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(e-mail: antti.kaenmaki@jyu.fi, eino.rossi@jyu.fi)
‡ Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

(e-mail: henna.koivusalo@york.ac.uk)

(Received 1 September 2015 and accepted in revised form 22 October 2015)

Abstract. We study tangent sets of strictly self-affine sets in the plane. If a set in this
class satisfies the strong separation condition and projects to a line segment for sufficiently
many directions, then for each generic point there exists a rotation O such that all tangent
sets at that point are either of the form O((R× C) ∩ B(0, 1)), where C is a closed porous
set, or of the form O((`× {0}) ∩ B(0, 1)), where ` is an interval.

1. Introduction
Taking tangents is a standard tool in analysis. Tangents are usually more regular than
the original object and often they capture its local structure. Further, understanding how
tangents behave at many points gives information about the global structure as well.
For example, tangents of a differentiable function are affine maps, and they capture
the full behaviour of the function. Similarly, tangents of measures and sets are useful
in understanding the fine structure of the objects under study, as well as their global
properties.

Tangent measures were introduced by Preiss [29], and they were a crucial ingredient
in connecting densities to rectifiability. It should be noted that for general measures and
sets tangents can be almost anything; see [6–8, 27, 28, 31]. However, under strong enough
regularity assumptions, or when studying the tangents statistically, the tangent structure
can describe the original object well. For example, recently Fraser [11] and Fraser et
al [12] have used tangent sets to study dimensional properties of various fractal sets. This
approach goes back to Mackay and Tyson [26] and Mackay [25]. Furthermore, the process
of taking blow-ups of a measure or a set around a point induces a natural dynamical
system. This makes it possible to apply ergodic-theoretical methods to understand the
statistical behaviour of tangents. The general theory related to this was initiated by
Furstenberg [14, 15]. It was greatly developed by Hochman [17] and recently enhanced
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by Käenmäki et al [22]. This ‘zooming-in’ dynamics has been considered for specific sets
and measures arising from dynamics; see, for example, [3–5, 9, 10, 16, 35]. The theory
has found applications in arithmetics and geometric measure theory; see [18, 21]. Very
recently, Kempton [24] studied the scenery flow of Bernoulli measures on self-affine sets
associated to strictly positive matrices under the condition that projections of the self-affine
measure in typical directions are absolutely continuous.

The main purpose of this paper is to investigate tangent sets of a self-affine set. A
tangent set is a limit in the Hausdorff metric obtained from successive magnifications of
the original set around a given point. These kinds of local structures of fractal sets are
of course interesting in their own right, but on top of that, our effort is motivated by the
presumption that understanding them could provide new methods in the study of self-affine
sets.

Tangent measures of self-similar sets have been given a satisfactory description by
Bandt [1]. He studied tangent measures (and their distribution) of self-similar sets
satisfying the open set condition, showing that almost every point has the same collection
of tangent sets. Intuitively it is plausible that all tangent sets are homothetic copies of the
original self-similar set. For a self-affine set, the expected tangent behaviour is completely
different, and not yet very well understood. Under iteration by affine maps, balls are often
mapped to narrower and narrower ellipses. Thus it is intuitive that, when zooming into a
small ball, the magnification will contain narrow fibres in different directions. The limit
object should hence be contained in a set consisting of long line segments, even if the
original self-affine set is totally disconnected. Bandt and Käenmäki [2] confirmed that this
intuition is correct at least in the special case where all the mappings contract more in the
vertical direction than in the horizontal direction. According to them, under a projection
condition, tangent sets at generic points are product sets of a line and a perfect nowhere
dense set.

In the present article, we generalize the result of Bandt and Käenmäki to a general class
of self-affine sets satisfying the strong separation condition and a projection condition. We
emphasize that we do not need to assume the matrices in the affine iterated function system
to be strictly positive. Therefore, in this sense, our setting is also more general than that of
Kempton. Some questions still remain open. It would be interesting to know when exactly
the tangents of self-affine sets admit this kind of fibred tangent structure.

