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We consider the solidification of idealised two-component mixtures comprising a solvent
or suspending fluid and dissolved solute molecules or suspended colloidal particles, each
considered as hard spheres. We review some fundamental thermodynamic ideas regarding
relative motion between species and phase equilibria in such mixtures to show how the
related solid–liquid phase diagrams depend on the size of the spheres. Using similarity
solutions, we first describe freezing of the solvent to form a pure solid (here referred to as
‘ice’), with the solute rejected from the solid forming a boundary layer or dense particle
layer ahead of the freezing front. We extend ideas of constitutional supercooling to the
case of colloidal suspensions and show that, for a given temperature difference driving
solidification, constitutional supercooling occurs only for an intermediate range of particle
sizes. Constitutional supercooling promotes the formation of a mushy layer in which
segregated ice separates regions of concentrated solute or particles on the microscale.
We formulate a continuum model of the mushy layer that relies on a key observation that
the regelative motion of concentrated clusters of particles is independent of the size and
geometry of the cluster. Our modelling begins with a description of relative motion as a
Fickian diffusive process. However, at high particle concentrations, we show that it is more
convenient and more computationally tractable to use an equivalent formulation in terms of
Darcy flow of the solvent. Within a mushy layer these diffusive fluxes correspond directly
to the regelative flux of particle clusters at a rate determined by the local temperature and
temperature gradient.
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Figure 1. Mushy layers formed in different materials frozen in vertical temperature gradients. (a) Dendritic
mushy layer of ammonium chloride crystals formed from aqueous solution (photo M.A. Hallworth).
(b) Dendritic mushy layer of ice platelets formed from a dilute suspension of bentonite clay in water (photo
S. Peppin). (c) Mushy layer of horizontal lenses (lower layer) formed from a suspension of alumina particles
in water (Anderson & Worster 2012). (d) Polygonal mushy layer formed from a concentrated suspension of
bentonite clay in water (photo S. Peppin). The photographs in (a,b,d) are a few mm across, while that in (c) is
approximately 3 cm across.

1. Introduction

The freezing of colloidal and nano suspensions is of increasing importance in
composite materials science, Earth and planetary science, cryobiology, microfluidics,
food engineering and chromatography (Rempel 2010; Qian & Zhang 2011; Deville 2013;
Henderson et al. 2013; Pawelec et al. 2014). Owing to the complexity of such systems,
which involve flow and phase change in multicomponent suspensions and porous media,
the development of models to predict ice morphology is challenging. During solidification
of multi-component melts, solutions or alloys, the solid phase often forms an intricate
microstructure of dendritic crystals aligned with the thermal gradient (figure 1a) within
what is called a mushy layer. In these contexts, ‘microstructure’ refers to formations
on a scale that is small compared with the dimensions of the partially solidified region
or casting. Similarly intricate microstructures can form during the freezing of colloidal
suspensions (figure 1b–d) but with a greater variety of patterns, including dendrites
aligned with the thermal gradient (figure 1b), lenses perpendicular to the thermal gradient
(figure 1c) and polygonal structures (figure 1d). Some of these structures, particularly the
dendritic ones, arise from morphological instability of the interface between frozen solvent
(ice) and unfrozen solution or colloidal suspension (Peppin, Worster & Wettlaufer 2007; El
Hasadi & Kodadadi 2015) but others form by regelative processes within partially frozen
colloid (O’Neill & Miller 1985; Rempel, Wettlaufer & Worster 2004; Anderson & Worster
2012).

Mathematical models of mushy layers formed from solutions (Worster 1992) often
describe them with continuum equations, averaged over the microstructure, which can be
used to predict the spatial distribution and temporal evolution of the solid fraction as well
as any macro-segregation caused by solute diffusion or convection of the interstitial liquid.
Here, we describe an approach to modelling mixed-phase regions (mushy regions) within
solidifying colloidal suspensions that is independent of their microstructural morphology
and independent, therefore, of their origin. We consider only hard-sphere interactions
between the colloidal particles, though cohesion between particles can be an important
influence on microstructural evolution.

2. Phase diagram

Key to the description of phase change in mixtures is the phase diagram, which shows
which phases exist in thermodynamic equilibrium at a given temperature, composition
and pressure. Here, we consider cases in which the external bulk pressure is constant and
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Figure 2. (a) A defining sketch illustrating the macroscopic measurement of bulk pressure P and pervadic
pressure p in the case of a dilute suspension or solution (upper part) and in the case of a concentrated suspension
(lower part). In each case, the bulk pressure is that measured by a transducer (narrower red boundary) that
samples a thermodynamically representative region containing both solute (particles) and solvent (suspending
fluid), while the pervadic pressure is measured by a transducer immersed in pure solvent separated by a
semi-permeable membrane (dashed line) from the colloidal suspension but in equilibrium with it. (b) The
equilibrium configuration between a colloidal suspension and solidified solvent (ice). The phase boundary acts
as a semi-permeable membrane, allowing exchange of solvent but not particles.

