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ABSTRACT. Measured elastic stiffnesses of ice polycrystals decrease with increasing temperature due to
a decrease in grain boundary stiffness with increasing temperature. In this paper, we represent grain
boundaries as imperfectly bonded interfaces, across which traction is continuous, but displacement
may be discontinuous. We express the additional compliance due to grain boundaries in terms of a
second-rank and a fourth-rank tensor, which quantify the effect on elastic wave velocities of the orien-
tation distribution as well as the normal and shear compliances of the grain boundaries. Measurement of
the elastic stiffnesses allows determination of the components of these tensors. Application of the
method to resonant ultrasound spectroscopy measurements made on ice polycrystals enables determin-
ation of the ratio BN/BS of the normal to shear compliance of the grain boundaries, which are found to be
more compliant in shear than in compression. The ratio BN/BS is small at low temperatures, but increases
as temperature increases, implying that the normal compliance increases relative to the shear compli-
ance as temperature increases.
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NOTATION

a radius of a pore represented as an
oblate spheroid

A(r) the area of the r-th grain boundary
B grain boundary compliance tensor

with components Bij

BN normal compliance of a grain
boundary

BS shear compliance of a grain boundary
c half-thickness of a pore represented as

an oblate spheroid
c/a aspect ratio (thickness divided by

lateral extent)
C fourth-rank elastic stiffness tensor with

components Cijkl

Cij components of the fourth-rank elastic
stiffness tensor in the two-index
notation (Voigt, 1910; Nye, 1985)

k wavenumber
K bulk modulus
K0 bulk modulus of the sample when the

ice crystals are fully bonded as occurs
at low temperatures

Kr permeability of the medium including
the contribution of the grain
boundaries

n the unit normal (vector) to a grain
boundary

nðrÞi
the i-th component of the normal to
the r-th grain boundary

S fourth-rank elastic compliance tensor
with components Sijkl

S0ijkl
components of the fourth-rank elastic
compliance tensor that
polycrystalline ice would have if the
ice crystals formed a continuous
framework

ΔSijkl components of the fourth-rank excess
compliance tensor that results from
the presence of grain boundaries

t traction vector
ti the i-th component of the traction vector
u displacement vector
ui the i-th component of the

displacement vector
[u] difference in displacement between

opposing sides of a grain boundary
[uN] component of the difference in

displacement between opposing sides
that is normal to a grain boundary

[uS] component of the difference in
displacement between opposing sides
that is parallel to a grain boundary

V volume
VP compressional velocity; P-wave

velocity
VS shear velocity; S-wave velocity
X1, X2, X3 reference set of Cartesian axes with X3

normal to a grain boundary
x1, x2, x3 reference set of Cartesian axes fixed in

the sample
αij components of the second-rank

compliance tensor α representing the
mechanical effect of the grain
boundaries in polycrystalline ice
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βijkl components of the fourth-rank
compliance tensor β representing the
mechanical effect of the grain
boundaries in polycrystalline ice

δij Kronecker delta with the property that
δij= 1 if i= j, and δij= 0 if i ≠ j

ηf fluid viscosity
κf fluid bulk modulus
μ shear modulus
μ0 shear modulus of the sample when

the ice crystals are fully bonded as
occurs at low temperatures

ν Poisson’s ratio
ρ density
ω angular frequency

INTRODUCTION
Grain boundaries in polycrystalline ice influence various
mechanical phenomena such as creep, yield and fracture
(Higashi, 1978). Grain boundaries may affect the use of
elastic waves to investigate the properties of ice sheets and
glaciers such as ultrasonic velocity measurements on cores
(Bennett, 1968; Gow and Kohnen, 1979; Kohnen and
Gow, 1979; Langway and others, 1988; Anandakrishnan
and others, 1994), sonic logs (Bentley, 1972; Gusmeroli
and others, 2012; Kluskiewicz and others, 2017) and
seismic methods (Bentley, 1972; Bentley and Kohnen,
1976; Blankenship and Bentley, 1987; Horgan and others,
2008; Wittlinger and Farra, 2012; Picotti and others, 2015;
Smith and others, 2017). Above −10°C, Duval and others
(1983) report a large change in grain boundary mobility,
which they suggest may be due to grain boundary melting
that involves a zone with liquid-like structure at the grain
boundaries. Such liquid-like water may exist at grain bound-
aries at temperatures as low as −30°C (Hobbs, 1974; Dash
and others 1995; Vaughan and others, 2016). This may
play a role in the mechanical behavior of ice sheets, since
temperatures at the base may exceed the melting point
even though near-surface temperatures are typically below
−20°C (Iken and others, 1993; Engelhardt, 2004; Joughin
and others, 2004; Cuffey and Paterson, 2010; Pattyn, 2010;
Vaughan and others, 2016).

