendariz. As a consequence of the main result of this section (Proposition 6.1),
we infer that every left or right uniserial ring is Armendariz (and furthermore it is
Armendariz relative to any unique product monoid).

In the closing Section 7 we study the (S, ω)-Armendariz condition in triangular
matrix rings.

Throughout this paper, rings are associative, and they contain an identity element.
We will write monoids multiplicatively unless otherwise indicated. If R is a ring and
X is a nonempty subset of R, then the left (right) annihilator of X in R is denoted by
annR

` (X) (annR
r (X)). We will denote by End(R) the monoid of ring endomorphisms

of R, and by Aut(R) the group of ring automorphisms of R. For later reference, we
recall that a module M is said to be uniserial if the submodule lattice of M is totally
ordered; a ring R is said to be right (left) uniserial if the module RR (R R) is uniserial.

In order to recall the skew generalized power series ring construction, we need
some definitions. Let (S,≤) be a partially ordered set. Then (S,≤) is called artinian
if every strictly decreasing sequence of elements of S is finite, and (S,≤) is called
narrow if every subset of pairwise order-incomparable elements of S is finite. Thus,
(S,≤) is artinian and narrow if and only if every nonempty subset of S has at least one
but only a finite number of minimal elements.

An ordered monoid is a pair (S,≤) consisting of a monoid S and an order ≤ on S
such that for all a, b, c ∈ S, a ≤ b implies ca ≤ cb and ac ≤ bc. An ordered monoid
(S,≤) is said to be strictly ordered if for all a, b, c ∈ S, a < b implies ca < cb and
ac < bc.

Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→ End(R) a monoid
homomorphism. For s ∈ S, let ωs denote the image of s under ω, that is, ωs = ω(s).
Let A be the set of all functions f : S→ R such that the support supp( f )= {s ∈ S :
f (s) 6= 0} is artinian and narrow. Then for any s ∈ S and f, g ∈ A the set

Xs( f, g)= {(x, y) ∈ supp( f )× supp(g) : s = xy}
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is finite. Thus one can define the product f g: S→ R of f, g ∈ A as follows:

( f g)(s)=
∑

(x,y)∈Xs( f,g)

f (x) · ωx (g(y))

(by convention, a sum over the empty set is 0). With pointwise addition and
multiplication as defined above, A becomes a ring, called the ring of skew generalized
power series with coefficients in R and exponents in S (see [31]), denoted by
R[[S, ω,≤]] (or by R[[S, ω]] when there is no ambiguity concerning the order ≤).
The skew generalized power series construction embraces a wide range of classical
ring-theoretic extensions, including skew polynomial rings, skew power series rings,
skew Laurent polynomial rings, skew group rings, Mal’cev–Neumann Laurent series
rings, and of course the ‘untwisted’ versions of all of these.

We will use the symbol 1 to denote the identity elements of the monoid S, the
ring R, and the ring R[[S, ω]], as well as the trivial monoid homomorphism 1 : S→
End(R) that sends every element of S to the identity endomorphism. A subset P ⊆ R
will be called S-invariant if for every s ∈ S it is ωs-invariant (that is, ωs(P)⊆ P).

To each r ∈ R and s ∈ S, we associate elements cr , es ∈ R[[S, ω]] defined by

cr (x)=

{
r if x = 1

0 if x ∈ S\{1},
es(x)=

{
1 if x = s

0 if x ∈ S\{s}.

It is clear that r 7→ cr is a ring embedding of R into R[[S, ω]] and s 7→ es is a
monoid embedding of S into the multiplicative monoid of the ring R[[S, ω]], and
escr = cωs(r)es . Moreover, for each nonempty subset X of R we put

X [[S, ω]] = { f ∈ R[[S, ω]] : f (s) ∈ X ∪ {0} for every s ∈ S},

and for each nonempty subset Y of R[[S, ω]] we put CY = {g(t) : g ∈ Y, t ∈ S}.

2. (S, ω)-Armendariz rings

A ring R is called Armendariz if whenever polynomials f (x)= a0 + a1x + · · · +
am xm and g(x)= b0 + b1x + · · · + bnxn in R[x] satisfy f (x)g(x)= 0, then ai b j = 0
for each i, j . This definition was coined by Rege and Chhawchharia in [37] in
recognition of Armendariz’s proof in [3, Lemma 1] that reduced rings satisfy this
condition. The Armendariz condition, and various derivatives described below, have
been studied by numerous authors.

Given a ring R and a ring endomorphism σ : R→ R, the skew polynomial ring
R[x; σ ] consists of polynomials in the indeterminate x with coefficients from R,
written on the left, where multiplication in R[x; σ ] is defined by(∑

i

ai x
i
)(∑

j

b j x j
)
=

∑
i, j

aiσ
i (b j )x

i+ j .
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Following Hong et al. [13], we say that a ring R with an endomorphism σ is σ -skew
Armendariz if whenever polynomials f (x)= a0 + a1x + · · · + am xm and g(x)=
b0 + b1x + · · · + bnxn in R[x; σ ] satisfy f (x)g(x)= 0 then aiσ

i (b j )= 0 for all i, j .
A stronger condition than Armendariz was studied by Kim et al. in [18]. A ring R is
said to be power-serieswise Armendariz if whenever power series f (x)=

∑
∞

i=0 ai x i

and g(x)=
∑
∞

j=0 b j x j in R[[x]] satisfy f (x)g(x)= 0 then ai b j = 0 for all i, j .
In [25], Liu extended the Armendariz notion to monoid rings. If R is a ring and S
is a monoid, then R is called an Armendariz ring relative to S if whenever elements
f = a1s1 + a2s2 + · · · + amsm and g = b1t1 + b2t2 + · · · + bntn of the monoid ring
R[S] satisfy f g = 0, then ai b j = 0 for all i, j . In the case of commutative monoids,
Liu generalized this definition in [24] to (untwisted) generalized power series rings as
follows. If R is a ring and (S,≤) is a commutative strictly ordered monoid, then R
is called S-Armendariz if whenever generalized power series f, g ∈ R[[S, 1]] satisfy
f g = 0, then f (s)g(t)= 0 for all s, t ∈ S.

We unify the above versions of Armendariz rings by introducing the following
definition.

DEFINITION 2.1. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. We say that R is (S, ω)-Armendariz (or (S, ω,≤)-
Armendariz to indicate the order ≤) if whenever f g = 0 for f, g ∈ R[[S, ω]], then
f (s) · ωs(g(t))= 0 for all s, t ∈ S.

If S = {1} then every ring is (S, ω)-Armendariz. In some of our results we will
stipulate that S 6= {1} to avoid trivialities.

EXAMPLE 2.2. Here are some special cases of (S, ω)-Armendariz rings.

(i) Suppose R is Armendariz, as in [37]. This is the special case where S = N ∪ {0}
under addition, with the trivial order, and ω is trivial.

(ii) Suppose R is σ -skew Armendariz for some σ ∈ End(R), as in [13]. This is the
special case where S = N ∪ {0} under addition, with the trivial order, and ω is
determined by ω(1)= σ .

(iii) Suppose R is power-serieswise Armendariz, as in [18]. This is the special case
where S = N ∪ {0} under addition, with its natural linear order, and ω is trivial.

(iv) Suppose R is Armendariz relative to a monoid S, as in [25]. This is the special
case where S is given the trivial order, and ω is trivial.

(v) Suppose R is S-Armendariz for some commutative, strictly ordered monoid
(S,≤), as in [24]. This is the special case where ω is trivial (and S satisfies
the extra conditions just described).

We recall the definition of a compatible endomorphism from [2, Definition 2.1].

DEFINITION 2.3. An endomorphism σ of a ring R is called compatible if for all
a, b ∈ R,

ab = 0⇔ aσ(b)= 0.
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Compatibility arises naturally in the study of (S, ω)-Armendariz rings. To see why,
suppose R is a ring and σ is an endomorphism of R. Then the skew power series ring
R[[x; σ ]] is a skew generalized power series ring for S = N ∪ {0} with natural order
≤ and ω(n)= σ n . Notice that for elements a and b of an (S, ω)-Armendariz ring R,
if ab = 0, then aσ(b)= 0 (that is, ‘half’ of the definition of compatibility must hold).
Indeed, define f, g ∈ R[[x; σ ]] as follows:

f = a − ax, g = b + σ(b)x + σ 2(b)x2
+ σ 3(b)x3

+ · · · .

Then f g = 0, and invoking the (S, ω)-Armendariz condition for the constant
coefficient of f and the x-coefficient of g yields aσ(b)= 0.

We will also want to consider a condition on endomorphisms stronger than
compatibility, namely the rigidity condition studied in [20]. For example, we will
use this condition to characterize the (S, ω)-Armendariz property in an appropriate
setting in Theorem 4.12.

DEFINITION 2.4. An endomorphism σ of a ring R is called rigid if for every a ∈ R,

aσ(a)= 0⇔ a = 0.

Let R be a ring, (S,≤) a strictly ordered monoid and ω : S→ End(R) a monoid
homomorphism. We say that R is S-compatible (S-rigid ) if ωs is compatible (rigid)
for every s ∈ S; to indicate the homomorphism ω, we will sometimes say that R is
(S, ω)-compatible ((S, ω)-rigid ).

Basic properties of rigid and compatible endomorphisms, proved by Hashemi and
Moussavi in [11, Lemmas 2.1 and 2.2], are summarized here:

LEMMA 2.5. Let σ be an endomorphism of a ring R. Then:

(i) if σ is compatible, then σ is injective;
(ii) σ is compatible if and only if for all a, b ∈ R, σ(a)b = 0⇔ ab = 0;
(iii) the following conditions are equivalent:

(1) σ is rigid;
(2) σ is compatible and R is reduced;
(3) for every a ∈ R, σ(a)a = 0 implies that a = 0.

It will be useful to establish criteria for transfer of the (S, ω)-Armendariz
condition from one ring to another. Let R1 and R2 be rings, (S1,≤1) and (S2,≤2)

strictly ordered monoids, and let υ : S1→ End(R1) and ω : S2→ End(R2) be monoid
homomorphisms. Let α : S1→ S2 be a monoid monomorphism such that for any
artinian and narrow subset T of S1, α(T ) is an artinian and narrow subset of S2, and
let ϕ : R1→ R2 be a ring homomorphism such that for every s ∈ S1 the following
diagram is commutative.

R1

υs

��

ϕ // R2

ωα(s)

��
R1

ϕ // R2
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For f ∈ R1[[S1, υ,≤1]], let f̄ : S2→ R2 be the map defined as follows:

f̄ (x)=

{
ϕ ◦ f ◦ α−1(x) if x ∈ α(S1)

0 otherwise.

It is easy to see that supp( f̄ )⊆ α(supp( f )), and thus f̄ ∈ R2[[S2, ω,≤2]]. Putting
8( f )= f̄ , we define a map8 : R1[[S1, υ,≤1]] → R2[[S2, ω,≤2]]. Fixing all of this
notation, we have the following two lemmas, the proofs of which we suppress.

LEMMA 2.6. The map 8 : R1[[S1, υ,≤1]] → R2[[S2, ω,≤2]] is a ring homo-
morphism, and ker8= (ker ϕ)[[S1, υ]].

LEMMA 2.7. If ϕ : R1→ R2 is injective and R2 is (S2, ω)-Armendariz, then R1 is
(S1, υ)-Armendariz.

The following proposition provides us with a method of constructing (S, ω)-
Armendariz rings. Recall that an ordered monoid (S,≤) is left naturally ordered if
for all s, t ∈ S, s ≤ t implies that t ∈ Ss (see [33]).

PROPOSITION 2.8. Let R be a domain, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Assume that the order ≤ can be refined to a strict
total order 4 such that the monoid (S,4) is left naturally ordered. Then R is an
(S, ω)-Armendariz ring.