so concern ourselves with phase diagrams with respect to temperature and composition
only. We also restrict attention to systems that do not contain solid solutions, so that any
solid that forms contains only the pure solvent material. For convenience and definiteness,
we refer to the solvent or suspending fluid as ‘water’ and its solid phase as ‘ice’. We define
the bulk, thermodynamic pressure P as the pressure averaged over a thermodynamically
representative region of the mixture, and the pervadic pressure p as the pressure measured
in solvent that is in equilibrium with but separated from the mixture by a semi-permeable
membrane (figure 2a, Peppin, Elliot & Worster 2005). The pervadic pressure is related to
the specific chemical potential of the solvent μc by dμc = (1/ρ) dp − s dT , where s is the
specific entropy of the solvent and ρ is its density, which provides a helpful link in the
context of solutions. However, in a concentrated suspension forming a porous medium,
the pervadic pressure is best thought of as the pore pressure driving flow of the interstitial
solvent. The generalised osmotic pressure Π is defined by

Π = P − p. (2.1)

Figure 2(b) shows a colloidal suspension in equilibrium with frozen solvent, from which
we see that the solid–liquid interface acts as a semi-permeable membrane in the case that
solid solutions cannot occur. The generalised Clausius–Clapeyron equation, considering
the solvent alone, gives that

ρL
Tm − T

Tm
= ps − pl, (2.2)

where T is absolute temperature, Tm is the absolute freezing temperature of the pure
solvent, ρ is the density of its solid phase but is assumed here to be independent of phase
for simplicity, L is the specific latent heat of fusion and ps and pl are the pressures in the
solid and liquid phases of the solvent on either side of the phase boundary. With reference
to figure 2(b), we see that ps = P and pl = p and so we can determine the equilibrium
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Figure 3. Representative phase diagrams for hard-sphere, colloidal suspensions containing mono disperse
particles for different particle radii R showing the freezing (liquidus) temperature as a function of particle
concentration φ. As R increases, the liquidus temperature tends towards the constant bulk freezing temperature
of the solvent Tm except very close to the close-packed limit φ = φc. Note the reduced range of the abscissa and
increased range of the ordinate in (a) compared with (b,c). The ice-entry temperatures TE are approximately
−1000 ◦C, −300 ◦C and −60 ◦C for the three cases shown, and so do not enter the diagrams.

(Liquidus) temperature TL of a mixture of concentration (particle volume fraction) φ to be

TL = Tm − Tm

ρL
Π(φ). (2.3)

The osmotic pressure Π(φ) of a hard-sphere suspension when the absolute temperature
T ≈ Tm is given by Π = kBTmφ/v(R) when φ � 1, where kB is Boltzmann’s constant,
R is the radius of the hard spheres (assumed mono-disperse) and v(R) = 4(πR3)/3 is the
volume of each sphere (Einstein 1956). It varies inversely with φc − φ as φ approaches
the close-packed limit φc (Woodcock 1981). For simplicity and clarity of presentation,
we consider here an approximate functional form of the osmotic pressure that is the
leading-order Padé approximant between these limits

Π(φ, R) = kBTm

v(R)

φ

(1 − φ/φc)
. (2.4)

The key qualitative results of this paper result from the divergence as φ → φc, which is a
necessary feature of the constitutive relationship for the osmotic pressure. Quantitatively,
there is not much room for manoeuvre in this expression once the limiting behaviours are
accounted for. In short, the results of this paper do not depend significantly on the precise
form of (2.4).

Equation (2.4) can be used in (2.3) to determine the liquidus temperature TL(φ, R) as
a function of particle fraction and size. This is illustrated in figure 3. We see that when
R = 0.2 nm, which is roughly comparable to the ionic radii of small molecular solutes
(e.g. chlorine ions (0.18 nm) and sodium ions (0.1 nm)), the liquidus curve is characteristic
of an aqueous salt solution. However, as the particle size increases, the liquidus
temperature approaches the constant value Tm except for concentrations very close to
the close-packed limit φc − φ � 1. This behaviour can be understood by noting that the
prefactor in (2.4) is very large when R is small and so the liquidus temperature changes a
lot for only small changes in φ. Therefore, for modest undercooling, the particle volume
fraction is small and the liquidus curve is approximately linear. Conversely, when R is
large, changes in φ cause a negligible reduction in the freezing temperature, which remains
close to Tm, until φ approaches φc.