We begin the description of the set-up by defining self-affine sets. Fix m ∈ N \ {1} and
for each i ∈ {1, . . . , m} let fi : R2

→ R2 be a contractive map with

fi (x)= Ai x + bi ,

where Ai ∈ R2×2 is an invertible 2× 2 matrix having operator norm strictly less than one,
and bi ∈ R2. The collection { f1, . . . , fm} of affine mappings is an affine iterated function
system, and it gives rise to a self-affine set E , which is the unique compact non-empty set
satisfying

E =
m⋃

i=1

fi (E).

If the matrices Ai are diagonal and the sets fi (E) are sufficiently separated, then the set
E is referred to as a self-affine carpet. For example, if the strong separation condition is
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satisfied, that is, fi (E) ∩ f j (E)= ∅ for i 6= j , then there is a one-to-one correspondence
between a point x ∈ E and its address: the canonical projection π : {1, . . . , m}N→ E
defined by

π(i1, i2, . . .)=

∞∑
n=1

Ai1 · · · Ain−1bin (1.1)

is bijective.
It is clear that general results concerning tangent sets cannot be obtained for all points.

Therefore we restrict our analysis to points which are generic with respect to Bernoulli
measures. This is a natural class of measures to consider, since often the measure with
maximal dimension is Bernoulli. It should be noted that a Bernoulli measure νp, defined
to be the product of a given probability vector p = (p1, . . . , pm), is not a measure on
E but on {1, . . . , m}N. Thus, precisely speaking, we consider generic points on E with
respect to the pushforward measure πνp. But when the canonical projection is bijective
we interpret νp as a measure on E .

Here we shall only state an informal version of our main theorem, as some of the
assumptions are too technical to be presented in the introduction. A precise formulation of
the theorem can be found in Theorem 3.1. We refer the reader to Remarks 3.2 and 3.3 for
sufficient and checkable conditions for the assumptions. Definitions of a tangent set and
porosity are given in §2.3. Lyapunov exponents will be defined in §2.2; notice that their
values depend on the Bernoulli measure. The closed unit ball is denoted by B(0, 1).

INFORMAL VERSION OF THEOREM 3.1. If a self-affine set E:
(1) satisfies the strong separation condition;
(2) projects to a line segment for sufficiently many directions;
(3) has two distinct Lyapunov exponents,
then for νp-almost every x ∈ E there exists a rotation O such that the tangent sets at x are
either of the form O((R× C) ∩ B(0, 1)), where C is a closed porous set, or of the form
O((`× {0}) ∩ B(0, 1)), where ` is an interval containing at least one of the intervals
[−1, 0] and [0, 1].

It is reasonable to assume the strong separation condition since the geometry of the limit
set for an overlapping iterated function system can differ hugely from the non-overlapping
case. Further, the projection condition (2) is necessary for the claim in this form to hold;
see Example 4.5. The assumption on two distinct Lyapunov exponents guarantees that the
system is ‘strictly affine’ – this kind of assumption does not seem too restrictive since the
expected behaviour in the self-similar case is so different than the self-affine case. There
could of course be a general theorem covering a wider class of iterated function systems,
but even to guess at the statement of such a theorem seems very difficult.

Let us now compare the assumptions of this result to the setting of Bandt and
Käenmäki [2]. They considered self-affine carpets on [0, 1]2 for which all the maps
of iterated function systems contract more vertically than horizontally. They required
the rectangular strong separation condition and also assumed that the projection of the
carpet onto the x-axis is the whole interval [0, 1]. Our assumptions (1)–(3) resemble their
assumptions, but we can handle more general self-affine sets. In fact, our main result,
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Theorem 3.1, contains the self-affine carpets as a special case, regardless of whether there
is a geometrically dominant contraction direction or not. For a discussion on this and other
examples, see §4. To finish with a concrete statement, we formulate a corollary which
strictly generalizes the main result of [2]. The proof is given in §4.