PROOF. By Lemma 2.7 it suffices to show that R is (S, ω,4)-Armendariz. Assume
that R is not an (S, ω,4)-Armendariz ring. Then there exist f, g ∈ R[[S, ω]] such
that f g = 0 but the set

H = {(s, t) ∈ S × S : f (s) · ωs(g(t)) 6= 0}

is nonempty. The sets supp( f ) and supp(g) are well-ordered with respect to 4 and
H ⊆ supp( f )× supp(g), so we can choose an element (s0, t0) ∈ H minimal with
respect to the lexicographic order 4lex.

Suppose that there exists (s, t) ∈ H\{(s0, t0)} such that st = s0t0. By the choice
of (s0, t0) we have s0 4 s. Since the order 4 is strict and total, and st = s0t0, and
(s, t) 6= (s0, t0), it follows that s0 ≺ s. Thus t ≺ t0, and consequently (s0, t)≺lex
(s0, t0). Hence the minimality of (s0, t0) implies that f (s0) · ωs0(g(t))= 0, and since
R is a domain, we obtain ωs0(g(t))= 0. Furthermore, since s0 ≺ s, there exists z ∈ S
such that s = zs0, and thus ωs(g(t))= ωz(ωs0(g(t)))= 0, contradicting (s, t) ∈ H .

By the above, the only element (s, t) ∈ H with st = s0t0 is (s, t)= (s0, t0).
Therefore, since (s0, t0) ∈ H and f g = 0, we obtain 0 6= f (s0) · ωs0(g(t0))=
( f g)(s0t0)= 0, a contradiction. 2

Since the trivial order on the additive monoid S = N ∪ {0} can be refined to the usual
order ≤ and S is naturally ordered by ≤, from Proposition 2.8 and Example 2.2(ii), we
obtain the following result of Hong, Kim, and Kwak.
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COROLLARY 2.9 [13, Proposition 10]. If R is a domain, then R is σ -skew Armendariz
for any endomorphism σ of R.

3. Characterizations of (S, ω)-Armendariz rings via annihilators

In this section we will present a characterization theorem for (S, ω)-Armendariz
rings in terms of one-sided annihilators. The result involves the sets X [[S, ω]] and
CY defined in Section 1. Recall that if (S,≤) is a strictly ordered monoid, R is a ring,
ω : S→ End(R) is a monoid homomorphism and A = R[[S, ω]], then for ∅ 6= X ⊆ R,

X [[S, ω]] = { f ∈ A : f (s) ∈ X ∪ {0} for every s ∈ S},

and for ∅ 6= Y ⊆ A,
CY = {g(t) : g ∈ Y, t ∈ S}.

Note that
X ∪ {0} = CX [[S,ω]] for any nonempty subset X of R. (3.1)

Now, let S(R) (respectively S(A)) be the set of nonempty subsets of R (respectively
A). We obtain the following maps:

α : S(R)→ S(A) defined by α(X)= X [[S, ω]],

β : S(A)→ S(R) defined by β(Y )= CY .

As we will see in Theorem 3.4, an S-compatible ring R is (S, ω)-Armendariz
exactly when the following diagram is commutative:

S(A)

β

��

annA
r // S(A)

S(R)
annR

r // S(R)

α

OO
that is, ∀Y ∈ S(A), annA

r (Y )= α(annR
r (β(Y ))).

Other equivalent conditions involving annihilators also will be given in the theorem.
We start by characterizing S-compatible rings.

LEMMA 3.1. Let R be a ring, (S,≤) a strictly ordered monoid, ω : S→ End(R) a
monoid homomorphism, and A = R[[S, ω]].

(1) The following conditions are equivalent:

(i) R is S-compatible;
(ii) for any a ∈ R and any nonempty subset Y ⊆ A,

a ∈ annR
r (CY )⇔ ca ∈ annA

r (Y ).

(2) For any a ∈ R and any nonempty subset Y ⊆ A,

a ∈ annR
` (CY )⇔ ca ∈ annA

` (Y ).
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PROOF. (1) (i)⇒ (ii). Assume that R is S-compatible. Then for any a ∈ R and f ∈ A,

a ∈ annR
r (C{ f })⇔ C{ f }a = {0} ⇔ ∀s ∈ S, f (s)a = 0

⇔ ∀s ∈ S, f (s) · ωs(a)= 0
⇔ ∀s ∈ S, ( f ca)(s)= 0
⇔ f ca = 0
⇔ ca ∈ annA

r ( f ),

and (ii) follows.
(ii)⇒ (i). Let a, b ∈ R and s ∈ S. Then using (ii) we obtain

ab = 0⇔ b ∈ annR
r ({a, 0})⇔ b ∈ annR

r (C{caes}) ⇔ cb ∈ annA
r (caes)

⇔ caescb = 0
⇔ a · ωs(b)= 0.

Thus, R is S-compatible.
(2) This can be proved similarly to (i)⇒ (ii) of (1) (we do not need any assumption

about S-compatibility in this case). 2

LEMMA 3.2. Let R be a ring, (S,≤) a strictly ordered monoid, ω : S→ End(R) a
monoid homomorphism, and A = R[[S, ω]]. If R is S-compatible, then:

(i) for any nonempty subset X ⊆ R, annR
r (X)[[S, ω]] = annA

r (X [[S, ω]]);
(ii) for any nonempty subset X ⊆ R, annR

r (X) is an ideal of R if and only if
annR

r (X)[[S, ω]] is an ideal of A;
(i′)–(ii′) the analogues of (i)–(ii) for left annihilators.

PROOF. (i) The inclusion annR
r (X)[[S, ω]] ⊆ annA

r (X [[S, ω]]) is clear from
S-compatibility. To prove the opposite inclusion, consider any f ∈ annA

r (X [[S, ω]]),
s ∈ S, and x ∈ X . Since cx ∈ X [[S, ω]], we have cx f = 0 and thus x f (s)=
(cx f )(s)= 0, which shows that f ∈ annR

r (X)[[S, ω]].
(ii) Assume that annR

r (X) is an ideal of R. By (i), annR
r (X)[[S, ω]] is a right ideal of

A. Choose any f ∈ A and g ∈ annR
r (X)[[S, ω]]. Let s, t ∈ S. Then g(t) ∈ annR

r (X),
and the S-compatibility of R yields ωs(g(t)) ∈ annR

r (X). By hypothesis annR
r (X)

is an ideal of R; thus, f (s) · ωs(g(t)) ∈ annR
r (X). Hence for any z ∈ S we have

( f g)(z) ∈ annR
r (X), which shows that f g ∈ annR

r (X)[[S, ω]].
Conversely, assume that annR

r (X)[[S, ω]] is an ideal of A. Then for any a ∈ R and
r ∈ annR

r (X) we have car = cacr ∈ A · annR
r (X)[[S, ω]] ⊆ annR

r (X)[[S, ω]], and thus
ar = car (1) ∈ annR

r (X). Hence annR
r (X) is an ideal of R.

(i′)–(ii′) The proofs are analogous. 2

Following Camillo et al. [6], we say that a ring R is right Ikeda–Nakayama if

annR
` (I ∩ J )= annR

` (I )+ annR
` (J )
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for all right ideals I, J of R. As observed in [6], the right Ikeda–Nakayama condition
fits nicely into the following ring-theoretic implication diagram.

right self-injective
u

right uniserial H⇒ right Ikeda–Nakayama H⇒ right quasi-continuous
t

right Ore domain

PROPOSITION 3.3. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Assume that R is S-compatible. If R[[S, ω]] is a
right Ikeda–Nakayama ring, then so is R.

PROOF. Let I and J be right ideals of R. Trivially annR
` (I )+ annR

` (J )⊆ annR
` (I ∩

J ). Consider any a ∈ annR
` (I ∩ J ), and set A = R[[S, ω]]. Since I [[S, ω]] and

J [[S, ω]] are right ideals of A, by the right Ikeda–Nakayama hypothesis and
Lemma 3.2(i′) we may write

ca ∈ annA
` (I [[S, ω]] ∩ J [[S, ω]]) = annA

` (I [[S, ω]])+ annA
` (J [[S, ω]])

= annR
` (I )[[S, ω]] + annR

` (J )[[S, ω]].

Hence a ∈ annR
` (I )+ annR

` (J ). 2

In light of Example 2.2(i), Proposition 3.3 recovers the main result of [19] (along
with its power-series analogue), showing furthermore that in that result the assumption
that R is Armendariz is superfluous.

We are now ready to characterize (S, ω)-Armendariz rings among S-compatible
rings as those for which there exists a specific bijection between the sets of
right (equivalently, left) annihilator ideals of R and of R[[S, ω]], generalizing
annihilator characterizations of various classes of Armendariz-like rings given in [12,
Proposition 3.1], [12, Proposition 3.4], and [18, Proposition 2.6].

To state the result we introduce the following notation. For a ring R we put

Lannr (R)= {annR
r (X) : X is a nonempty subset of R},

Lann`(R)= {annR
` (X) : X is a nonempty subset of R}.

Ordered by inclusion, Lannr (R) has the following lattice structure. Given A,B ∈
Lannr (R), the meet and join are defined by

A ∧B=A ∩B and A ∨B= annR
r (annR

` (A ∪B)).

Notice that annR
` (A ∪B)= annR

` (A+B), and thus A ∨B= annR
r (annR

` (A+B)).
The lattice structure on Lann`(R) is analogous.

https://doi.org/10.1017/S0004972709001178 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001178


[11] Generalizations of Armendariz rings 371

THEOREM 3.4. Let R be a ring, (S,≤) a strictly ordered monoid, ω : S→ End(R)
a monoid homomorphism, and let A = R[[S, ω]]. Assume that R is S-compatible.
Define

ϕ : Lannr (R)→ Lannr (A) given by annR
r (X) 7→ annA

r (X [[S, ω]]);

ϕ′ : Lann`(R)→ Lann`(A) given by annR
` (X) 7→ annA

` (X [[S, ω]]);

ψ : Lannr (A)→ Lannr (R) given by annA
r (Y ) 7→ annR

r (CY );

ψ ′ : Lann`(A)→ Lann`(R) given by annA
` (Y ) 7→ annR

` (CY ).

Then:

(1) (a) the map ϕ is a lattice monomorphism;
(a′) the map ϕ′ is a lattice monomorphism;
(b) the map ψ is a poset epimorphism;
(b′) the map ψ ′ is a poset epimorphism.

(2) The following conditions are equivalent:

(i) R is (S, ω)-Armendariz;
(ii) for every nonempty subset Y of A, CannA

r (Y )
= annR

r (CY );

(ii′) for every nonempty subset Y of A, CannA
` (Y )
= annR

` (CY );

(iii) for every nonempty subset Y of A, annA
r (Y )= annR

r (CY )[[S, ω]];
(iii′) for every nonempty subset Y of A, annA

` (Y )= annR
` (CY )[[S, ω]];

(iv) the map ϕ is surjective;
(iv′) the map ϕ′ is surjective;
(v) the map ψ is injective;
(v′) the map ψ ′ is injective;
(vi) the map ϕ is a lattice isomorphism;
(vi′) the map ϕ′ is a lattice isomorphism;
(vii) the map ψ is a lattice isomorphism;
(vii′) the map ψ ′ is a lattice isomorphism.

PROOF. (1) By Lemma 3.2(i),

ϕ(C)= C[[S, ω]] for any C ∈ Lannr (R); (3.2)

thus, ϕ is injective, and for any A,B ∈ Lannr (R) we have ϕ(A ∧B)= ϕ(A) ∧ ϕ(B).
Applying Lemma 3.2(i′) and equation (3.2), we obtain

ϕ(A ∨B) = annA
r (annR

` (A+B)[[S, ω]])

= annA
r (annA

` ((A+B)[[S, ω]]))

= annA
r (annA

` (A[[S, ω]] +B[[S, ω]]))

= ϕ(A) ∨ ϕ(B).

This proves (a). The proof of (a′) is similar. By Lemma 3.1 the maps ψ and ψ ′ are
isotone, and Equation (3.1) shows they are surjective. This proves (b) and (b′).
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(2) (i) ⇒ (ii). To show that CannA
r (Y )
⊆ annR

r (CY ), consider any a ∈ CannA
r (Y )

and

b ∈ CY . Then a = g(t) and b = f (s) for some g ∈ annA
r (Y ), f ∈ Y and s, t ∈ S.