In this paper, we consider very small particles and modest undercoolings and so ignore
the possibility of the pore water freezing, which can happen when the temperature falls
below the ice-entry temperature TE = Tm − (Tm/ρL)(2γ /Rf ), where γ is the surface
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Figure 4. (a,c) A dilute suspension with concentration decreasing from left to right tends to a uniform
concentration by self-diffusion of the particles in time (top to bottom). (b,d) A concentrated suspension with
concentration decreasing from left to right tends to a uniform concentration by jostling limited by interstitial
fluid flow from right to left (shown by arrow). Concentration gradients relax but the intermingling of particles
is limited.

energy of an ice–water interface and Rf < R is a typical pore radius. For reference, for
the water–ice system, TE ≈ −1 ◦C when the particle size R ≈ 0.3 μm. We will see later
that the interesting cross-over in behaviour that we highlight in this paper happens for
suspensions of nano particles with R < 0.03 μm, for which the ice-entry temperature is
below −10 ◦C.

The advantage of our approximate liquidus relationship for analytical modelling is that
it is readily inverted to give the colloidal concentration at the phase boundary

φ = φL(T, R) ≡
[

Kφc

Tm − T
+ 1

]−1

φc (2.5)

in terms of the temperature there, where K(R) = (Tm/ρL)(kBTm/v(R)) is the magnitude
of the liquidus slope at φ = 0.

3. Relative motion in colloidal suspensions

In a dilute solution or suspension, it is familiar to think of diffusion in terms of random
walks of the molecules or particles, in the latter case associated with Brownian motion.
The random walks taken by individual molecules give rise to the self-diffusion of a species
and an intermingling of the molecules. This is illustrated in figure 4(a), in which the
identical particles are tagged with either red or blue colours, which by self-diffusion
become mixed statistically homogeneously in time. The self-diffusion decreases with
particle size, as illustrated by the expression for Stokes–Einstein diffusion of dilute
suspensions

D = kBT
6πμR

, (3.1)

where μ is the dynamic viscosity of the suspending fluid. By this description, the particle
flux relative to the suspending fluid is given by

− φq = −D∇φ, (3.2)

where q is the fluid flux relative to the particles per unit area of mixture (the Darcy flux).
By contrast, in a concentrated suspension, illustrated in figure 4(b), although the

self-diffusion is small, even negligible, inhomogeneities of concentration still relax by
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Brownian jostling of the particles, limited by the viscous drag of the suspending fluid
through the interstices of the particle cluster. By Darcy’s law

q = − k
μ

∇p, (3.3)

where k(φ) is the permeability of the particle cluster. If the bulk pressure P is uniform
then ∇p = −∇Π and so, comparing (3.2) and (3.3), we see that

D(φ) = φk(φ)

μ

∂Π

∂φ
. (3.4)

In this paper, we use the same expression for the permeability

k(φ) = 2
9 R2(1 − φ)6/φ (3.5)

that was used by Peppin, Elliot & Worster (2006), obtained empirically by Russel, Saville
& Schowalter (1989). Note that the combination of (3.4) and (3.5) together with (2.4)
reproduces (3.1) in the limit φ � 1.

This brief description is a summary of the derivation provided by Peppin et al.
(2005). We see that the osmotic pressure Π(φ) is central to an understanding of both
flow and phase in these freezing colloidal systems. There are many hydrodynamic and
thermodynamic studies to determine higher-order expansions of (3.1) for small but finite
φ, for example the seminal paper of Batchelor (1976) and later papers by Batchelor (1983),
Brady (1993) and Marath & Wettlaufer (2019). However, for illustration and clarity of
exposition, we use the simple expression (2.4) throughout this paper to describe both the
phase diagram and the hydrodynamic interactions.

4. Solidification from a plane boundary

4.1. Fickian formulation
Similarity solutions for one-dimensional solidification of a colloidal suspension from a
planar boundary were presented by Peppin et al. (2006). We present a simpler version
of those solutions here as a precursor to our study of the mushy layers that can form at
sufficiently large undercoolings. The problem solved is shown schematically in figure 5.
We ignore latent heat release at the phase boundary and assume that the density and
specific heat capacity are the same for particles and solute and independent of phase.
Therefore, the temperature is given by

T(z, t) = T∞ + (TB − T∞)erfc η, η = z
2
√

κt
, (4.1)

where TB is the temperature of the boundary z = 0, T∞ is the temperature far from the
boundary and κ is the thermal diffusivity.