COROLLARY 1.1. Suppose that { f1, . . . , fm} is an affine iterated function system defined
on [0, 1]2 such that the linear part of fi is the diagonal matrix diag(hi , vi ) with 0<
hi , vi < 1 for all i ∈ {1, . . . , m} and
(1) fi ([0, 1]2) ∩ f j ([0, 1]2)= ∅ for i 6= j ;
(2) #{i ∈ {1, . . . , m} : {c} × [0, 1] ∩ fi ([0, 1]2) 6= ∅} ≥ 2 for all c ∈ [0, 1];
(3) −

∑m
i=1νp( fi ([0, 1]2)) log hi <−

∑m
i=1νp( fi ([0, 1]2)) log vi .

Then the tangent sets at νp-almost every point of the associated self-affine carpet E are of
the form (R× C) ∩ B(0, 1), where C is a perfect porous set.

2. Preliminaries
In this section and throughout the paper, the affine iterated function system { f1, . . . , fm}

and hence the self-affine set E remain fixed. Further, νp is the Bernoulli measure
corresponding to a probability vector p = (p1, . . . , pm). We let p =maxi∈{1,...,m} pi and
p =mini∈{1,...,m} pi .

2.1. Symbolic space. We begin by presenting the symbolic representation of points in
E . Let I = {1, . . . , m} be the collection of letters. Define IN to be the collection of
infinite words {1, . . . , m}N and I k to be the set of finite words {1, . . . , m}k for all k. The
empty word is denoted by ∅. Let I ∗ =

⋃
∞

k=0 I k and denote by proportional font letters
i, j, a, u and so on the finite or infinite words. For a finite word i, define the cylinder

[i] = {j ∈ IN : j||i| = i},

where j|k are the first k letters of j and |i| is the length of the word i. We say that finite
words i and j are incomparable, i⊥ j, if [i] ∩ [j] = ∅. Denote by i( j) the j th letter
in i. For any finite word i, write Ai = Ai(1) · · · Ai(|i|) and fi = fi(1) ◦ · · · ◦ fi(|i|).
We refer to the images fi(E) as level |i| construction cylinders and denote them by Ei.
Notice that Ei = π([i]), where π is the canonical projection defined in (1.1).

2.2. Orientation of construction cylinders. In this subsection, we study the orientation
of the construction cylinders Ei. In particular, in Lemma 2.1 we prove that they converge
almost everywhere. This is a version of the Oseledets theorem; see [33, Theorem 10.2]
or [30]. For the convenience of the reader, and since the statement does not seem to appear
in the right form in the literature, we present a full proof.

Let us now make the above more precise. For each i ∈ I ∗ and k ∈ {1, 2}, let ηk(i) ∈
S1
= {x ∈ R2

: |x | = 1} be the eigenvectors of AT
i Ai with eigenvalues α2

k (i) ordered so
that α1(i)≥ α2(i). We call ηk(i) the singular vectors, or singular directions, of Ai and
αk(i) the singular values of Ai. From basic linear algebra it follows that

α1(i)= ‖Aiη1(i)‖ =max
v∈S1
‖Aiv‖ and α2(i)= ‖Aiη2(i)‖ = min

v∈S1
‖Aiv‖.
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Furthermore, if α1(i) > α2(i) we see that η1(i) is orthogonal to η2(i) and Aiη1(i) is
orthogonal to Aiη2(i). The numbers α1(i) and α2(i) are the lengths of the principal
semiaxes of the image of the unit ball fi(B(0, 1)). We write α =mini∈{1,...,m} α2(i) and
α =maxi∈{1,...,m} α1(i). Since the matrices Ai are invertible contractions we have 0< α ≤
α < 1.

Note that when α1(i)= α2(i), the eigenspace of AT
i Ai is the whole of R2. In this case,

we can choose η1(i) and η2(i) to be any orthogonal vectors. Also when α1(i) > α2(i),
the sign of ηk(i) can be chosen freely. This will not make a significant difference in what
follows. For each k ∈ {1, 2} and all finite words i, let

ϑk(i)=
Aiηk(i)

‖Aiηk(i)‖
.

The pair (ϑ1(i), ϑ2(i)) gives the directions of the principal semiaxes of the ellipse
fi(B(0, 1)), and hence the ‘orientation’ of the construction cylinders Ei.