Since R is (S, ω)-Armendariz and S-compatible, f g = 0 implies 0= f (s)g(t)= ba,
as desired. To show that annR

r (CY )⊆ CannA
r (Y )

, consider any a ∈ annR
r (CY ). By

Lemma 3.1(1) we have ca ∈ annA
r (Y ), and thus a = ca(1) ∈ CannA

r (Y )
.

(ii) ⇒ (iii). Given f ∈ annA
r (Y ), from (ii) we obtain f (s) ∈ CannA

r (Y )
=

annR
r (CY ) for every s ∈ S. Therefore f ∈ annR

r (CY )[[S, ω]], which proves that
annA

r (Y )⊆ annR
r (CY )[[S, ω]]. To prove the opposite inclusion, consider any g ∈

annR
r (CY )[[S, ω]] and f ∈ Y . For any s, t ∈ S we have f (s) ∈ CY and g(t) ∈

annR
r (CY ), and thus f (s)g(t)= 0. Since R is S-compatible, f (s) · ωs(g(t))= 0.

Hence f g = 0, so g ∈ annA
r (Y ), as desired.

(iii)⇒ (iv). Surjectivity of ϕ is immediate from (iii) and Lemma 3.2(i).
(iv)⇒ (vi). This follows by (1)(a).
(vi)⇒ (vii). By Equation (3.1), the map ψ ◦ ϕ is the identity on Lannr (R). Thus, if

ϕ is a lattice isomorphism, so is ψ .
(vii)⇒ (v). This is obvious.
(v)⇒ (i). Let f, g ∈ A be such that f g = 0. From Equation (3.1) we obtain

annR
r (C{ f })= annR

r (CC{ f }[[S,ω]])⇒ ψ(annA
r ( f ))= ψ(annA

r (C{ f }[[S, ω]])).

Now (v) implies that annA
r ( f )= annA

r (C{ f }[[S, ω]]), whence g ∈ annA
r (C{ f }[[S, ω]]).

So c f (s)g = 0 for every s ∈ S. Therefore, for every t ∈ S, we have f (s)g(t)=
(c f (s)g)(t)= 0, and thus f (s) · ωs(g(t))= 0 by S-compatibility of R, which proves
that R is (S, ω)-Armendariz.

The implications (i)⇒ (ii′)⇒ (iii′)⇒ (iv′)⇒ (vi′)⇒ (vii′)⇒ (v′)⇒ (i) follow
symmetrically. 2

REMARK 3.5. The curious asymmetry between conditions (1)((a), (a′)) and (1)((b),
(b′)) of Theorem 3.4 is unavoidable: in general, ψ is not a morphism in the category
of lattices. Obviously, whenever ψ : L1→ L2 is a surjective map between lattices L1
and L2 with the property that a ≤ b if and only if ψ(a)≤ ψ(b) for all a, b ∈ L1, then
ψ is a lattice epimorphism. But this is not, in general, the situation in the context of
Theorem 3.4, as the following example shows.

EXAMPLE 3.6. Put B = Z/4Z, and let R = B ⊕ B as an additive group, with
multiplication in R defined by

(m1, n1)(m2, n2)= (m1m2, m1n2 + m2n1).

Then R is a ring. Let A = R[[x]] be the ring of power series over R. Thus,
A ∼= R[[S, ω]] for the additive monoid S = N ∪ {0} with the usual order and trivial
ω; obviously R is S-compatible.

Let f, g ∈ A be given by

f = (2, 0)+ (2, 1)x, g = (2, 1)+ (2, 0)x .
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Let A,B ∈ Lannr (A) be defined by

A= annA
r ( f ), B= annA

r (g).

An easy calculation shows that Lannr (R) is the following lattice:

(0)

I
@@ ��

J K L
�� @@

M

R

where

M = annR
r ((0, 2)), J = annR

r ((0, 1)), K = annR
r ((2, 0)), L = annR

r ((2, 1)),

and I = {(0, 0), (0, 2)} = annR
r (M).

Since C{ f } = C{g} = {(2, 0), (2, 1)},

ψ(A)= ψ(B)= annR
r ({(2, 0), (2, 1)})= I ⇒ ψ(A) ∨ ψ(B)= I. (3.3)

Because M is the maximal ideal of the local ring R, we have annA
r ( f ) ∪ annA

r (g)⊆
M[[x]]; therefore, I [[x]] ⊆ annA

` (annA
r ( f ) ∪ annA

r (g)). On the other hand, if h(x)=∑
∞

n=0 βnxn is any nonzero element of annA
` (annA

r ( f ) ∪ annA
r (g)), then since h(x)

annihilates both of the elements

(2, 0)+ (2, 1)x + (2, 0)x2
+ (2, 1)x3

+ (2, 0)x4
+ (2, 1)x5

+ · · · ∈ annA
r ( f )

and

(2, 1)+ (2, 0)x + (2, 1)x2
+ (2, 0)x3

+ (2, 1)x4
+ (2, 0)x5

+ · · · ∈ annA
r (g),

a quick induction shows that for every m ≥ 0, βm ∈ K ∩ L = I and
∑
∞

n=m+1 βnxn
∈

annA
` (annA

r ( f ) ∪ annA
r (g)). Thus, annA

` (annA
r ( f ) ∪ annA

r (g))⊆ I [[x]]. This proves
that

annA
` (annA

r ( f ) ∪ annA
r (g))= I [[x]],

and therefore

ψ(A ∨B)= annR
r (CannA

` (annA
r ( f )∪annA

r (g))
)= annR

r (CI [[x]])= annR
r (I )= M. (3.4)

Equations (3.3) and (3.4) show that ψ(A) ∨ ψ(B) < ψ(A ∨B). We conclude that in
this case the poset epimorphism ψ is not a lattice morphism (see Theorem 3.4(1)(b)).

As a consequence of Theorem 3.4, we obtain the following generalization of [12,
Corollary 3.3], which was provided to counterpoint Kerr’s example of a polynomial
ring over a Goldie ring that is not a Goldie ring.
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COROLLARY 3.7. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Suppose that R is S-compatible and (S, ω)-
Armendariz. Then R satisfies the ascending chain condition on right annihilators if
and only if R[[S, ω]] satisfies the ascending chain condition on right annihilators.

4. The (S, ω)-Armendariz condition and generalizations of commutativity

In this section we will obtain criteria for skew generalized power series rings to
satisfy various conditions on noncommutative rings that generalize commutativity. A
ring is called reduced if it contains no nonzero nilpotent elements. A ring R is called
reversible if for all a, b ∈ R we have ab = 0 if and only if ba = 0. A ring R is called
semicommutative if for all a, b ∈ R we have ab = 0⇒ a Rb = {0}. A ring is called
abelian if every idempotent element is central. A ring is called 2-primal if its prime
radical contains every nilpotent element of the ring. There is a substantial literature on
these conditions, a survey of some of which can be found in [28]. The conditions have
the following relationships, where the bottom left condition is defined with respect to
any nontrivial strictly ordered monoid (S,≤):

reduced ⇒ power-serieswise Armendariz
⇓ ⇓

reversible ⇒ semicommutative ⇒ 2-primal
⇓

(S, ω)-Armendariz ⇒ abelian

The implication ‘reduced⇒ power-serieswise Armendariz’, originally established
in [18, Lemma 2.3(1)], is generalized in [29, Proposition 3.6] (see [29,
Corollary 3.8(iii)]). The implication ‘(S, ω)-Armendariz ⇒ abelian’ follows from
Proposition 4.9(ii) below. For ‘power-serieswise Armendariz ⇒ semicommutative’,
see [18, Lemma 2.3(2)]. The remaining implications are well known (see [28] and
sources cited).

In the above diagram, the six conditions reduced, power-serieswise Armendariz,
reversible, semicommutative, 2-primal, and abelian are equivalent for von Neumann
regular rings. Thus, the characterizations of these conditions in skew generalized
power series rings given below might be compared with the criteria obtained in [31]
for a skew generalized power series ring to be von Neumann regular.

We first examine semicommutativity of skew generalized power series rings.
Directly from Lemma 3.2 and Theorem 3.4 we obtain the following theorem.

THEOREM 4.1. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Assume that R is S-compatible and (S, ω)-
Armendariz. Then R[[S, ω]] is semicommutative if and only if R is.

Combining Theorem 4.1 and Example 2.2(i) recovers [37, Proposition 4.6].
In order to obtain criteria for R and R[[S, ω]] to be semicommutative,

we first derive some necessary conditions for a ring to be (S, ω)-Armendariz.
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Recall that a monoid S is cancellative if for all s, t, z ∈ S, s 6= t implies sz 6= t z and
zs 6= zt . A monoid S is aperiodic if for any s ∈ S\{1} and m, n ∈ N with m 6= n we
have sm

6= sn .

LEMMA 4.2. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→ End(R)
a monoid homomorphism. If R is (S, ω)-Armendariz, then:

(i) S is cancellative;
(ii) S is aperiodic;
(iii) if x ∈ R and s ∈ S\{1} satisfy x · ωs(x) · ωs2(x) · · · ωsn (x)= 0 for some n ∈ N,

then for all a, b ∈ R such that ab = 0, we have a · x · ωs(b)= 0.

PROOF. (i) Let s, t ∈ S be such that s 6= t . Suppose that there exists z ∈ S
such that sz = t z. Then in R[[S, ω]] we have (es − et )ez = 0, and since R is
(S, ω)-Armendariz, it follows that 0= (es − et )(s) · ωs(ez(z))= 1 · ωs(1)= 1, a
contradiction. Similarly, one can show that s 6= t implies zs 6= zt .

(ii) Suppose that S is not aperiodic. Applying (i), we deduce that there exists
s ∈ S\{1} such that sn

= 1 for some n ∈ N. We can assume that si
6= 1 for each i ∈

{1, 2, . . . , n − 1}. Since (1− es)(1+ es + es2 + · · · + esn−1)= 0 and R is (S, ω)-
Armendariz, we obtain

0= (1− es)(1) · (1+ es + es2 + · · · + esn−1)(1)= 1 · 1= 1,

a contradiction.
(iii) Set f = cxes ∈ R[[S, ω]]. Since x · ωs(x) · ωs2(x) · · · ωsn (x)= 0, it follows

that f n+1
= 0, and thus

ca(1− f )(1+ f + f 2
+ · · · + f n)cb = cacb = 0.

Since R is (S, ω)-Armendariz, and S is aperiodic by (ii), we obtain

0= [ca(1− f )](1) · [(1+ f + f 2
+ · · · + f n)cb](s)= a · x · ωs(b). 2

PROPOSITION 4.3. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. If R is S-compatible and (S, ω)-Armendariz, and
there exists s ∈ S\{1} such that sm

≤ sn for some positive integers m < n, then R and
R[[S, ω]] are semicommutative.

PROOF. By Theorem 4.1, to prove the result it suffices to show that R is
semicommutative. By [31, Lemma 4], the set {1, s, s2, . . .} is artinian and narrow,
and by Lemma 4.2(ii), for all i, j ∈ N ∪ {0} with i 6= j we have si

6= s j . Take any
r ∈ R and define f ∈ R[[S, ω]] by setting

f (1)= 1, f (sn)= r · ωs(r) · ωs2(r) · · · ωsn−1(r) for every n ∈ N,

and f (x)= 0 for every x ∈ S\{1, s, s2, . . .}. It is easy to see that (1− cr es) f = 1.
Therefore, for any a, b ∈ R with ab = 0 we have ca(1− cr es) f cb = 0, and since R
is (S, ω)-Armendariz, it follows that

[ca(1− cr es)](s) · ωs(( f cb)(1))= 0.

Hence −a · r · ωs(b)= 0, and the S-compatibility of R implies that arb = 0. 2
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Combining Proposition 4.3 and Example 2.2(iii) recovers [18, Lemma 2.3(2)].
In the proof of Theorem 4.12 we will need the following observation on

semicommutative skew generalized power series rings.