If TB < TL(φ∞, R), where φ∞ is the uniform particle concentration far from the
boundary, then ice will form against the boundary and push particles ahead of it. For
given R, we write D(φ, R) = D(φ) for brevity, and the concentration of colloidal particles
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Concentrated layer
z = h(t) = 2λ�κt

z = 0

Ice

Colloidal suspension

T∞

T(η)

TB

φ∞

φ(η)

φ = 0

Figure 5. A schematic diagram of the solidification of a colloidal suspension to produce a layer of pure frozen
solvent (ice) separated from the unfrozen suspension by a planar interface. The particles rejected by the ice
accumulate ahead of the ice in a concentration boundary layer. If the concentration of particles in the boundary
layer approaches the close-packed limit then the boundary layer forms a porous medium of almost uniform
particle concentration with a much thinner, diffuse boundary layer of rapid variation of particle concentration
separating it from the original suspension.

ahead of the layer of ice satisfies a diffusion equation

∂φ

∂t
= ∂

∂z

[
D(φ)

∂φ

∂z

]
, (4.2)

with boundary conditions

φ(h) = φL(T(h)) and φ → φ∞ as z → ∞, (4.3)

where h = 2λ
√

κt is the thickness of the layer of ice determined by the interfacial
condition expressing local conservation of solute

φḣ = −D(φ)
∂φ

∂z

∣∣∣∣
z=h+

. (4.4)

Equation (4.2) can be written as a pair of first-order equations in the similarity variable
η as

φ′ = −2
κ

D(φ)
q, q′ = −2

κ

D(φ)
ηq, (4.5a,b)

with boundary conditions

φ = φL and q = λφL at η = λ, (4.6)

φ → φ∞ as η → ∞, (4.7)

where φL = φL(T) is given by (2.5). Note that the dimensionless flux q is introduced and
defined by the first of (4.5a,b). The apparent simplicity of (4.5a,b) and (4.7) belies the fact
that they become exceedingly stiff as R increases. For example, if φ∞ = 0.05 and R =
30 nm, D(φ) varies by a factor of greater than 107 between the interface and the far field.
The reason for this extreme variation is that, as the particles approach the close-packed
limit, they have very short free-path lengths before interacting with other particles.

The equations were solved using the stiff solver ode15s in Matlab. An example program
is given in the supplementary material available at https://doi.org/10.1017/jfm.2020.863.
For a given value of λ, (4.5a,b) were solved starting from conditions (4.6) at η = λ to
a specified far-field value of η = η∞ to determine the residual φ(η∞) − φ∞. The value
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Name Symbol Value Units

Boltzmann’s constant kB 1.38 × 10−23 kg m2 s−2 K−1

Freezing temperature Tm 273.15 K
Density ρ 103 kg m−3

Latent heat of fusion L 3.35 × 105 J kg−1

Dynamic viscosity μ 10−3 Pa s
Thermal diffusivity κ 1.43 × 10−7 m2 s−1

Close-packing fraction φc 0.64 —

Table 1. Parameter values used in the illustrative calculations.

of λ was then varied within the Matlab function fzero until the residual was zero. Thus
solutions could be found given the external conditions φ∞, R and TB.

As shown by Peppin et al. (2006), if the boundary temperature is too low then
constitutional supercooling (temperatures below the liquidus) can occur within the
concentration boundary layer of particles ahead of the freezing front. Here, we determine
the critical boundary temperature below which constitutional supercooling will occur
adjacent to the ice–colloid interface. That is determined by the condition

∂T
∂z

∣∣∣∣
h+

= ∂TL

∂z

∣∣∣∣
h+

, (4.8)

which can be used to determine

TB(λ) = T∞ − √
πλeλ

2 Tm

ρL
μκ

k(φ(λ))
. (4.9)

Note that, for a given value of λ, the right-hand side of (4.9) depends on TB through the
function φ = φL(T). However, the equation can readily be solved numerically.

In figure 6, we show the marginal boundary temperature TB as a function of particle
radius R for a given far-field concentration φ∞ = 0.05 and temperature T∞ − Tm = 10 ◦C.
Other parameter values are listed in table 1. For molecular solutions with equivalent
hard-sphere radii of less than approximately 10 nm the solute diffusivity (self-diffusion)
decreases as the particle size increases, and constitutional supercooling becomes more
likely, as shown by the critical value of the boundary temperature TB increasing with R.
However, for hard-sphere radii greater than approximately 20 nm, the continuing decrease
in self-diffusivity causes particles to accumulate against the phase boundary with a
concentration approaching the close-packed fraction φc, which causes the bulk diffusivity
within the boundary layer to increase as R increases, and constitutional supercooling
becomes less likely. This cross-over of behaviour is captured by our solutions of the
diffusion equation (4.5a,b), as shown by the solid curve in figure 6(a). However, not far
into this regime, the equations became too stiff for us to solve using the tools described
above and so we adopted a different formulation as described below.