For each k ∈ {1, 2} and i ∈ IN, we define a sequence by setting

λk(i|n)=−
1
n

log αk(i|n). (2.1)

Due to the subadditive ergodic theorem (see [33, Theorem 10.1] or [30]), the Lyapunov
exponents λk(i)= limn→∞ λk(i|n) exist for νp-almost all i ∈ IN and for all k ∈ {1, 2}.
Moreover, since Bernoulli measures are ergodic (see, for example, [20, Theorem 3.7])
there exists a constant λk such that λk(i)= λk for νp-almost all i ∈ IN and for all k ∈
{1, 2}. Note that we always have λ2 ≥ λ1.

LEMMA 2.1. If λ2 > λ1, then for each k ∈ {1, 2} and for νp-almost every i ∈ IN there
exists ϑk(i) ∈ S1 such that ϑk(i|n)→ ϑk(i) as n→∞.

Proof. First we notice that ϑk(i|n) are the singular directions of AT
i|n

. This is true, since

Ai|n AT
i|nϑk(i|n)= Ai|n

AT
i|n

Ai|nηk(i|n)

‖Ai|nηk(i|n)‖
= αk(i|n)

2 Ai|nηk(i|n)

‖Ai|nηk(i|n)‖
= αk(i|n)

2ϑk(i|n).

By the orthogonality of ϑ1(i|n) and ϑ2(i|n), it suffices to show the convergence in the case
k = 2. For each n ∈ N, let θn denote the angle between ϑ2(i|n) and ϑ2(i|n+1). We prove
that (θn) is a Cauchy sequence. This yields the existence of the limit. Since ϑ1(i|n+1) and
ϑ2(i|n+1) are orthogonal for all n, we can write

ϑ2(i|n)= sin(θn)ϑ1(i|n+1)+ cos(θn)ϑ2(i|n+1).

Note that, by changing the sign if necessary, we can always choose ϑ2(i|n) and ϑ2(i|n+1)

so that −π/2≤ θn ≤ π/2. Now we have

‖AT
i|n+1

ϑ2(i|n)‖ = ‖AT
i|n+1

sin(θn)ϑ1(i|n+1)+ AT
i|n+1

cos(θn)ϑ2(i|n+1)‖

≥ ‖AT
i|n+1

sin(θn)ϑ1(i|n+1)‖ = |sin(θn)|α1(i|n+1)

≥ |sin(θn)|αα1(i|n)

and

‖AT
i|n+1

ϑ2(i|n)‖ = ‖AT
i(n+1)A

T
i|nϑ2(i|n)‖ ≤ α1(i(n + 1))‖AT

i|nϑ2(i|n)‖ ≤ αα2(i|n).
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To prove the claim, we show that
∑
∞

n=1 |θn| converges by applying the root test. Since we
have |sin(θn)| ≤ (α/α)α2(i|n)/α1(i|n), it suffices to show that

lim sup
n→∞

n
√
α2(i|n)/α1(i|n) < 1.

This is equivalent to lim infn→∞ −(1/n) log α2(i|n)/α1(i|n) > 0, which is true by our
assumption λ2 > λ1. �

Remark 2.2. It should be remarked that in the Oseledets theorem, compared to the setting
of the iterated function systems, the matrices are iterated in the reverse order. This is why
Lemma 2.1 gives the convergence of the images of the singular directions, ϑk(i|n), while
the Oseledets theorem concerns the singular directions ηk(i|n).

The following example shows that in our setting, we cannot expect the convergence of
the singular directions in a set of positive measure. Let {Ai x + bi }i∈I be an affine iterated
function system. Suppose that for some j ∈ I ∗ there exists 0< α < 1 such that Aj = αR,
where R is a rotation of angle θ 6= π . Let µ be an ergodic measure on IN so that λ2 > λ1

and µ[j]> 0. For any i ∈ I ∗ the direction η1(i) differs from η1(ij) exactly by angle
θ . From [23, Lemma 2.3] we see that the set where j occurs infinitely often is of full
measure, so the set where η1(i|n) converges is of measure zero.