The purpose of this paper is to obtain information of the
variation in the elastic compliance of grain boundaries in
polycrystalline ice as a function of temperature from elastic
wave measurements. For this, the measurements of
Vaughan and others (2016) are used. These authors employ
resonant ultrasound spectroscopy and ultrasonic transmis-
sion measurements to determine the temperature depend-
ence of the elastic and anelastic properties of samples of
polycrystalline ice with homogeneous texture and grain
size <1 cm. Electron backscatter diffraction showed that
the samples used had a close to random orientation distribu-
tion of ice crystals. Estimates of elastic anisotropy indicated a
P-wave anisotropy of order 0.1%, so that the samples may be
treated as elastically isotropic (Vaughan and others, 2016).

Resonant ultrasound spectroscopy measurements were
performed on polycrystalline ice by Vaughan and others
(2016) between −26°C and −5°C. Estimates of the compres-
sional elastic stiffness C11, corresponding to the P-wave vel-
ocity VP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

C11=ρ
p

, where ρ is density, and shear stiffness
C55, corresponding to the S-wave velocity VS ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C55=ρ

p
,

obtained by Vaughan and others (2016) using these measure-
ments, assuming the samples are isotropic, are shown in
Figure 1. The elastic stiffnesses are seen to decrease with
increasing temperature. However, the elastic stiffness C11 is
more sensitive to temperature than the elastic stiffness coeffi-
cient C55, and Vaughan and others (2016) attribute this to
liquid phases on ice grain boundaries associated with pre-
melting conditions.

To estimate the mechanical properties of the grain bound-
aries based on the measured elastic stiffnesses, we use a
model in which the grain boundaries are represented as
imperfectly bonded interfaces, across which traction is con-
tinuous, but displacement may be discontinuous
(Schoenberg, 1980; Kachanov, 1992). The elastic anisotropy
caused by the presence of the grain boundaries is represented
in terms of a second-rank and a fourth-rank tensor (Sayers
and Kachanov, 1995) that quantify the dependence of the
elastic stiffness coefficients on the normal and shear com-
pliances of the grain boundaries and their orientation distri-
bution. The model allows components of these tensors to
be estimated from measurements of the elastic stiffness coef-
ficients of polycrystalline ice as a function of temperature.
The next section describes the model used. Following this,
results from applying the model to estimate the mechanical
properties of the grain boundaries from the elastic stiffness
estimates of Vaughan and others (2016) are presented, fol-
lowed by the conclusions of this work.

MODEL DESCRIPTION
We represent the effects of the grain boundaries on the elastic
stiffnesses in the presence of melt, by modeling the grain
boundaries as locally flat imperfectly bonded interfaces,
across which traction t is continuous as shown schematically
in Figure 2. The displacement umay be different on opposing
sides of the grain boundary due to the deformation of the
boundary (Schoenberg, 1980). It is convenient to introduce
a Cartesian reference set of axes x1, x2, x3, fixed in the
sample. The difference in displacement of opposing sides
of the grain boundary is denoted by [u], with Cartesian com-
ponents [ui], i= 1, 2, 3. For small deformations, as occurs in
the resonant ultrasound spectroscopy measurements of
Vaughan and others (2016), [u] is linear in the traction, and

Fig. 1. Elastic stiffness coefficients C11 (circles and left scale) and C55

(squares and right scale) as a function of temperature estimated by
Vaughan and others (2016) based on resonant ultrasound
spectroscopy measurements.
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the i-th component may be written as