LEMMA 4.4. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→ End(R)
a monoid homomorphism.

(i) If R[[S, ω]] is semicommutative, then ab = 0 implies aωs(b)= 0 for all a, b ∈ R
and all s ∈ S.

(ii) If R[[S, ω]] is reversible, or if R[[S, ω]] is semicommutative and S is a group,
then R is S-compatible.

PROOF. Suppose that R[[S, ω]] is semicommutative. Given a, b ∈ R and s ∈ S
such that ab = 0, semicommutativity implies that caescb = 0, so aωs(b)= 0. This
proves (i). If, in addition, s has an inverse in S, then aωs(b)= 0 implies ab = 0.
Likewise, in the case where R[[S, ω]] is reversible,

aωs(b)= 0⇒ caescb = 0⇒ cbcaes = 0⇒ ba = 0⇒ ab = 0.

This proves (ii). 2

Perhaps the greatest unsolved problem in noncommutative ring theory today is the
Köthe conjecture, which posits that a ring with no nonzero nil ideals has no nonzero nil
one-sided ideals. (See [36] for a discussion of the Köthe conjecture and various related
problems.) The Köthe conjecture has been resolved in several special cases, including
for rings with Krull dimension, for PI rings, and for algebras over uncountable fields.
We will presently add S-compatible (S, ω)-Armendariz rings to this list.

For a ring R, let N(R) denote the set of nilpotent elements of R, N0(R) the
Wedderburn radical of R (that is, the sum of all nilpotent ideals of R), Nil∗(R)
the prime radical of R, Nil∗(R) the upper nilradical of R, and A(R) the sum of
all nil left ideals of R (which coincides with the sum of all nil right ideals of R).
The Köthe conjecture is equivalent to the statement that A(R) is always nil, that
is, Nil∗(R)= A(R) for every ring R.

PROPOSITION 4.5. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. If R is (S, ω)-Armendariz and ωs is compatible for
some s ∈ S\{1}, then:

(i) for all a, b ∈ R and x ∈N(R), ab = 0 implies axb = 0;
(ii) N(R) is a (nonunital) subring of R;
(iii) N0(R)= Nil∗(R)= Nil∗(R)= A(R). In particular, the Köthe problem has a

positive solution in the class of S-compatible (S, ω)-Armendariz rings.

PROOF. (i) Since ωs is compatible for some s ∈ S\{1}, (i) follows directly from
Lemma 4.2(iii).

(ii) Let x, y ∈N(R). Then xn
= yn

= 0 for some n ∈ N. Hence (xy)n = 0 by (i),
and thus xy ∈N(R). Clearly (x + y)2n−1 is a finite sum of elements of the form
xα1 yβ1 xα2 yβ2 · · · xαk yβk for nonnegative integers αi and βi satisfying

∑k
i=1(αi +

βi )= 2n − 1. Then
∑k

i=1 αi ≥ n or
∑k

i=1 βi ≥ n, and thus xα1+α2+···+αk = 0
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or yβ1+β2+···+βk = 0, and (i) implies that xα1 yβ1 xα2 yβ2 · · · xαk yβk = 0. Hence x +
y ∈N(R), so N(R) is a subring of R.

(iii) Let x ∈ A(R). Since A(R) is an ideal of R, and A(R)⊆N(R) by (ii), it
follows that Rx R ⊆N(R). Then xn

= 0 for some n ∈ N, and from (i) we deduce
that (Rx R)2n−1

= 0. Hence x ∈ N0(R). 2

Combining Proposition 4.5(iii) and Example 2.2(i) recovers [18, Lemma 2.3(5)].
As a consequence of Propositions 4.3 and 4.5(iii) we obtain the following.

COROLLARY 4.6. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. If R is S-compatible and (S, ω)-Armendariz, and
there exists s ∈ S\{1} such that sm

≤ sn for some positive integers m < n, then

N0(R)= Nil∗(R)= Nil∗(R)= A(R)=N(R).

Combining Corollary 4.6 and Example 2.2(iii) recovers [18, Lemma 2.3(6)].
A ring R with the property that, for all a0, a1, b0, b1 ∈ R, if (a0 + a1x)(b0 +

b1x)= 0 in R[x] then a0b1 = a1b0 = 0 in R has been called weak Armendariz by Lee
and Wong in [22], and linearly Armendariz by Camillo and Nielsen in [7]. Camillo and
Nielsen give a compelling argument in favour of the latter nomenclature in [7, p. 608],
so we will follow their usage. Here we extend this condition to skew generalized power
series rings.

DEFINITION 4.7. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. We say that R is linearly (S, ω)-Armendariz if
for all s ∈ S\{1} and a0, a1, b0, b1 ∈ R, whenever (ca0 + ca1es)(cb0 + cb1es)= 0 in
R[[S, ω]], then a0b0 = a0b1 = a1 · ωs(b0)= a1 · ωs(b1)= 0 in R.

Obviously, all (S, ω)-Armendariz rings are linearly (S, ω)-Armendariz. However,
as [22, Example 3.2] shows, a linearly (S, ω)-Armendariz ring R need not be (S, ω)-
Armendariz, even in the case where R is commutative and R[[S, ω]] = R[x].

PROPOSITION 4.8. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. The following conditions are equivalent:

(i) R is linearly (S, ω)-Armendariz and reduced, and ωs is injective for every s ∈ S;
(ii) R is S-rigid and s2

6∈ {1, s} for every s ∈ S\{1}.

PROOF. To prove that (i) implies (ii), we first show that R is S-rigid. Let a ∈ R and
s ∈ S be such that aωs(a)= 0. Since R is reduced, ωs(a)a = 0; thus,

(cωs(a) + c−ωs(a)es)(ca + cωs(a)es)= 0.

Since R is linearly (S, ω)-Armendariz, it follows that ωs(a) · ωs(a)= 0. Since R is
reduced, ωs(a)= 0, and thus a = 0 by the injectivity of ωs .

Now we show that for any s ∈ S\{1}, s2
6= 1 and s2

6= s. If s2
= 1, then (c1 +

c−1es)(c1 + c1es)= 0 leads to 1 · 1= 0, a contradiction. If s2
= s, then (c1 +

c−1es)c1es = 0, and again we obtain 1 · 1= 0, a contradiction.
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We now prove that (ii) implies (i). Since R is S-rigid, Lemma 2.5 implies that
R is reduced and ωs is injective for every s ∈ S. To show that R is linearly (S, ω)-
Armendariz, consider any s ∈ S\{1} and a0, a1, b0, b1 ∈ R with (ca0 + ca1es)(cb0 +

cb1es)= 0. Since the elements 1, s and s2 are different, it follows that

a0b0 = 0, a0b1 + a1 · ωs(b0)= 0, a1 · ωs(b1)= 0. (4.1)

Since R is reduced and a0b0 = 0, by multiplying the second equation of (4.1) by b0
we obtain

b0a1 · ωs(b0)= 0⇒ b0a1b0 = 0⇒ a1b0 = 0⇒ a1 · ωs(b0)= 0,

using the compatibility of ωs . Therefore R is linearly (S, ω)-Armendariz. 2

We will say that an endomorphism σ of a ring R is idempotent-stabilizing if
σ(e)= e for every idempotent e of R. In [13, Proposition 20] it was proved that for any
σ -skew Armendariz ring R, the ring R[[x; σ ]] is abelian if and only if σ is idempotent-
stabilizing. The first part of the following result implies that the latter condition is
always satisfied, and thus all σ -skew Armendariz rings are abelian. The second part
of the result generalizes [17, Lemma 7], [15, Corollary 8], and [22, Lemma 3.4].

PROPOSITION 4.9. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. If R is linearly (S, ω)-Armendariz, then:

(i) for every s ∈ S, the endomorphism ωs is idempotent-stabilizing;
(ii) if S is nontrivial, then R is abelian.

PROOF. (i) The statement is trivial if s = 1, so assume that s ∈ S\{1}. Notice that, as
in the proof of [32, Lemma 4], for any idempotent e ∈ R,

(c1−e + c(1−e)ωs(e)es)(ce + c(e−1)ωs(e)es)= 0.

Since R is linearly (S, ω)-Armendariz, 0= (1− e)ωs(e). As the idempotent e ∈ R
was arbitrary, 0= eωs(1− e)= e(1− ωs(e)). The equations (1− e)ωs(e)= 0 and
e(1− ωs(e))= 0 yield ωs(e)= e.

(ii) As suggested by the proof of [34, Lemma 2.4], let a, e ∈ R with e an idempotent
and s ∈ S\{1} be given. Then

(ce + cea(e−1)es)(c1−e + cea(1−e)es)= 0,

and since R is linearly (S, ω)-Armendariz, it follows that ea(1− e)= 0. Hence
eR(1− e)= {0} for any idempotent e ∈ R, which proves that R is abelian. 2

This justifies the placement of ‘(S, ω)-Armendariz’ in the chart at the beginning
of Section 4. Note that the (S, ω)-Armendariz condition does not imply any of the
conditions in the first two rows of that chart, in general. For instance, [7, Example 9.3]
shows that a ring can be (S, ω)-Armendariz but not 2-primal.

The following proposition shows that for any (S, ω)-Armendariz ring R the set of
all idempotents of R[[S, ω]] coincides with that of R. The proposition generalizes [13,
Lemma 19].
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PROPOSITION 4.10. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Assume that R is (S, ω)-Armendariz.

(i) If f is an idempotent of R[[S, ω]], then f (1) is an idempotent of R and
f = c f (1).

(ii) R[[S, ω]] is abelian.

PROOF. (i) Since f ( f − 1)= 0 and R is (S, ω)-Armendariz, we obtain f (1) ·
( f (1)− 1)= 0, and so f (1) is an idempotent of R. Moreover, for any s ∈ S\{1} we
have 0= f (1) · ( f − 1)(s)= f (1) f (s). On the other hand, since ( f − 1) f = 0, it
follows that ( f (1)− 1) · f (s)= 0, and thus f (s)= f (1) f (s)= 0. Hence f = c f (1).

(ii) Let f = f 2
∈ R[[S, ω]]. Then by (i), f = ce for some idempotent e

of R. Hence by Proposition 4.9(i), ωs(e)= e for every s ∈ S. Furthermore, by
Proposition 4.9(ii), e is central in R. Now it is easy to see that ceg = gce for every
g ∈ R[[S, ω]]. 2

We now turn to reduced (S, ω)-Armendariz rings. We will characterize such rings
in Theorem 4.12 below in the case where S belongs to a subclass of the class of unique
product monoids.

Recall that a monoid S is called a unique product monoid (or a u.p. monoid, or u.p.)
if for any two nonempty finite subsets X, Y ⊆ S there exist x ∈ X and y ∈ Y such that
xy 6= x ′y′ for every (x ′, y′) ∈ X × Y\{(x, y)}; the element xy is called a u.p. element
of XY = {st : s ∈ X, t ∈ Y }. Unique product monoids and groups play an important
role in ring theory, for example providing a positive case in the zero-divisor problem
for group rings (see also [5]), and their structural properties have been extensively
studied (see [9] and references therein, or [35]). The class of u.p. monoids includes
the right and the left totally ordered monoids, submonoids of a free group, and torsion-
free nilpotent groups.

For our purposes, the following, more stringent conditions are needed.

DEFINITION 4.11. Let (S,≤) be an ordered monoid. We say that (S,≤) is an
artinian narrow unique product monoid (or an a.n.u.p. monoid, or simply a.n.u.p.)
if for every two artinian and narrow subsets X and Y of S there exists a u.p. element in
the product XY . We say that (S,≤) is quasitotally ordered (and that ≤ is a quasitotal
order on S) if≤ can be refined to an order 4 with respect to which S is a strictly totally
ordered monoid.

For any ordered monoid (S,≤), the following chain of implications holds:

S is commutative, torsion-free, and cancellative
⇓

(S,≤) is quasitotally ordered
⇓

(S,≤) is a.n.u.p.
⇓

S is u.p.
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The converse of the bottom implication holds if≤ is the trivial order. For more details,
examples, and interrelationships between these and other conditions on ordered
monoids, we refer the reader to [29].