2.3. Zooming and patterns. For i ∈ IN and 0< t < 1, let n = n(π(i), t) be the largest
integer for which the closed ball B(π(i), t) only intersects one level n construction
cylinder Ei|n . The existence of such n is guaranteed by the strong separation condition.
For reasons that will soon become apparent, this is called the construction level of the
zoom. It is easy to see that n(π(i), t) increases as t decreases to zero. We also abbreviate
n(π(i), t) by n(i, t) and i|n(i,t) by i|t .

For any vector w ∈ R2
\ {0}, let projw be the orthogonal projection onto the line

{tw : t ∈ R}. Let j ∈ I ∗. We use hi|t (j) to denote the diameter of the projection
projϑ1(i|t )(Ei|tj). Similarly, vi|t (j) is used to denote the diameter of projϑ2(i|t )(Ei|tj). In
the course of the proofs the construction cylinders will typically be written in the singular
basis (ϑ1(i|t ), ϑ2(i|t )), turning the directions ϑ1(i|t ) and ϑ2(i|t ) horizontal and vertical,
respectively, which is what the symbols h and v stand for.

Notice that the construction cylinder Ei|tj is included in a closed rectangle with sides
parallel to ϑ1(i|t ) and ϑ2(i|t ) and of side lengths hi|t (j) and vi|t (j); see Figure 1. This
construction rectangle is denoted by Ri|t (j). For the empty word ∅ we use the notation
Ri|t . The next lemma highlights the relationship between the side lengths of Ri|t (j) and
the singular values of Ai|t .

LEMMA 2.3. If the self-affine set E is not contained in a line, then there is a constant
L ∈ N such that

L−1α1(i|t )α
|j|
≤ hi|t (j) and vi|t (j)≤ α2(i|t )α

|j|L

for all i ∈ IN, j ∈ I ∗, and t > 0.

Proof. Since E is compact and is not contained in any line, there exist a number L ∈ N and
balls B(x, L) and B(y, L−1) such that E is included in B(x, L) and B(y, L−1) is included

https://doi.org/10.1017/etds.2015.130 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.130


Self-affine sets with fibred tangents 1921

FIGURE 1. The construction rectangle Ri|t (j). picture. For illustrative purposes, the construction cylinders
have been replaced by ellipses.

in the convex hull of E . Therefore we have hi|t (j)≥ L−1α1(i|tj)≥ L−1α1(i|t )α|j| and
vi|t (j)≤ Lα2(i|tj)≤ Lα2(i|t )α

|j| as claimed. �

Fix x ∈ E and t > 0. We define the t-screen at x to be the closed ball B(x, t) and the
zoom function Zx,t : B(x, t)→ B(0, 1) by setting

Zx,t (y)=
y − x

t
.

Then we define the scenery Nx,t around x at scale t by setting Nx,t = Zx,t (E ∩ B(x, t)).
We consider distances of compact subsets of R2 in terms of the Hausdorff metric dH .
The notation dist is used for distances between points, or points and compact sets, in the
Euclidean metric. Any limit of the sequence (Nx,tn ), where tn ↓ 0, is called a tangent set
of E at a point x . We call a subset S ⊂ B(0, 1) an ε-pattern, if

S =
(
R×

l⋃
i=1

Ii

)
∩ B(0, 1),

where Ii are intervals of length less than ε for all i ∈ {1, . . . , l}. We emphasize that these
intervals are not assumed to be disjoint. Our goal is to study ε-patterns coming from
the construction rectangles – even though the cylinders Ei are disjoint, the construction
rectangles might overlap.

Fix i ∈ IN and let B(i, t)= B(π(i), t). Since the directions ϑk(i) can differ for
different i, we zoom into the set by applying, at each step, an appropriate rotation. To
make this precise, consider the set in the singular basis, and define the rotated screen Mi,t

by setting
Mi,t =Oi,t (Zπ(i),t (B(i, t) ∩ E))=Oi,t (Nπ(i),t ).