Before we leave this subsection, note the difference in behaviour shown for R =
5 nm (figure 6d) versus R = 25 nm (figure 6e). At R = 5 nm there is no constitutional
supercooling anywhere in the system when marginal supercooling pertains at the
ice–colloid interface. We anticipate that for lower values of TB, the interface will undergo a
morphological instability to form a dendritic mushy layer. However, at R = 25 nm there is
supercooling ahead of the concentration boundary layer of compacted particles while the
ice–colloid interface is only marginally supercooled. In this circumstance, we anticipate
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Figure 6. (a) The boundary temperature TB below which constitutional supercooling occurs ahead of the
planar ice interface as a function of particle radius R. The solid curve shows the results of the full model,
while the dashed curve shows the result of the simple model. The dashed line at TB = −4 ◦C indicates the
fixed boundary temperature used in the illustrative calculations of mushy layers in figure 8. (b–e) The thick
curves show the trajectories of (T, φ) in the respective phase diagrams for different particle radii R given the
marginal values of TB. The thin curves indicate the liquidus curves.

that morphological instability of the interface may trigger spears of ice to grow through the
compacted particles and nucleate a layer of ice ahead of the compacted particles to form a
laddered mushy layer. This distinction was identified and quantified in a phase diagram by
You, Wang & Worster (2018), who also determined conditions under which mushy layers
with ice lenses transverse to the growth direction can form. These latter structures rely on
the formation of pore ice (a frozen fringe) at temperatures below the ice-entry temperature
and so are not captured by our analysis here. You et al. (2018) additionally performed
laboratory experiments and showed that their results, as well as data and observations
obtained by other authors, fitted well with their theoretical phase diagram.

4.2. Darcy formulation
When the diffusivity D(φ) is very large, (4.5a,b) show that φ and q are almost constant,
and we have seen that, in the concentration boundary layer of particles, φ ≈ φc is
essentially uniform. The picture then looks like an extreme version of figure 5, with
the particle concentration field being piecewise constant having φ = φ∞ for z > b(t) =
2λb

√
κt and φ = φc for h(t) < z < b(t). The relative Fickian flux between particles and

solute in the compacted layer −D(φ)φ′ tends towards infinity multiplied by zero and so
this formulation becomes very difficult to work with. However, as described in § 2,

− D(φ)
∂φ

∂z
= −φk(φ)

μ

dΠ

dφ

∂φ

∂z
= φk(φ)

μ

∂p
∂z

, (4.10)

given that the bulk pressure P is constant (set to zero), and so the relative flux can
be determined from the pervadic-pressure (pore-pressure) field. When the particles are
compacted, the pervadic-pressure gradient is constant and so

p = ph + ( p∞ − ph)
z − h
b − h

, (4.11)
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where

p∞ = −Π(φ∞) ≈ 0 and ph = −Π(φh) = ρL
Tm

(T(λ) − Tm) , (4.12a,b)

which is the so-called cryo-suction pressure, determined from (2.3).
Local conservation of particles at the ice–colloid interface (4.4) can be re-expressed as

ḣ = kc

μ

∂p
∂z

∣∣∣∣
h+

, (4.13)

which gives

λ = kc

2μκ

ρL
Tm

Tm − T(λ)

λb − λ , (4.14)

where kc = k(φc). This is complemented by a condition of global conservation of particles

λb = φc

φc − φ∞
λ. (4.15)

These equations can be combined to give

λ2 = kc

2μκ

ρL
Tm

φc − φ∞
φ∞

(Tm − T(λ)). (4.16)

To determine the marginal conditions for constitutional supercooling, these equations can
be augmented by (4.9), which can be combined with (4.14) to give

TB = T∞ −
√

π

2
eλ

2

λb − λ(Tm − T(λ)). (4.17)

Equation (4.16) was readily solved numerically using the function fzero in Matlab to
determine λ, whence λb could be evaluated from (4.15) and TB could be evaluated using
(4.17) to give the dashed portion of the curve in figure 6. We see that it matches smoothly
with the solid portion of the curve produced by solving the full diffusion equations and
thereby completes the picture. This approach also offers an alternative explanation for
the downturn in the critical boundary temperature, namely that the compacted layer of
particles has a larger permeability the larger the particles, allowing for greater relative
motion between species.

If the boundary temperature is below the critical value shown in figure 6 then we expect
a mushy layer to form consisting of segregated ice, devoid of particles, and regions of
concentrated colloidal suspension. Our goal now is to find a description of such mushy
layers that is independent of the microstructure of the segregated ice.

5. Migration of clusters

Key to our understanding of mushy layers is a determination of the regelative motion of
clusters of particles surrounded by ice when exposed to a temperature gradient.

There have been many studies of the regelative motion of single solid particles
surrounded by ice when exposed to a temperature gradient ∇T (e.g. Gilpin 1979; Rempel,
Wettlaufer & Worster 2001), as illustrated in figure 7(a). When there is a (repulsive)
disjoining force (for example a non-retarded van-der-Waals force) between the ice and
solid across an intervening layer of water then the ice pre-melts against the solid so that,
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d
θ a

∇T

Ice
q

V

Ice

n

V

u

∇T

(a) (b)

Figure 7. (a) Regelation of a single, spherical particle. A pre-melted film exists around the particle that is
thinner and is associated with a larger disjoining force where it is colder. There is therefore a net force on the
particle acting in the direction of the temperature gradient balanced by a viscous drag force as water flows
around the particle through the pre-melted film. (b) Similar disjoining forces push a particle cluster in the
direction of the temperature gradient but now displacement of particles is compensated by the flow of unfrozen
water through the interstices of the cluster.