The following theorem generalizes [8, Theorem 1 and Corollaries 2 and 3], [13,
Proposition 3 and Corollary 4], [20, Corollary 3.5], [24, Lemmas 2.1 and 3.1], [25,
Corollary 1.2], [30, Theorem A] and [32, Theorem 6].

THEOREM 4.12. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S→
End(R) a monoid homomorphism. Consider the following six conditions:

(i) R is reduced, and whenever f, g ∈ R[[S, ω]] satisfy f g = 0, then f (s)g(t)= 0
for all s, t ∈ S;

(ii) R is (S, ω)-Armendariz and reduced, and ωs is injective for every s ∈ S;
(iii) R is linearly (S, ω)-Armendariz and reduced, and ωs is injective for every s ∈ S;
(iv) R[[S, ω]] is reduced;
(v) R is semiprime, and the ring R[[S, ω]] is reversible;
(vi) R is S-rigid.

Then:
(i) ⇔ (ii) ⇒ (iii)
⇓ ⇓

(iv) ⇒ (v) ⇒ (vi)

If (S,≤) is a.n.u.p., then all six conditions are equivalent.

PROOF. First assume that (S,≤) is strictly ordered but not necessarily a.n.u.p.
(ii)⇒ (i). Assume (ii). Let f, g ∈ R[[S, ω]] be such that f g = 0, and let s, t ∈ S.

We must show that f (s)g(t)= 0. Since R is (S, ω)-Armendariz, f (s) · ωs(g(t))= 0,
so the case s = 1 is done. Suppose s 6= 1, and set r = f (s)g(t). Because R is
semicommutative, rωs(r)= 0; because R is reversible, ωs(r)r = 0. Hence for h =
cωs(r) + cωs(r)es and k = cr − cωs(r)es in R[[S, ω]] we have hk = 0. The (S, ω)-
Armendariz hypothesis implies that 0= h(s) · ωs(k(1))= ωs(r)2; now, since R is
reduced and ωs is injective, 0= r = f (s)g(t).

(ii)⇒ (iii). Trivial.
(iii)⇒ (vi). Proposition 4.8.
(i)⇒ (iv). For any f ∈ R[[S, ω]], if f 2

= 0 then (i) implies that f = 0.
(iv)⇒ (v). Trivial.
(v) ⇒ (vi). Since R is reversible and semiprime, it is reduced. Since R is

S-compatible by Lemma 4.4(ii), it is S-rigid by Lemma 2.5(iii).
(i)⇒ (ii). It is easy to see that if R is S-compatible and (i) holds, then (ii) holds.

We have already shown that (i) implies (vi). From (vi) and Lemma 2.5(iii), we infer
that R is S-compatible.

Now assume that (S,≤) is a.n.u.p. That (vi) implies (ii) follows from
Lemma 2.5(iii) and [29, Proposition 3.6]; however, in the interests of a self-contained
presentation, we will give an alternative, direct proof. Suppose that there exist
f, g ∈ R[[S, ω]] such that f g = 0 and f (s) · ωs(g(t)) 6= 0 for some s, t ∈ S. Since
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by Lemma 2.5(iii) the ring R is reduced, the intersection of all minimal prime ideals
of R is equal to (0). Hence there exists a minimal prime ideal P of R such that
f (s) · ωs(g(t)) 6∈ P , and thus the sets

X = {x ∈ S : f (x) 6∈ P} and Y = {y ∈ S : (∃x ∈ S) ωx (g(y)) 6∈ P}

are nonempty. Since X ⊆ supp( f ) and Y ⊆ supp(g), X and Y are artinian and narrow
subsets of S, and since S is an a.n.u.p. monoid, there exists (a, b) ∈ X × Y such that
ab is a u.p. element of XY . Since f g = 0,

0= ( f g)(ab)= f (a) · ωa(g(b))+
∑

(u,v)∈Xab( f,g)\{(a,b)}

f (u) · ωu(g(v)). (4.2)

Observe that if (u, v) ∈ Xab( f, g)\{(a, b)}, then since ab is a u.p. element of XY ,
we have u /∈ X or v 6∈ Y , and thus f (u) · ωu(g(v)) ∈ P . Hence (4.2) implies that
f (a) · ωa(g(b)) ∈ P . Since each minimal prime ideal of a reduced ring is completely
prime (see [21, Lemma 12.6]) and a ∈ X , it follows that ωa(g(b)) ∈ P . It is not
hard to show that, since R is reduced, for every r ∈ R and every n ∈ N we have
annR

r (r)= annR
` (r)= annR

r (r
n)= annR

` (r
n). Therefore, if annR

` (ωa(g(b)))⊆ P , then
the set

Z = {z1z2 · · · zm : m ∈ N, zi = ωa(g(b)) or zi ∈ R\P for each i}

would be a multiplicatively closed set disjoint from {0} and properly containing R\P ,
which contradicts P being a minimal prime. Therefore annR

` (ωa(g(b))) 6⊆ P ,
so t · ωa(g(b))= 0 for some t ∈ R\P . Because R is S-compatible, we have t ·
ωx (g(b))= 0 for every x ∈ S, whence b 6∈ Y . This final contradiction proves that R is
(S, ω)-Armendariz, establishing (ii). 2

EXAMPLE 4.13. The following counterexamples delimit Theorem 4.12. In particular,
these show that when (S,≤) is not a.n.u.p., the only implications between the six listed
conditions are the ones stated in the theorem or following from the stated implications
by transitivity.

(i) Let R be a field of characteristic char R 6= 2, let S = {1, s} be the two-element
group (with the trivial order), and let ω : S→ End(R) be the trivial map. Clearly
R[[S, ω]] is reduced; however, the equation (1− es)(1+ es)= 0 shows that R
is not linearly (S, ω)-Armendariz. Thus, (iv) 6⇒ (iii) in Theorem 4.12 in general.

(ii) Let R[[S, 1]] be the (skew) generalized power series ring constructed in [29,
Example 3.3]; namely, R is a field of characteristic 2, and (S,≤) is the u.p. but
not a.n.u.p. monoid constructed in [29, Example 2.6]. In [29, Example 3.3] two
elements f, g ∈ R[[S, 1]] were constructed with the property that f g = 0. One
can easily verify that g f 6= 0; therefore, R[[S, 1]] is not reversible. Since S is
a u.p. monoid and R is S-rigid, Proposition 4.8 shows that R is linearly (S, 1)-
Armendariz. Thus, (iii) 6⇒ (v) in Theorem 4.12 in general.
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(iii) Let R = F2, let S = Q8, the quaternion group of order 8, with the trivial
order, and let ω : S→ End(R) be the trivial map. Then R[[S, ω]] is the group
algebra RS, which by [27, Example 7] is reversible but not reduced. Thus, (v)
6⇒ (iv) in Theorem 4.12 in general.

(iv) Let R = F2, let S = D8, the dihedral group of order 8, with the trivial order, and
let ω : S→ End(R) be the trivial map. Then R[[S, ω]] is the group algebra RS,
which by [27, p. 316] is not reversible. Letting s ∈ S be any element of order
2, then (1+ es)(1+ es)= 0; therefore, R is not linearly (S, ω)-Armendariz.
Obviously R is S-rigid. Thus, (vi) 6⇒ (iii) and (vi) 6⇒ (v) in Theorem 4.12 in
general.

(v) Let R be a uniserial artinian ring that is not a division ring possessing a
nonidentity automorphism σ ∈ Aut(R). (For an explicit example, one could let
R = F[x]/(p(x))k where F is a field, p(x) ∈ F[x] is an irreducible polynomial
with deg(p(x)) > 1, and k ≥ 2. Putting E = F[x]/(p(x)), the ring R becomes
a k-dimensional E-algebra, and any nontrivial element of the Galois group
Gal(E/F) naturally induces a nontrivial automorphism of R.) Let S = N ∪ {0}
under addition, with the trivial order, and define ω : S→ End(R) by ω(n)=
σ n . Note that S is quasitotally ordered. By [28, Proposition 3.5], the ring
R[[S, ω]] ∼= R[x; σ ] is reversible, though R and R[[S, ω]] are not reduced. This
shows that in Theorem 4.12 the hypothesis that R be reduced cannot be dropped
from condition (i) or (ii), and the hypothesis that R be semiprime cannot be
dropped from condition (v).

It is of interest to consider a condition absent from Theorem 4.12:
semicommutativity. Semicommutativity is of course a central issue for Armendariz
rings (and generalizations thereof), dating back to their inception: see [37, Section 4].
Theorem 4.12 tells us that under appropriate circumstances the reduced condition on
a skew generalized power series ring is equivalent to the generally weaker reversible
condition. What about the still weaker semicommutative condition? Theorem 4.1
apparently has no bearing on this problem, since the hypotheses of Theorem 4.1
already entail most of condition (ii) of Theorem 4.12. This leaves us with the following
open question.

QUESTION 4.14. Suppose R is a semiprime ring, (S,≤) is a strictly ordered
a.n.u.p. monoid, and ω : S→ End(R) is a monoid homomorphism. If the skew
generalized power series ring R[[S, ω]] is semicommutative, must R[[S, ω]] be
reversible (and therefore reduced)?

A power series ring over a 2-primal ring need not be 2-primal, as examples
in [14, 26] show. Nevertheless, under appropriate conditions, a skew generalized
power series ring will be 2-primal.

THEOREM 4.15. Let R be a ring, (S,≤) a strictly ordered a.n.u.p. monoid, and
ω : S→ End(R) a monoid homomorphism. Suppose that Nil∗(R) is a nilpotent ideal,
and suppose that for every s ∈ S and every a ∈ R, if a Rωs(a)⊆ Nil∗(R), then a is
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nilpotent. Then the skew generalized power series ring R[[S, ω]] is 2-primal if and
only if R is 2-primal.

PROOF. If the ring A = R[[S, ω]] is 2-primal, then R is 2-primal by [4,
Proposition 2.2].

Conversely, suppose that R is 2-primal, and assume the prime radical I = Nil∗(R)
satisfies I n

= (0) for some n ∈ N. Let π : R→ R/I = R be the canonical map. Since
R is 2-primal, its prime radical is S-invariant. Therefore J = I [[S, ω]] is an ideal of
A, and we have a monoid homomorphism υ : End(R)→ End(R) given by υ(τ)(x)=
τ(x) for each x ∈ R. The surjective ring homomorphism A→ R[[S, υ ◦ ω]] given by
f 7→ π ◦ f induces an isomorphism A/J ∼= R[[S, υ ◦ ω]].

Suppose that for s ∈ S and a ∈ R we have a · (υ ◦ ω)s(a)= 0 in R. Since R is
2-primal, R is reduced and hence semicommutative; therefore, a · R · (υ ◦ ω)s(a)=
{0}, whence a Rωs(a)⊆ I . By hypothesis, then, a is nilpotent, so a = 0 in R. We have
shown that (υ ◦ ω)s is a rigid endomorphism of R, for arbitrary s ∈ S.

Thus, by Theorem 4.12, the ring A/J ∼= R[[S, υ ◦ ω]] is reduced. Clearly J n
= (0),

so A is 2-primal. 2

REMARK 4.16. In Theorem 4.15, if ω is trivial then the condition ‘a Rωs(a)⊆
Nil∗(R) implies a nilpotent’ is vacuous. So [24, Theorem 2.3] is a special case of
Theorem 4.15.

Let R be a semiprime left Goldie ring, and let C denote the set of regular elements
of R (that is, elements that are neither left nor right zero-divisors). If σ ∈ End(R) is
injective, then σ(C)⊆ C by [16, Proposition 2.4]. Therefore, if Q = Q`

cl(R) is the
classical left ring of quotients of R, then one can verify that σ extends (uniquely) to
an endomorphism σ̃ of Q defined by σ̃ (b−1a)= σ(b)−1σ(a) for all a ∈ R and b ∈ C.