Here Oi,t is the rotation that takes the singular basis (ϑ1(i|t ), ϑ2(i|t )) to the standard
basis of R2. Thus Mi,t is the intersection of the set E with a small ball around the point
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π(i), scaled up to fill the whole unit ball, and turned around until ϑ1(i|t ) is horizontal.
We also define the approximative sceneries P K

i,t for all K ∈ N as

P K
i,t =Oi,t

(
Zπ(i),t

(
B(i, t) ∩

( ⋃
j∈R(i,t,K )

Ri|t (j)
)))

,

where R(i, t, K )= {j ∈ I K
: B(i, t) ∩ Ei|tj 6= ∅}. Thus P K

i,t tells us the level K
approximation of the set around π(i) in the singular basis, after we have first zoomed into
the scale t . Note that both Mi,t and P K

i,t are subsets of B(0, 1). We say that T ⊂ B(0, 1)
is a modified tangent of E at π(i) if there exists a sequence tn ↓ 0 such that Mi,tn → T .

A set A ⊂ R2 is porous if there exists 0< α ≤ 1 such that for every x ∈ A and 0<
r < diam(A) there is a point y ∈ A for which B(y, αr)⊂ B(x, r) \ A. We remark that a
more precise name for this porosity condition is uniform lower porosity. It is well known
that porous sets have zero Lebesgue measure; see, for example, [19, Proposition 3.4].
Therefore a closed porous set is nowhere dense. Any ‘fat’ Cantor set serves as an example
of a closed nowhere dense set which is not porous.

LEMMA 2.4. If T is a modified tangent of the self-affine set E, then T is closed and porous.

Proof. By [34], the set E is porous and thus, by [8, Proposition 5.6], any tangent set is also
porous. Since this remains true also for modified tangent sets, the proof is complete. �

Lemma 2.1 says that the rotations Oi,t converge for almost every i ∈ IN. Therefore
there is a correspondence between tangents and modified tangents in our setting. Thus all
results obtained for modified tangent sets are valid for tangent sets and vice versa. In what
follows, we mostly consider modified tangents because it is convenient to have a fixed
orientation of the construction rectangles.

2.4. Idea of the proof. The idea of the proof is to show that at almost every point of E ,
at all small scales, the approximative sceneries are ε-patterns; see Lemma 3.6. In this we
are following Bandt and Käenmäki [2]. In their situation all of the construction rectangles
are uniformly flat in the vertical direction, but in our case it is not immediately clear what
‘vertical’ even means, and flatness of the construction rectangles is not guaranteed in any
direction. To deal with this difficulty, we first let the screen rotate according to the singular
basis with the construction level of the zoom, turning the construction rectangles so that
they are flat in a controllable way in the rotated basis.

On the other hand, to make sure that the construction rectangles are flat enough in the
vertical direction of the singular basis, we prove in Lemmas 2.5 and 3.5 that there is a set
of large measure so that the construction rectangles for points in this set are long in the
horizontal direction and narrow in the vertical direction. Lemma 2.5 is proved below but
Lemma 3.5 is postponed to the next section, as it requires some more definitions.

To make use of Lemma 3.6, we show in Lemma 3.7 that the approximative sceneries
get close to the rotated screens and thus can be used to approximate the modified tangent
sets. Here we do not know whether the rectangles in the approximative sceneries overlap
or not, but this in not a problem, since by recalling Lemma 2.4, we can deduce that the
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horizontal projection C of the modified tangent set is porous. Finally, we use Lemma 2.1
to transfer the result to the original tangent sets of E .

LEMMA 2.5. If λ1 < θ < γ < λ2, then for all % > 0 there is a set E% with νp(E%)≥ 1− %
such that the following two conditions are satisfied.
(1) There are numbers a = a(γ, θ) > 1 and N (%) ∈ N such that, for all i ∈ E% and

n ≥ N (%), we have α1(i|n) > anα2(i|n).
(2) For all D ∈ N there is N (D) ∈ N such that, for all i ∈ E%, and for all t with

n(i, t)= n, and for the k ∈ N satisfying N (D)k ≤ n < N (D)(k + 1), we have
hi|t (j) > 2Dα2(i|n) for all j ∈ I k .