in equilibrium, there is a thin layer of water separating the ice from the solid even at
temperatures below the bulk freezing temperature Tm. The thickness of the film decreases
and the disjoining force increases as the undercooling increases, so there is a net disjoining
force on the particle in the direction of the temperature gradient. The pre-melted liquid film
forms a lubricating layer that allows the particle to migrate: ice melts ahead of the particle,
flows as water through the film and refreezes behind the particle, all as the particle moves
forwards, pushed by the disjoining forces. For example, a spherical particle of radius a
surrounded by a pre-melted film of mean thickness d migrates parallel to an imposed
temperature gradient ∇T at velocity

V = d3

6μa
ρL
Tm

∇T, (5.1)

where μ is the dynamic viscosity of water. This regelative velocity clearly depends on
the size of the particle a and also depends on the shape of the particle because its local
curvature affects the thickness of the water film d.

Consider, in contrast, a cluster of many colloidal particles, not necessarily close-packed,
as shown in figure 7(b). The net force on the cluster arising from the pre-melted films that
separate it from the surrounding ice is given by its thermodynamic buoyancy

F T = −χρL
Tm

∇T, (5.2)

where χ is the volume of the cluster so that χρ is the mass of ice displaced by the cluster
(Rempel et al. 2001). Like a single particle, the cluster migrates by ice melting at its
warmer side, water passing from the warm side to the cool side and freezing on the cooler
side. Unlike a single particle, the melted water can pass through the relatively large pores
of the cluster rather than along the pre-melted films that surround it. The net hydrodynamic
resistance on the cluster is therefore given by

Fμ =
∫

∂D
pn dS =

∫
D

∇p dV, (5.3)
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by the divergence theorem. The pressure gradient is related to the water flux q via Darcy’s
equation so that

Fμ = −
∫
D

μq
k(φ)

dV = μχ

k(φ)
V , (5.4)

where V is the migration velocity of the cluster. The net force on the cluster F T + Fμ is
zero and so the net particle flux associated with the cluster is

χφcV = χφk(φ)

μ

ρL
Tm

∇T, (5.5)

which is independent of both the size and the geometry of the cluster, though it does
depend (via the permeability) on the size of the particles that make up the cluster. Given
the lack of dependence on size and shape, we can consider a mushy layer to be composed of
many clusters all migrating at a rate dependent only on the local temperature (determining
φ) and temperature gradient. Therefore, if χ represents the local volume fraction of
unfrozen colloid then the net particle flux per unit area of mush is given by the right-hand
side of (5.5).

6. Particle flux in a colloidal mushy layer

We can derive this same result slightly differently as follows. A key assumption in the
theory of equilibrium mushy layers is that the interior of a mushy layer sits on the liquidus
curve so that, everywhere within the mushy layer,

T = TL(φ) = Tm

[
1 − Π(φ)

ρL

]
. (6.1)

As we have seen, the particle diffusivity in a colloidal suspension is related to its
permeability by

D(φ) = φk(φ)

μ

∂Π

∂φ
. (6.2)

Therefore, the particle flux in a colloidal mushy layer is given by

− χD(φ)∇φ = −χD(φ)
dφ

dT
∇T = χφk(φ)

μ

ρL
Tm

∇T, (6.3)

which is the same result that we obtained above (5.5) by considering the migration of
individual clusters of particles.

7. Formation of a colloidal mushy layer at a cooled boundary

In general, the thermal structure of a mushy layer can be determined by solving the
diffusion equation for heat, taking account of the internal release of latent heat (Worster
1986). Here, we make the same approximation as previously, that there is no latent heat and
the density and specific heat capacities are constant, uniform and independent of material
so that the temperature field is given by (4.1). Given the assumption of thermodynamic
equilibrium, the concentration of particles in the interstices between segregated ice is given
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by the liquidus relationship
φ = φL(T). (7.1)

All that remains to determine is the volume fraction χ of unfrozen colloid. Conservation
of solute (particles) is described by the diffusion equation for particle concentration

∂

∂t
(χφ) = ∂

∂z

[
χD(φ)

∂φ

∂z

]
= ∂

∂z

[
χ

φk(φ)

μ

ρL
Tm

∂T
∂z

]
, (7.2)

which is a first-order, hyperbolic equation for χ .
This equation applies between the ice–mush interface z = a(t) = 2λa

√
κt and the

mush–colloid interface z = b(t) = 2λb
√

κt. The positions of those interfaces can be
determined without reference to (7.2) as follows. We apply the condition of marginal
equilibrium (Worster 1986) to the mush–colloid interface that