½ui� ¼ Bijtj: ð1Þ

In this equation, as elsewhere in this paper, the Einstein sum-
mation convention, in which a summation is made over
repeated indices (i, j, k, l= 1, 2, 3), is used. The quantity
tj is the j-th component of the traction vector, and Bij are com-
ponents of the second-rank grain boundary compliance
tensor B. Equation (1) describes the mechanical behavior of
a grain boundary modeled as an imperfectly bonded inter-
face between grains, and depends on the nature of the con-
tacts between grains, the number of contacts per unit area,
the deformability of any open regions between grain con-
tacts, any fluids within the grain boundary, etc. If there is rota-
tional symmetry around the normal to the grain boundary, it
follows from Schoenberg (1980) and Kachanov (1992) that Bij

may be represented in terms of a normal compliance BN and
shear compliance BS as follows:

Bij ¼ BNninj þ BSðδ ij � ninjÞ; ð2Þ

where ni is the i-th component of the unit normal n to the
grain boundary. The Kronecker delta δij has the property
that δij= 1 if i= j, and δij= 0 if i≠ j. The normal and shear
grain boundary compliances BN and BS will be used below
to determine the contribution of grain boundaries to the
elastic stiffness coefficients of polycrystalline ice.

We denote the components of the fourth-rank elastic stiff-
ness tensor C of polycrystalline ice by Cijkl (i, j, k, l= 1, 2, 3),
and the components of the fourth-rank elastic compliance
tensor S of polycrystalline ice by Sijkl.

In the presence of grain boundaries having different orien-
tation, the Sijkl may be written in the form:

Sijkl ¼ S0ijkl þ ΔSijkl; ð3Þ

where S0ijkl are the components of the elastic compliance

tensor S(0) for the case in which the effect of grain boundary
compliance may be considered negligible, as will be
assumed to be the case at the lowest temperature (−26°C)
in the experiments of Vaughan and others (2016). For an
anisotropic orientation distribution of ice crystals, S(0) is
anisotropic, although estimates of elastic anisotropy in their
samples by Vaughan and others (2016) indicated a P-wave

anisotropy of order 0.1%, so that the samples may be
treated as elastically isotropic. S(0) includes also the effect
of any porosity in the interior of the ice crystals, which is
assumed not to vary with temperature. This porosity is esti-
mated by Vaughan and others (2016) to be of order 1%.
The components ΔSijkl of the excess compliance tensor due
to the presence of the grain boundaries can be written in
terms of a second-rank tensor α and fourth-rank tensor β
(Sayers and Kachanov, 1995) as:

ΔSijkl ¼
1
4
ðδ ikα jl þ δ ilα jk þ δ jkαil þ δ jlαikÞ þ βijkl: ð4Þ

The components αij and βijkl of α and β are defined by

αij ¼ 1
V

XN
r¼1

BðrÞ
S nðrÞi nðrÞj AðrÞ; ð5Þ

βijkl ¼
1
V

XN
r¼1

BðrÞ
N � BðrÞ

S

� �
nðrÞi nðrÞj nðrÞk nðrÞl AðrÞ: ð6Þ

The sum is over the N grain boundaries in volume V. The

quantities BðrÞ
N and BðrÞ

S are the normal and shear compliance

of the r-th grain boundary in volume V, nðrÞi is the i-th compo-
nent of the local unit normal to the r-th grain boundary, and
A(r) is the local area of the grain boundary (Sayers and
Kachanov, 1995). Because the components of the unit
normal to the grain boundaries appear as products in (5)
and (6), it follows that αij and βijkl are symmetric with
respect to all rearrangements of the indices so that β1122=
β1212, β1133= β1313 , etc.

This model allows information on grain boundary compli-
ance to be obtained from measured elastic stiffnesses, as will
be illustrated next using the elastic stiffnesses of polycrystal-
line ice measured by Vaughan and others (2016) as a func-
tion of temperature. The samples used by Vaughan and
others (2016) were found to be close to isotropic. Assuming
an isotropic orientation distribution of grain boundaries,
several components αij and βijkl are zero, and the non-
vanishing components can be written in terms of quantities
α and β, defined as follows (Sayers and Kachanov, 1995):

α11 ¼ α22 ¼ α33 ¼ α; ð7Þ

β1111 ¼ β2222 ¼ β3333 ¼ β ð8Þ

and

β1122 ¼ β1133 ¼ β2233 ¼ β1212 ¼ β1313 ¼ β2323 ¼ β=3: ð9Þ

The non-vanishing components ΔSijkl follow from (4) as
(Sayers, 2002):

ΔS1111 ¼ ΔS2222 ¼ ΔS3333 ¼ α þ β; ð10Þ

ΔS1122 ¼ ΔS1133 ¼ ΔS2233 ¼ β=3; ð11Þ

ΔS1212 ¼ ΔS1313 ¼ ΔS2323 ¼ α=2þ β=3: ð12Þ

The elastic stiffness tensor C is obtained as the inverse of the
compliance tensor S with components Sijkl given by (3) with
the ΔSijkl given by (10)–(12).