In this setting, if S is a monoid and ω : S→ End(R) is a monoid homomorphism
such that ωs is injective for every s ∈ S, then there is an induced monoid
homomorphism ω̃ : S→ End(Q) defined by

ω̃s = ω̃s for each s ∈ S.

Notice that ω̃s is injective for every s ∈ S.
The following result generalizes [32, Theorem 10].

THEOREM 4.17. Let R be a semiprime left Goldie ring, (S,≤) a nontrivial strictly
ordered a.n.u.p. monoid, and ω : S→ End(R) a monoid homomorphism such that ωs
is injective for every s ∈ S. Let Q = Q`

cl(R) denote the classical left ring of quotients
of R, and ω̃ : S→ End(Q) the induced S-action. Then the following conditions are
equivalent:

(i) R is (S, ω)-Armendariz;
(ii) R is linearly (S, ω)-Armendariz;
(iii) R is (S, ω)-rigid;
(iv) Q is (S, ω̃)-Armendariz;
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(v) Q is linearly (S, ω̃)-Armendariz;
(vi) Q is (S, ω̃)-rigid.

PROOF. (i)⇒ (ii). Trivial.
(ii)⇒ (v). We have to show that for any p0, p1, q0, q1 ∈ Q and s ∈ S\{1},

if (cp0 + cp1es)(cq0 + cq1es)= 0 in Q[[S, ω̃]], then p0q1 = p1 · ω̃s(q0)= 0. (4.3)

Now, there exist a0, a1, b0, b1, u ∈ R such that u is regular and pi = u−1ai , qi =

u−1bi for i = 1, 2. Furthermore, for some d0, d1, v ∈ R with v regular, we can
write a0u−1

= v−1d0 and a1ωs(u)−1
= v−1d1. Now it is easy to see that in

R[[S, ω]] we have (cd0 + cd1es)(cb0 + cb1es)= 0. Since R is linearly (S, ω)-
Armendariz, we obtain d0b1 = d1 · ωs(b0)= 0. Now p0q1 = p1 · ω̃s(q0)= 0 follows
easily, proving (4.3).

(iv)⇔ (v). Trivial.
(v) ⇔ (vi). Assuming (v), Proposition 4.9(ii) implies that Q is abelian; being

semisimple, Q is reduced. Hence (vi) holds by Theorem 4.12.
(vi)⇒ (iii). Trivial.
(iii)⇒ (i). This follows from Theorem 4.12. 2

Applying Theorem 4.17 to Example 2.2(i), we obtain the following improvement
of [17, Proposition 18] (which was, in turn, an improvement of [1, Theorem 7]),
recovering [22, Theorem 3.3].

COROLLARY 4.18. Suppose that R is a semiprime left Goldie ring. Then R is
Armendariz if and only if R is reduced.

To illustrate this corollary, we observe that (perhaps inevitably) throughout the
literature most proofs that particular rings are Armendariz run afoul of Poincaré’s
counsel: ‘Il faut triompher par la pensée et non par le calcul’. Let F = k〈x, y〉 be the
free algebra on two noncommuting indeterminates over a field k, and consider the two
factor rings R1 = F/Fx2 F and R2 = F/(Fx2 F + Fy2 F). Both R1 and R2 are prime
rings, and one can directly check that R1 is Armendariz but R2 is not. In fact, R1 is a
construction of Camillo and Nielsen in [7, Example 9.3], apparently the first example
in the literature of an Armendariz ring that is not 2-primal. Camillo and Nielsen’s
proof that R1 is Armendariz is based on an intricate calculation of zero-divisors. In
contrast, Corollary 4.18 provides a ‘structural’ proof that R2 is not Armendariz: it is
noetherian and prime but not reduced.

5. The (S, ω)-Armendariz condition and ring extensions

It is easy to see that if I is a reduced ideal of a ring R (that is, I is an ideal of R such
that x2

= 0 implies that x = 0 for every x ∈ I ), then for any a, b ∈ R, ab = 0 implies
that aI b = {0}. We will use this observation freely in the following proof.
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PROPOSITION 5.1. Let R be a ring, (S,≤) a strictly totally ordered monoid and
ω : S→ End(R) a monoid homomorphism such that R is S-compatible. Let f, g ∈
R[[S, ω]] be such that for some reduced ideal I of R,

( f g)(xy)= 0⇒ f (x) · ωx (g(y)) ∈ I for any x, y ∈ S.

Then for any s ∈ S the following are equivalent:

(i) f (x) · ωx (g(y))= 0 for any x, y ∈ S such that xy ≤ s;
(ii) ( f g)(z)= 0 for any z ≤ s.

PROOF. That (i) implies (ii) is obvious (and requires no assumptions about the order
≤ or the existence of a reduced ideal I ).

To prove that (ii) implies (i), let us suppose that the implication fails. Since the sets
supp( f ) and supp(g) are well-ordered, we can choose an element (x0, y0) ∈ S × S
minimal with respect to the lexicographic order such that

x0 y0 ≤ s and f (x0) · ωx0(g(y0)) 6= 0.

Hence there exist n ∈ N and (x1, y1), . . . , (xn, yn) ∈ S × S\{(x0, y0)} such that

0= ( f g)(x0 y0)=

n∑
i=0

f (xi ) · ωxi (g(yi )) (5.1)

and for each i ∈ {0, 1, . . . , n} we have xi yi = x0 y0 and f (xi ) · ωxi (g(yi )) 6= 0. By
the choice of (x0, y0), for each i ≥ 1 we have x0 < xi , hence yi < y0, and thus
f (x0) · ωx0(g(yi ))= 0. Now the compatibility of ωx0 and ωxi implies that f (x0) ·

ωxi (g(yi ))= 0. Hence for every i ≥ 1 we have f (x0) · I · ωxi (g(yi ))= 0, and since
f (x0) · ωx0(g(y0)) ∈ I by assumption, multiplying Equation (5.1) on the left by
[ f (x0) · ωx0(g(y0))]

2 yields 0= [ f (x0) · ωx0(g(y0))]
3. Since I is reduced, it follows

that f (x0) · ωx0(g(y0))= 0, a contradiction. 2

As a corollary of the above result we obtain the following generalization of [25,
Proposition 1.4].

COROLLARY 5.2. Let R be a ring, (S,≤) a quasitotally ordered monoid and ω :
S→ End(R) a monoid homomorphism. Assume that R is S-compatible, and that
there exists a reduced ideal I of R such that for any f, g ∈ R[[S, ω]], if f g = 0, then
f (s) · ωs(g(t)) ∈ I for all s, t ∈ S. Then R is (S, ω)-Armendariz.

PROOF. By hypothesis, the order ≤ can be refined to a strict total order 4. Since
Proposition 5.1 implies that R is (S, ω,4)-Armendariz, Lemma 2.7 completes the
proof. 2

As an immediate consequence of Corollary 5.2, we obtain the following extension
property for (S, ω)-Armendariz rings.

COROLLARY 5.3. Let R be a ring, (S,≤) a quasitotally ordered monoid and ω : S→
End(R) a monoid homomorphism. Suppose that R is S-compatible and that there
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exists an S-invariant, reduced ideal I ⊆ R such that the factor ring R/I is (S, ω)-
Armendariz, where ω : S→ End(R/I ) is the induced monoid homomorphism. Then
R is (S, ω)-Armendariz.

In [1, Theorem 5] Anderson and Camillo prove that for any ring R and any integer
n ≥ 2, the factor ring R[x]/(xn) is Armendariz if and only if R is reduced. As we will
see in Corollary 5.6, Anderson and Camillo’s result is a consequence of the following
theorem.

THEOREM 5.4. Let R be a ring, (S,≤) a strictly well-ordered monoid and ω : S→
End(R) a monoid homomorphism. Fix s ∈ S. Then the set

Is = { f ∈ R[[S, ω]] : f (x)= 0 for every x ≤ s}

is a proper ideal of R[[S, ω]]. Assume that (T,≤′) is a nontrivial quasitotally ordered
monoid, and consider the following conditions:

(i) ωx is rigid for every x ∈ S satisfying x ≤ s;
(ii) R[[S, ω]]/Is is (T, 1,≤′)-Armendariz;
(iii) R[[S, ω]]/Is is (T, 1,≤′′)-Armendariz where ≤′′ is the trivial order;
(iv) R[[S, ω]]/Is is linearly (T, 1,≤′′)-Armendariz where ≤′′ is the trivial order.

In general,
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Now assume, moreover, that s 6= 1 and either of the following conditions holds:

(a) for every x ∈ S\{1} such that x ≤ s, ωx is injective and there exists n ∈ N such
that s < xn; or

(b) ω is trivial.

Then
(i) ⇔ (ii) ⇔ (iii) ⇔ (iv).

PROOF. Since (S,≤) is a well-ordered monoid, 1≤ x for all x ∈ S, and it easily
follows that Is is a proper ideal of R[[S, ω]].

(i) ⇒ (ii). By Lemma 2.7, without loss of generality we can assume that ≤′

is already a total order. Suppose that R[[S, ω]]/Is is not (T, 1,≤′)-Armendariz.
Pick F, G ∈ (R[[S, ω]]/Is)[[T, 1]] such that FG = 0 and F(t)G(t ′) 6= 0 for some
t, t ′ ∈ T . For any z ∈ T we have F(z), G(z) ∈ R[[S, ω]]/Is and thus there exist
fz, gz ∈ R[[S, ω]] such that F(z)= fz and G(z)= gz (where a bar denotes images
modulo Is). We will retain this notation for the remainder of the proof. Whenever
F(z) (respectively G(z)) is 0, we will choose fz = 0 (respectively gz = 0).

Define the following total order 4 on S × S × T × T :

(s1, s2, t1, t2)≺ (s3, s4, t3, t4) ⇔


s1s2 < s3s4, or

s1s2 = s3s4 and s1 < s3, or

s1 = s3 and s2 = s4 and t1 <′ t3, or

s1 = s3 and s2 = s4 and t1 = t3 and t2 <′ t4.
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Then S × S × supp(F)× supp(G) is well-ordered under 4, so there exists
(x, y, c, d) ∈ S × S × supp(F)× supp(G) minimal for the property fc(x) · ωx (gd
(y)) 6= 0. Since ft gt ′ 6∈ Is , we have xy ≤ s.

We claim that for any element (x ′, y′, c′, d ′) ∈ S × S × T × T ,

x ′y′ = xy and c′d ′ = cd

⇒ fc′(x
′) · ωx ′(gd ′(y

′)) · fc(x)= 0 or (x, y, c, d)= (x ′, y′, c′, d ′). (5.2)

Indeed, it suffices to consider (x ′, y′, c′, d ′) ∈ S × S × supp(F)× supp(G) for which
(x, y, c, d)≺ (x ′, y′, c′, d ′). Then either x < x ′, or else x = x ′ and y = y′ and c <′ c′.
If x < x ′, then xy′ < xy, hence (x, y′, c, d ′)≺ (x, y, c, d). If x = x ′ and y = y′ and
c <′ c′, then cd = c′d ′ implies d ′ <′ d , and again (x, y′, c, d ′)≺ (x, y, c, d). In either
case, the minimal choice of (x, y, c, d) implies that fc(x) · ωx (gd ′(y′))= 0. Since
x ≤ s and x ′ ≤ s, (i) implies that ωx and ωx ′ are rigid, and ωx ′(gd ′(y′)) · fc(x)= 0
follows. This proves (5.2).

Since FG = 0, for some n ∈ N ∪ {0} and (c1, d1), . . . , (cn, dn) ∈ T × T \{(c, d)}
such that ci di = cd ,

0= (FG)(cd)= F(c)G(d)+
n∑

i=1

F(ci )G(di ).

Since xy ≤ s,

fcgd +

n∑
i=1

fci gdi ∈ Is ⇒ ( fcgd)(xy)+
n∑

i=1

( fci gdi )(xy)= 0.

By (5.2), ( fci gdi )(xy) · fc(x)= 0 for every i ; therefore,

0= ( fcgd)(xy) · fc(x)+
n∑

i=1

( fci gdi )(xy) · fc(x)= ( fcgd)(xy) · fc(x).