∂T
∂z

∣∣∣∣
b+

= ∂TL

∂z

∣∣∣∣
b+

⇒ ∂φ

∂z

∣∣∣∣
b+

= ∂φL

∂T
∂T
∂z

∣∣∣∣
b+

. (7.3)

Equations (4.5a,b) are therefore solved with boundary conditions

φ = φL and q = φk(φ)

2κμ

ρL
Tm

T ′ at η = λb, (7.4)

φ → φ∞ as η → ∞ (7.5)

to determine λb.
Local conservation of particles at the ice–mush interface is expressed by

χφȧ = −χD(φ)
∂φ

∂z

∣∣∣∣
a+

. (7.6)

The characteristics of (7.2) are in the negative z direction and so χ(a) cannot be specified
and will not in general be zero. Therefore χ can be divided from this equation and the
quotient arranged to yield

√
πλaeλ

2
a = ρL

Tm

k(φL(T(λa)))

μκ
(T∞ − TB), (7.7)

which can readily be solved numerically to determine λa. We used the function fzero in
Matlab.

Once λb and λa have been found, as described above, (7.2) can be integrated
straightforwardly in similarity form

1
2
η(χφ)′ =

[
χ

φk(φ)

μ

ρL
Tm

T ′
]′

with φ = φL(T) (7.8)

starting from χ = 1 at η = λb. An example program is given in the supplementary
materials.

Results are shown in figure 8 for TB = −4 ◦C, which also shows the scaled position
λ of the planar boundary computed using the models of § 4 without imposing the
marginal-equilibrium constraint. We see that when R is small, with values typical of
simple ionic radii, the ice-fraction distribution in the mushy layer is typical of aqueous
solutions (Worster 1986). By contrast, when R is approximately 10 nm and larger, the ice
fraction 1 − χ in the mushy layer is essentially uniform, as shown by the shaded regions
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Figure 8. (a) The thick curves show the scaled positions λa of the ice–mush interface and λb of the
mush–colloid interface as functions of the particle radius R for fixed TB = −4 ◦C. The solid portions of the
curves were computed by integrating the differential equations describing particle migration in the mushy
layer, while the dashed portions were computed using the simple model that considers flow through compacted
unfrozen colloid driven by gradients in pervadic pressure. The thin curve shows the scaled position λ of a
planar ice–colloid interface computed using the models described in § 4. The right-hand sides of (b–e) show
with thick curves graphs of the unfrozen colloid fraction χ as functions of the scaled height above the cooled
base η = z/2

√
κt. The left-hand sides of the panels are simple reflections of the graphs to produce graphics

that are illustrative of the distributions of ice (shaded) and unfrozen colloid within the mushy layer.

of figure 8. We also see that the layer of ice beneath the mushy layer first thins as the (self-)
diffusivity decreases with R and then thickens because the (bulk) diffusivity increases as
the concentration in the interstices of the mushy layer approaches φc when R increases
further. Comparing the result for R = 5 nm with that for R = 25 nm, we also see that the
region of unfrozen colloid χ increases with R for sufficiently large R, which implies that
the regions of segregated ice within the mushy layer occupy a smaller volume fraction.
This seems consistent with the expectation, described earlier, that at these larger values of
R, the microstructure is likely to take the form of a laddered structure formed of ice spears
and transverse lenses (You et al. 2018).

8. A simple model

From the results obtained from the differential model at larger values of R, illustrated
in figure 8(d,e), we anticipate that the unfrozen colloid fraction in the mushy layer χ is
almost uniform and that the particle concentration φ and hence permeability k(φ) are
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φ = 0

φ∞

φc

pa

p∞
Colloidal suspension

Mushy

layer

Ice
η = 0

η = λa

η = λb

Figure 9. A schematic representation and simple model of a colloidal mushy layer relevant to large particles
(greater than approximately 10 nm given the parameter values used in this paper) in which there is no region
of consolidated particles ahead of the mush–colloid interface, and the particle concentration of the unfrozen
colloid (stippled) occupying the interstices of the mushy layer has the uniform, close-packed value φc. The
volume fraction of the unfrozen colloid fraction has the uniform value χ while segregated ice (mid blue)
containing no particles occupies a volume fraction 1 − χ . The pattern of segregated ice and unfrozen colloid
in this representation is merely figurative – the mathematical model is agnostic as to the micro-structural
morphology. The blue lines show the uniform concentrations of particles in the original suspension above the
mushy layer and the layer of pure ice below. The red lines show the piecewise linear pressure field assumed in
the model.

also uniform, with values φ = φc and k = kc = k(φc) respectively. There is potentially an
unfrozen layer of compacted particles above the mushy layer. However, given that φ would
be uniform in the compacted layer, the pressure gradient and hence the gradient of the
liquidus temperature within it are approximately uniform as well. Therefore, the condition
of marginal equilibrium applied at the mush–colloid interface would leave a region
of constitutional supercooling within the consolidated layer (cf. figure 6e and related
discussion). So, under the assumption that the mushy layer consumes all constitutional
supercooling there is no compacted layer ahead of the mushy layer, the picture is that
illustrated in figure 9, and