The symmetry of the elastic stiffness tensor C and the
elastic compliance tensor S enables use of a condensed

Fig. 2. Schematic representation of part of a grain boundary in ice
modeled as a locally flat imperfectly bonded interface. The normal
and shear displacements of the upper face of the grain boundary
are denoted by uþN and uþS , whereas those of the lower face are
denoted by u�N and u�S . The normal and shear components of the
difference in displacement between opposing sides of the grain
boundary are given by ½uN� ¼ uþN � u�N and ½uS� ¼ uþS � u�S , and
are related to the normal and shear tractions tN and tS by the
equations shown in the figure.
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6 × 6 two-index notation (Voigt, 1910; Nye, 1985) in which
pairs of subscripts ij and kl are abbreviated by single sub-
scripts according to the convention, 11→ 1, 22→ 2, 33→
3, 23, 32→ 4, 13, 31→ 5 and 12, 21→ 6. For an isotropic
medium, the elastic stiffness components Cij in two-index
notation may be written in terms of the isotropic bulk
modulus K and shear modulus μ as

Cij
� � ¼

K þ 4μ=3 K � 2μ=3 K � 2μ=3 0 0 0
K � 2μ=3 K þ 4μ=3 K � 2μ=3 0 0 0
K � 2μ=3 K � 2μ=3 K þ 4μ=3 0 0 0

0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

2
6666664

3
7777775
:

ð13Þ

It then follows from (3), (4) and (10)–(12) that the bulk
modulus K and shear modulus μ are given in terms of the
bulk modulus K0 and shear modulus μ0 of the sample when
the ice crystals are fully bonded, as will be assumed to be
the case at the lowest temperature (−26°C) in the experi-
ments of Vaughan and others (2016), by

K ¼ K0

1þ 3K0ðα þ 5β=3Þ ; ð14Þ

μ ¼ μ0
1þ 2μ0ðα þ 2β=3Þ ð15Þ

(Sayers and Han, 2002). These equations allow α and β to be
determined from measurements of the elastic stiffness coeffi-
cients C11= K+ 4μ/3 and C44= μ, and knowledge of K0 and
μ0. For an isotropic orientation distribution of grain boundar-
ies, it follows from (5) and (6) that BN/BS= 1+ 5β/3α (Sayers
and Han, 2002), where the average normal and shear com-
pliance are denoted by BN and BS, and this estimate is
valid when the shear compliance of the grain boundaries is
non-zero. This allows BN/BS to be estimated from the ratio
β/α obtained from (14) and (15).

RESULTS
Since α and β have units of compliance, it is more convenient
to plot the dimensionless quantities μ0α and μ0β where μ0 is
the shear modulus of the sample when the ice crystals are
fully bonded. Figure 3 shows the values of μ0α and μ0β
obtained from (14) and (15), where K and μ are calculated
from C11 and C44 shown in Figure 1 using the isotropic equa-
tions K=C11− 4C44/3, μ=C44. Note that α and β are of
opposite sign, and this implies that BN/BS< 1, as seen from
(5) and (6). The grain boundaries appear, therefore, to be
more compliant in shear than under a normal stress.