There exist m ∈ N ∪ {0} and (x1, y1), . . . , (xm, ym) ∈ S × S\{(x, y)}with x j y j = xy
such that

( fcgd)(xy)= fc(x) · ωx (gd(y))+
m∑

j=1

fc(x j ) · ωx j (gd(y j )).

By (5.2), fc(x j ) · ωx j (gd(y j )) · fc(x)= 0 for every j ; therefore, fc(x) · ωx (gd(y)) ·
fc(x)= 0. Since (i) implies that R is a reduced ring, we obtain fc(x) · ωx (gd(y))= 0,
a contradiction.

(ii)⇒ (iii)⇒ (iv). These are obvious.
Finally, assume that s 6= 1 and condition (a) or (b) holds. To prove that (iv) implies

(i), assume condition (a), and let x ∈ S satisfy x ≤ s. If x = 1 then ωx being rigid
amounts to R being reduced, which is the case because ωs is rigid as we will show
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in a moment. Now suppose that x 6= 1. Condition (a) implies that for some n ∈ N,
xn
≤ s < xn+1. Assume that r ∈ R satisfies ωx (r) · r = 0. Fix t ∈ T \{1}, and put

F = ex 1+ cωx (r)t, G = exn 1− cr exn−1 t ∈ (R[[S, ω]]/Is)[T ].

Then FG = 0. By (iv), cωx (r)exn ∈ Is , which implies that ωx (r)= 0; by condition (a),
r = 0. From Lemma 2.5(iii) we conclude that ωx is rigid.

Assume condition (b). A similar argument with F = es1+ cr t and G = es1− cr t
shows that r2

= 0 implies r = 0. 2

REMARK 5.5. Example 21 in [23] shows that the injectivity hypothesis in (a) of the
second part of Theorem 5.4 is essential.

As a consequence of Theorem 5.4 we obtain the following generalization of [22,
Theorem 3.1] and [23, Theorem 20].

COROLLARY 5.6. If σ is an injective endomorphism of a ring R, and n ≥ 2 is an
integer, then the following conditions are equivalent:

(i) R[x, σ ]/(xn) is Armendariz;
(ii) R[[x, σ ]]/(xn) is Armendariz;
(iii) R[x, σ ]/(xn) is linearly Armendariz;
(iv) R[[x, σ ]]/(xn) is linearly Armendariz;
(v) R[x, σ ]/(xn) is power-serieswise Armendariz;
(vi) R[[x, σ ]]/(xn) is power-serieswise Armendariz;
(vii) σ is rigid.

PROOF. The equivalences (ii)⇔ (iv)⇔ (vi)⇔ (vii) follow from Theorem 5.4. The
rest follows from the isomorphism R[x, σ ]/(xn)∼= R[[x, σ ]]/(xn). 2

Note that [1, Theorem 5] is the σ = 1 case of (i)⇔ (vii) in Corollary 5.6.
Let R be a ring, (S,≤S) and (T,≤T ) strictly ordered monoids, and ω : S→

End(R) and υ : T → End(R) monoid homomorphisms such that

ωs ◦ υt = υt ◦ ωs ∀s ∈ S and t ∈ T .

It is easy to verify that the following maps are monoid homomorphisms:
• ω̄ : S→ End(R[[T, υ]]), where ω̄s(g)= ωs ◦ g for all s ∈ S and g ∈ R[[T, υ]],
• ῡ : T → End(R[[S, ω]]), where ῡt ( f )= υt ◦ f for all t ∈ T and f ∈ R[[S, ω]],
• ω × υ : S × T → End(R), where (ω × υ)(s,t) = ωs ◦ υt for every (s, t) ∈ S × T .

PROPOSITION 5.7. Let R, S, T , ω and υ be as above. Assume that the ring
R is reduced, the monoids (S,≤S) and (T,≤T ) are a.n.u.p., and for all s ∈ S
and t ∈ T the endomorphisms ωs and υt are injective. Then the monoid S × T is
quasitotally ordered by the induced lexicographic order and the following conditions
are equivalent:

(i) R is (S, ω)-Armendariz and (T, υ)-Armendariz;
(ii) R[[S, ω]] is reduced and (T, ῡ)-Armendariz;
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(iii) R[[T, υ]] is reduced and (S, ω̄)-Armendariz;
(iv) R[[S, ω]] is (T, ῡ)-Armendariz and R[[T, υ]] is (S, ω̄)-Armendariz;
(v) R is (S × T, ω × υ)-Armendariz.

PROOF. (i) ⇔ (ii). Assume (i). Then by Theorem 4.12, for any s ∈ S and t ∈ T
the endomorphisms ωs and υt are rigid, and to get (ii) it suffices to show that ῡt
is a rigid endomorphism of R[[S, ω]] for every t ∈ T . To prove that, consider any
f ∈ R[[S, ω]] with f ῡt ( f )= 0. Since R is (S, ω)-Armendariz, for any s ∈ S we have
f (s) · ωs(ῡt ( f )(s))= 0, that is, f (s) · ωs(υt ( f (s)))= 0. Since ωs and υt are rigid,
it follows that f (s)2 = 0, and since R is reduced, we obtain f (s)= 0. Thus f = 0,
which completes the proof that (i) implies (ii). The converse follows directly from
Theorem 4.12 and Lemma 2.7.

(i)⇔ (iii). This follows by an analogous argument.
(i)⇔ (iv). As noted above, (i) implies (ii) and (iii), so it implies (iv) as well. To

prove the converse, assume (iv). Since R is a subring of the (S, ω̄)-Armendariz ring
R[[T, υ]], Lemma 2.7 implies that R is (S, ω)-Armendariz. By a similar argument, R
is (T, υ)-Armendariz.

(i) ⇔ (v). If (i) holds, then by Theorem 4.12 the endomorphisms ωs and υt
are rigid for all s ∈ S and t ∈ T . Hence for any (s, t) ∈ S × T the endomorphism
(ω × υ)(s,t) ∈ End(R) is rigid, and applying Theorem 4.12, we obtain (v). That (v)
implies (i) is an immediate consequence of Lemma 2.7. 2

COROLLARY 5.8. Let R be a reduced ring, (S,≤S) and (T,≤T ) strictly ordered
a.n.u.p. monoids, and ω : S→ End(R) a monoid homomorphism such that ωs is
injective for every s ∈ S. Then R is (S, ω)-Armendariz if and only if R[[T, 1]] is
(S, ω̄)-Armendariz.

PROOF. Applying the implications (vi) ⇒ (ii) and (vi) ⇒ (iv) of Theorem 4.12, we
deduce that R is (T, 1)-Armendariz and R[[T, 1]] is reduced. Now the corollary
follows from the equivalence (i)⇔ (iii) of Proposition 5.7.

Applying Corollary 5.8 when T is the additive monoid of nonnegative integers with
the trivial order, the additive monoid of nonnegative integers with the usual order, the
additive group of integers with the trivial order and the additive group of integers with
the usual order, respectively, we obtain the following corollary.

COROLLARY 5.9. Let R be a reduced ring, (S,≤) a strictly ordered a.n.u.p. monoid,
and ω : S→ End(R) a monoid homomorphism such that ωs is injective for every
s ∈ S. Then the following are equivalent:

(i) the ring R is (S, ω)-Armendariz;
(ii) the polynomial ring R[x] is (S, ω̄)-Armendariz;
(iii) the power series ring R[[x]] is (S, ω̄)-Armendariz;
(iv) the Laurent polynomial ring R[x, x−1

] is (S, ω̄)-Armendariz;
(v) the Laurent series ring R[[x, x−1

]] is (S, ω̄)-Armendariz.

A special case of Corollary 5.9 is the following result of Chen and Tong (with a
slight change of notation).
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COROLLARY 5.10 [8, Proposition 6]. Let R be a reduced ring and σ a
monomorphism of R. Then R is σ -skew Armendariz if and only if R[x] is σ̄ -skew
Armendariz.

6. Uniserial rings are Armendariz

Recall that a module M is said to be uniserial if the submodule lattice of M is
totally ordered; a ring R is said to be right (left) uniserial if the module RR (R R) is
uniserial. A ring R is said to be duo if every one-sided ideal of R is an ideal.

PROPOSITION 6.1. Let R be a right uniserial ring, (S,≤) a strictly ordered a.n.u.p.
monoid and ω : S→ End(R) a monoid homomorphism. Assume the Jacobson radical
rad(R) is S-invariant. Suppose that f, g ∈ R[[S, ω]] satisfy f g = 0 and that there
exist s0, t0 ∈ S such that f (s) · ωs(g(t)) ∈ f (s0) · ωs0(g(t0))R for all s, t ∈ S. Then
f (s) · ωs(g(t))= 0 for all s, t ∈ S.

PROOF. Let

X = {x ∈ S : (∃u ∈ S)(∀s, t ∈ S) f (s) · ωs(g(t)) ∈ f (x) · ωx (g(u))R},

Y = {y ∈ S : (∃v ∈ S)(∀s, t ∈ S) f (s) · ωs(g(t)) ∈ f (v) · ωv(g(y))R}.

If X 6⊆ supp( f ) or Y 6⊆ supp(g), then clearly f (s) · ωs(g(t))= 0 for all s, t ∈ S.
Thus, we will assume that X ⊆ supp( f ) and Y ⊆ supp(g). The sets X and Y are
artinian, narrow, and nonempty (because s0 ∈ X and t0 ∈ Y ). Since (S,≤) is a.n.u.p.,
there exist x0 ∈ X and y0 ∈ Y such that x0 y0 is a u.p. element of XY . Since x0 ∈ X
and y0 ∈ Y , for some u0, v0 ∈ S and all s, t ∈ S,

f (s) · ωs(g(t)) ∈ f (x0) · ωx0(g(u0))R (6.1)

and
f (s) · ωs(g(t)) ∈ f (v0) · ωv0(g(y0))R. (6.2)

Assume that g(u0)R ⊆ g(y0)R. Then ωx0(g(u0))R ⊆ ωx0(g(y0))R, and (6.1)
implies that

f (s) · ωs(g(t)) ∈ f (x0) · ωx0(g(y0))R ∀s, t ∈ S. (6.3)

Since f g = 0,

0= ( f g)(x0 y0)= f (x0) · ωx0(g(y0))+
∑

(p,q)∈Xx0 y0 ( f,g)\{(x0,y0)}

f (p) · ωp(g(q)).

(6.4)
Note that if (p, q) ∈ S × S\{(x0, y0)} satisfies pq = x0 y0, then since x0 y0 is a
u.p. element of XY , we have p 6∈ X or q 6∈ Y . In either case, (6.3) implies that
f (x0) · ωx0(g(y0))R 6⊆ f (p) · ωp(g(q))R; therefore, since R is right uniserial,

f (p) · ωp(g(q)) ∈ f (x0) · ωx0(g(y0)) · rad(R). (6.5)
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Thus, (6.4) and (6.5) imply that for some r ∈ rad(R),

0= f (x0) · ωx0(g(y0))+ f (x0) · ωx0(g(y0))r = f (x0) · ωx0(g(y0))(1+ r),

which implies that f (x0) · ωx0(g(y0))= 0. By (6.3), f (s) · ωs(g(t))= 0 for all
s, t ∈ S in this case.

We are left with the case where g(u0)R 6⊆ g(y0)R. Since R is right uniserial,
g(y0)R ⊆ g(u0) · rad(R). Choose r ∈ rad(R) such that g(y0)= g(u0)r . Then

ωv0(g(y0))= ωv0(g(u0)) · ωv0(r) ∈ ωv0(g(u0)) · rad(R),

and from (6.2) we obtain

f (s) · ωs(g(t)) ∈ f (v0) · ωv0(g(u0)) · rad(R) ∀s, t ∈ S. (6.6)

Applying (6.6) with s = v0 and t = u0, we obtain f (v0) · ωv0(g(u0))= 0, and another
application of (6.6) yields f (s) · ωs(g(t))= 0 for all s, t ∈ S, which completes the
proof. 2

COROLLARY 6.2. Let R be a right or left uniserial ring and S a u.p. monoid. Then R
is Armendariz relative to S.