Tb ≡ T(λb) = Tm ⇒ erfcλb = T∞ − Tm

T∞ − TB
. (8.1)

The local conservation equation (7.6) at the ice–mush interface can be re-written in
terms of the pressure field as

ȧ = kc

μ

∂p
∂z

∣∣∣∣
a+

= kc

μ

ρL
Tm

∂T
∂z

∣∣∣∣
a+

. (8.2)

The first equality can be understood in terms of the water transport through the unfrozen
colloid fraction towards the ice layer. Given the liquidus constraint applying throughout the
mushy layer, the pervadic pressure is related via the osmotic pressure to the temperature,
which gives the second equality. Given also that χφ is approximately uniform, the Darcy
flux and hence the pressure gradient are approximately uniform and (8.2) can be written
in similarity variables as

λa = KTm − Ta

λb − λa
, where K = k

2μκ

ρL
Tm

. (8.3)
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The temperature difference in this equation should be understood as representing the
pressure difference across the mushy layer, and the ice–mush and mush-colloid interfaces
are at z = 2λa

√
κt and z = 2λb

√
κt respectively.

Finally, global conservation of particles gives

φ∞λb = φcχ(λb − λa), whence χ = φ∞
φc

λb

λb − λa
. (8.4)

Using simple numerical root finding, (8.1) can be used to determine λb and then (8.3)
used to determine λa. These two values can be used directly within (8.4) to determine χ .
The results obtained using this simple model are shown by the dashed curves in figure 8,
where we see again that they match smoothly with the results obtained at smaller values
of R using the full differential model.

9. Conclusions

We have extended the mathematical modelling of freezing colloidal suspensions from the
cases of planar interfaces (Peppin et al. 2006; You et al. 2018) to situations in which
mushy layers form comprising segregated ice and unfrozen colloid. It has already been
understood that relative motion in colloidal systems can be determined equivalently by
gradients in particle concentration or gradients in pervadic (pore) pressure (Peppin et al.
2005) with the flux of particles relative to the suspending fluid given by

− D∇φ ≡ φk
μ

∇p, (9.1)

where φ is the volume fraction of particles, D(φ) is the bulk particle diffusivity, k(φ) is the
permeability, μ is the dynamic viscosity of the solvent and p is the pervadic pressure. Key
to our formulation of a continuum model of a colloidal mushy layer was the determination
of the particle flux resulting from regelation so that, within a mushy layer, the particle flux
relative to the frozen solvent (ice) can be expressed as

− D∇φ ≡ φk
μ

∇p ≡ φk
μ

ρL
Tm

∇T, (9.2)

where L is the latent heat of fusion of the solvent and Tm is its absolute melting
temperature. The final equivalence was determined in two complementary ways: by
considering the regelative motion of isolated clusters of particles; by considering local
conservation of particles in a multi-phase (mushy) region and employing the central
relationship between the pervadic pressure, the osmotic pressure and the equilibrium
liquidus temperature for a colloidal system.

Our formulation encompasses behaviour of dilute ionic solutions through to dense
particle suspensions. A cross-over of behaviour was found when the equivalent
hard-sphere radius of the suspended particles or solute was a few tens of nanometres,
given the particular parameter values that we investigated. Constitutional supercooling
is less likely to occur for smaller particles because of higher self-diffusion and for
larger particles because the reduction of self-diffusion leads to consolidation of particles
towards the close-packed fraction causing a larger bulk diffusion and, equivalently, larger
permeability. For given external forcing, mushy layers are most likely to occur for particles
of intermediate size.

The modelling developed in this paper provides a framework for many future studies of
colloidal solidification. In the natural world, examples of transport in colloidal mushy
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layers include frost heave (Rempel et al. 2004; Rempel 2010), subglacial hydrology
(Rempel 2008) and the migration of solid impurities in ice sheets (Marath & Wettlaufer
2020) used to infer past episodes of volcanism. The significant variation in behaviour
relating to particle size that we have illustrated here could lead to a sieving or sorting
behaviour in these systems. In technology, the freezing of colloidal suspensions can be
used to fabricate micro-porous and composite materials, where again sorting by particle
size might be exploited for or, conversely, detrimental to the creation of desired fabrics
(Deville 2013; You et al. 2018). In most systems, whether in the natural world or in
technology, phase behaviour in colloidal suspensions is significantly affected by additional
dissolved solutes (Ginot et al. 2020; Peppin 2020), resulting in ternary or multi-component
systems. The ideal binary system investigated here is illustrative of important phenomena
but will be significantly affected by the presence of other solutes, and so there are
important extensions yet to be explored.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.863.
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