The theory used to estimate μ0α and μ0β from the mea-
sured elastic stiffnesses C11 and C55 is a general representa-
tion of the mechanical behavior of a grain boundary
modeled as an imperfectly bonded interface between
grains, and includes the mechanical behavior of the contacts
between grains, the number of contacts per unit area, the
deformability of any open regions between grain contacts,
the fluid distribution within the grain boundary, etc. It is inter-
esting, however, to compare the results for BN/BS obtained
from the measurements of Vaughan and others (2016) with
a simple model in which the grain boundaries are considered
to be porous, the pores being assumed to be oblate spheroids

with radius a and aspect ratio c/a in a homogeneous back-
ground medium with shear modulus μ and Poisson’s ratio
ν. An oblate spheroid is an ellipsoid obtained by rotating
an ellipse about its minor axis, with equatorial dimension a
greater than the polar dimension c. The additional compli-
ance introduced by the spheroid depends on the properties
of the host medium and the fluid within the spheroid. For
the case of spheroidal voids with the ability of fluid exchange
via small pathways, Hudson and others (1996) show that for
a random distribution of coplanar spheroids in an infinite
domain, the ratio BN/BS is

BN

BS
¼ 1þ Að Þ 1� n=2ð Þ

1þ B
; ð16Þ

where

A ¼ 4a
πc

iωηf
μ

� �
1� n

2� n

� �
; ð17Þ

B ¼ 2a
πc

κf

μ
1� nð Þ

	 

1� 3iκfk2Kr

4πna2cωηf

� ��1

: ð18Þ

In (17) and (18), i ¼ ffiffiffiffiffiffiffi�1
p

, κf and ηf are the bulk modulus and
viscosity of the fluid, respectively, ω is the angular frequency,
k is the wavenumber and Kr is the permeability of the
medium including the contribution of the grain boundaries.
Because (16)–(18) are frequency dependent and have a real
and imaginary part, this will lead to dispersion and attenu-
ation of the elastic wave. These effects lie outside the
scope of the current work, however, whose objective is to
examine the dependence of the real part of the elastic stiff-
ness coefficients on the grain boundary compliances.

For low permeability, as would occur if the aspect ratio c/
a is small, or if the grain boundaries are poorly connected,
the compliance ratio in (16) simplifies to

BN

BS
¼ 1þ Að Þ 1� n=2ð Þ

1þ 2a
πc

κf

μ
1� nð Þ

	 
 : ð19Þ

A decrease in the aspect ratio c/a and an increase in the
bulk modulus of the fluid κf both lead to a decrease in com-
pliance ratio.

Figure 4 shows the variation in BN/BS as a function of tem-
perature determined from the results shown in Figure 3. It is

Fig. 3. Values of normalized grain boundary compliance tensor
components μ0α (circles) and μ0β (squares) estimated from the
elastic stiffness coefficients C11 and C55 measured by Vaughan
and others (2016) based on resonant ultrasound spectroscopy.
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seen that BN/BS< 1 implying that the grain boundaries are
more compliant in shear than in compression. The ratio BN/
BS is seen to be small at low temperatures, but increases as
temperature increases, implying that the normal compliance
increases relative to the shear compliance with increasing
temperature.

CONCLUSION
This paper presents a determination of the normal and shear
compliance of grain boundaries in polycrystalline ice from
the temperature-dependent elastic stiffness measured by
Vaughan and others (2016). The approach is formulated in
terms of a second-rank tensor α and fourth-rank tensor β
that depend on the orientation distribution as well as the
normal and shear compliance of the grain boundaries. This
allows one to obtain the normal and shear compliance of
the grain boundaries as a function of temperature from mea-
surements of the elastic stiffness coefficients. We applied the
method to estimates of elastic stiffness coefficients based on
resonant ultrasound spectroscopy measurements on poly-
crystalline ice between −26°C and −5°C. Notably, α and
β were found to have opposite signs. This implies that the
ratio of the normal to shear compliance BN/BS< 1. Grain
boundaries in polycrystalline ice are, therefore, more compli-
ant in shear than in compression. The ratio BN/BS is small at
low temperatures, but increases as temperature increases
implying that the normal compliance increases relative to
the shear compliance as temperature increases.

It should be noted that the results presented are obtained
for a single sample investigated by Vaughan and others
(2016) that has a particular grain size distribution. It would
be interesting to repeat these calculations for other samples
having a different size distribution of ice crystals, once
such measurements become available, since this will allow
the grain size dependence of the grain boundary compliance
to be investigated. Also, since the number of grain boundar-
ies will increase with decreasing grain size, measurements of
ultrasonic attenuation on samples having different grain size
distributions may allow the effects of scattering to be sepa-
rated from attenuation due to viscous damping resulting
from the effects of the viscosity of the fluid at the grain bound-
aries. This appears to be a promising area for future work.
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