COROLLARY 6.3. Every right or left uniserial ring is Armendariz.

COROLLARY 6.4. Let R be a right noetherian, right uniserial ring, (S,≤) a strictly
ordered a.n.u.p. monoid, and ω : S→ End(R) a monoid homomorphism. Assume that
the Jacobson radical rad(R) is S-invariant. Then R is (S, ω)-Armendariz.

The following example shows that in Corollary 6.4 the noetherian hypothesis is
essential.

EXAMPLE 6.5. Let U be a commutative uniserial domain and M a divisible, uniserial
U -module that is not torsion-free. Such a pair U and M exist under ZFC by [10,
Lemma 7]. Choose u ∈U\{0} and m ∈ M\{0} such that um = 0. Put m0 = m; then
by divisibility of M we can define a sequence {m0, m1, m2, . . .} of elements of M
such that mn−1 = umn for all n ∈ N. Define R =U ⊕ M as an additive group, with
multiplication given by

(v1, n1)(v2, n2)= (v1v2, v1n2 + v2n1).

Since M is divisible and U and M are uniserial, it follows that R is a commutative
uniserial ring. Nevertheless, R is not (S, 1)-Armendariz for S = N ∪ {0} with the
standard order ≤. Indeed, this ring R[[S, 1]] is isomorphic to the power series ring
R[[x]], and for the power series f, g ∈ R[[x]] defined by

f = (u, 0)− (1, 0)x, g = (0, m0)+ (0, m1)x + (0, m2)x
2
+ · · · ,

we have f g = 0, although (1, 0)(0, m0) 6= 0 in R.
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7. Triangular matrix rings

In [13], Hong et al. obtained a wide range of detailed results on the skew
Armendariz condition in triangular matrix rings. We will now prove a proposition
that unifies two of the results in [13] within the context of skew generalized power
series rings.

Let R be a ring, S a monoid, ω : S→ End(R) a monoid homomorphism, n a
positive integer, and Mn(R) the ring of n × n matrices over R. For s ∈ S, let
ωs :Mn(R)→Mn(R) be the map obtained by applying ωs to every entry of a given
matrix in Mn(R). We thereby obtain a monoid homomorphism ω : S→ End(Mn(R)).
Given any subring T ⊆Mn(R) that is invariant under the action of S, we have a
monoid homomorphism, which (in a slight abuse of notation) we will also denote
by ω : S→ End(T ), obtained by restricting the homomorphisms ωs to T .

PROPOSITION 7.1. Let R be a ring, (S,≤) a strictly ordered monoid, ω : S→
End(R) a monoid homomorphism, and n any positive integer. Define a subring T
of Mn(R) as follows:

T =





a b1 b2 b3 · · · bn−1
0 a c1 c2 · · · cn−2
0 0 a 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 0 a 0
0 0 · · · 0 0 a


: a, b1, . . . , bn−1, c1, . . . , cn−2 ∈ R


.

Suppose R is reduced, andωs is injective for every s ∈ S. Then R is (S, ω)-Armendariz
if and only if T is (S, ω)-Armendariz.

PROOF. If T is (S, ω)-Armendariz then R is (S, ω)-Armendariz by Lemma 2.7.

Conversely, assume that R is (S, ω)-Armendariz. Suppose that f, g ∈ T [[S, ω]]
satisfy f g = 0. Now, f and g are functions from S to T with artinian, narrow support.
Given any s ∈ S,

f (s)=



f1,1(s) f1,2(s) f1,3(s) f1,4(s) · · · f1,n(s)
0 f2,2(s) f2,3(s) f2,4(s) · · · f2,n(s)
0 0 f3,3(s) 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 0 fn−1,n−1(s) 0
0 0 · · · 0 0 fn,n(s)


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and

g(s)=



g1,1(s) g1,2(s) g1,3(s) g1,4(s) · · · g1,n(s)
0 g2,2(s) g2,3(s) g2,4(s) · · · g2,n(s)
0 0 g3,3(s) 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 0 gn−1,n−1(s) 0
0 0 · · · 0 0 gn,n(s)


where each fi, j and each gi, j is a function from S to R, and f1,1 = f2,2 = · · · = fn,n
and g1,1 = g2,2 = · · · = gn,n . Since supp( fi, j )⊆ supp( f ) and supp(gi, j )⊆ supp(g),
each fi, j and each gi, j has artinian, narrow support. Hence fi, j , gi, j ∈ R[[S, ω]].

For every s ∈ S,

0= ( f g)(s)=
∑

(x,y)∈Xs( f,g)

f (x) · ωx (g(y)),

and therefore, for all i, j ,

0 =
∑

k

∑
(x,y)∈Xs( f,g)

fi,k(x) · ωx (gk, j (y))

=

∑
k

∑
(x,y)∈Xs( fi,k ,gk, j )

fi,k(x) · ωx (gk, j (y))

=

∑
k

( fi,k gk, j )(s).

In the ring R[[S, ω]], which by Theorem 4.12 is reduced, the following equations hold:

f1,1g1,1 = 0, (7.1)

f1,1g1,2 + f1,2g1,1 = 0, (7.2)

f1,1g2,i + f2,i g1,1 = 0 for i = 3, 4, . . . , n, (7.3)

f1,1 g1,i + f1,2g2,i + f1,i g1,1 = 0 for i = 3, 4, . . . , n. (7.4)

Reduced rings are symmetric in the terminology of [28]: whenever a product of
elements equals 0, any permutation of the factors also has product 0. Equations (7.1)
and (7.2) therefore yield

0= f1,1g1,2 f1,1 + f1,2g1,1 f1,1 = f1,1g1,2 f1,1,

and ( f1,1g1,2)
2
= 0 implies that f1,1g1,2 = f1,2g1,1 = 0. Applying the same argument

to Equation (7.3) yields f1,1g2,i = f2,i g1,1 = 0, and then applying it to Equation (7.4)
yields f1,1g1,i = f1,2g2,i + f1,i g1,1 = 0. Since f1,2g1,1 = 0, from g1,1 f1,2g2,i +

g1,1 f1,i g1,1 = 0 we likewise obtain f1,i g1,1 = f1,2g2,i = 0. Thus, every summand in
Equations (7.1)–(7.4) equals 0 in R[[S, ω]].
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By hypothesis, R is (S, ω)-Armendariz. Therefore, for all s, t ∈ S,

f1,1(s) · ωs(g1,1(t))= 0,

f1,1(s) · ωs(g1,2(t))= f1,2(s) · ωs(g1,1(t))= 0,

f1,1(s) · ωs(g2,i (t))= f2,i (s) · ωs(g1,1(t))= 0 for i = 3, 4, . . . , n,

f1,1(s) · ωs(g1,i (t)) = f1,2(s) · ωs(g2,i (t))

= f1,i (s) · ωs(g1,1(t))= 0 for i = 3, 4, . . . , n.

In particular, for all i, j , ∑
k

fi,k(s) · ωs(gk, j (t))= 0

and therefore f (s) · ωs(g(t))= 0 for all s, t ∈ S. This proves that T is (S, ω)-
Armendariz. 2

The n = 2 case of the ‘only if’ part of Proposition 7.1, in conjunction with
Example 2.2(ii), recovers [13, Proposition 15]. Analogously, the n = 3 case recovers
[13, Proposition 17]. The fact that when n ≤ 3 the ring of upper triangular n × n
matrices with constant diagonal over a σ -rigid ring is σ -skew Armendariz, as pointed
out by Hong et al. in [13, Example 18], does not generalize to n = 4. The fatal flaw
can be traced to the nonzero (3, 4)-entry of the matrix! Proposition 7.1 demonstrates
a different direction in which a viable generalization is possible.

In the proof of the next result we will need the following criterion for S-rigidity of
subrings of an (S, ω)-Armendariz ring.

LEMMA 7.2. Let T be a ring, (S,≤) an ordered monoid, and ω : S→ End(T ) a
monoid homomorphism. Suppose that T is linearly (S, ω)-Armendariz, suppose that
R is an S-invariant, S-compatible subring of T , and suppose that there exists b ∈ T
with the property that b 6= b2

= 0, R ∩ annT
r (b)= {0}, and that there exists s ∈ S\{1}

such that for every r ∈ R, br = rωs(b). Then R is S-rigid.

PROOF. By Lemma 2.5(iii), it suffices to show that R is reduced. Suppose a ∈ R
satisfies a2

= 0. Put

f = cb + caes, g = cb + c−aes in T [[S, ω]].

Using the S-compatibility of R and the hypotheses on b, we find that f g = 0. Since T
is linearly (S, ω)-Armendariz, −ba = 0, hence a ∈ R ∩ annT

r (b)= {0}. 2

COROLLARY 7.3. Let R be a ring, (S,≤) a nontrivial strictly ordered monoid,
ω : S→ End(R) a monoid homomorphism, and n ≥ 2 an integer. Let T ⊂Mn(R) be
the subring defined in Proposition 7.1. Suppose R is S-compatible. Then R is reduced
and (S, ω)-Armendariz if and only if T is (S, ω)-Armendariz.

PROOF. For the ‘only if’ part, apply Lemma 2.5(i) and Proposition 7.1.
For the ‘if’ part, apply Lemma 7.2 (b can be taken to be the matrix with a 1 in the

(1, 2)-position and 0s elsewhere) and Lemma 2.7. 2
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Corollary 7.3 shows that the hypothesis in Proposition 7.1 that R be reduced is
indispensable. Clearly, the conclusion of Proposition 7.1 fails without the hypothesis
that every ωs be injective. So Proposition 7.1 is ‘sharp’ in some sense.

We note that a more general class of upper triangular matrix rings, of the sort
analysed by Birkenmeier and Park in [5], affords a skew generalized power series
construction. Let A and B be rings, let M be an (A, B)-bimodule, and let

T =

(
A M
0 B

)
.

Suppose that (S,≤) is an ordered monoid, and let ω : S→ End(A) and υ : S→
End(B) be monoid homomorphisms. Assume that µ : S→ EndZ(M) is a monoid
homomorphism with the property that for every s ∈ S,

µs(am)= ωs(a) µs(m) and µs(mb)= µs(b) υs(b)

for all a ∈ A, b ∈ B, and m ∈ M . (In the case where ω(S)⊆ Aut(A) and υ(S)⊆
Aut(B), in particular when S is a group, this map µs : M→ M is a morphism in the
category of (A, B)-bimodules where the left action of A is twisted by ω−1

s and the
right action of B by υ−1

s .) Now if we define

ηs

((
a m
0 b

))
=

(
ωs(a) µs(m)

0 υs(b)

)
,

we obtain a monoid homomorphism η : S→ End(T ).
For example, given a ring R, a strictly ordered monoid (S,≤), and a monoid

homomorphism ω : S→ End(R), we can construct a skew generalized power series
ring over the ring of upper triangular n × n matrices with entries in R by composing
ω : S→ End(R) with the diagonal embedding End(R)→ End(

∏n−1
i=1 R), letting A =∏n−1

i=1 R, B = R, and υ = ω, taking M =
⊕(n−1)n/2

i=1 R to correspond to the strictly
upper triangular matrix positions, and defining µs : M→ M by applying ωs to every
coordinate. In this case η = ω, the homomorphism defined prior to Proposition 7.1.

Proposition 7.1 certainly cannot be extended to the ring T . For example, if T is the
ring of upper triangular n × n matrices over any ring R, where n ≥ 2, then T is not
Armendariz. This observation serves to complement [13, Example 18], circumscribing
the possible generalizations of [13, Propositions 15 and 17].

The unified approach to Armendariz-like rings developed in this paper can also
be applied to some other generalizations of Armendariz rings, for example, to quasi-
Armendariz rings and their various modifications. Furthermore, it can be used to unify
numerous results on Baer rings, quasi-Baer rings, right Rickart rings (also known as
right p.p.-rings), and so on. We will present results in these directions in forthcoming
work.
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