Proof.
(1) Fix % > 0. By Egorov’s theorem, we find a set E% ⊂ IN with νp(IN \ E%)≤ %

where λ1(i|n) and λ2(i|n) from (2.1) converge uniformly. Thus we find N = N (%) ∈ N
so that

α1(i|n)≥ e−θn and α2(i|n)≤ e−γ n

for all n ≥ N . Letting a = eγ−θ , we have α1(i|n)/α2(i|n)≥ e(γ−θ)n = an , and the first
claim is proved.

(2) Let L ∈ N be as in Lemma 2.3. Fix D ∈ N and choose N (D)≥ N (%) so that

aN (D)α > 2DL . (2.2)

Let i ∈ E% and t be so small that n := n(i, t)≥ N (D). Fix k ∈ N so that N (D)k ≤ n <
N (D)(k + 1), and let j ∈ I k . Now, by Lemma 2.3 and (1), we have

hi|t (j)≥ α1(i|t )α
k L−1 > anα2(i|t )α

k L−1

≥ α2(i|t )(aN (D)α)k L−1 > 2k Dk Lk−1α2(i|t )≥ 2Dα2(i|t )

as claimed. �

3. Main result
Let us begin by formulating the main theorem of the paper.

THEOREM 3.1. Suppose that { f1, . . . , fm} is an affine iterated function system and E the
associated self-affine set. If
(1) there exists δ > 0 is such that min{dist( fi (E), f j (E)) : i 6= j}> δ; that is, E

satisfies the strong separation condition;
(2) for νp-almost all i ∈ IN there is n0 ∈ N such that for all n ≥ n0 and all j ∈ I ∗, the

projection projϑ(i)(Ei|nj) is a line segment;
(3) the probability vector p = (p1, . . . , pm) is such that the Lyapunov exponents satisfy

λ1 < λ2,
then for νp-almost all x ∈ E the tangent sets at x are either of the form O((R× C) ∩
B(0, 1)), where C is a closed porous set, or of the form O((`× {0}) ∩ B(0, 1)), where `
is an interval containing at least one of the intervals [−1, 0] and [0, 1]. Here O is the
rotation that takes (1, 0) to ϑ1(π

−1(x)).
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Remark 3.2. To verify assumption (3) in Theorem 3.1, it suffices to check that the iterated
function system is pinching and twisting since then assumption (3) follows immediately
from [32, Theorem 1.2]; see also [13]. An affine iterated function system is pinching if for
any constant C > 1 there is a finite word i such that α1(i) > Cα2(i). It is twisting if for
any finite set of vectors {v, w1, . . . , wn} ⊂ R2, there exists a finite word j so that Ajv is
not parallel tow j for any j ∈ {1, . . . , n}. It is worthwhile to remark that, in particular, [32,
Theorem 1.2] applies to any Bernoulli measure obtained from a positive probability vector.

In the carpet case, where the linear part of fi is the diagonal matrix diag(hi , vi ),
assumption (3) is equivalent to

−

m∑
i=1

νp( fi ([0, 1]2)) log hi 6= −

m∑
i=1

νp( fi ([0, 1]2)) log vi . (3.1)

Indeed, by the ergodic theorem, the left-hand side of (3.1) equals limn→∞ (1/n) log hi|n
and the right-hand side equals limn→∞ (1/n) log vi|n for νp-almost all i ∈ IN. Fix
i so that these limits and λ1(i), λ2(i), and ϑ1(i) exist. By Lemma 2.1, ϑk(i|n)
converges to ϑk(i) for both k ∈ {1, 2}. Therefore, for some k ∈ {1, 2}, we have
αk(i|n)= hi|n and α3−k(i|n)= vi|n for all large enough n. This clearly implies that
λk =−

∑m
i=1νp( fi ([0, 1]2)) log hi and λ3−k =−

∑m
i=1νp( fi ([0, 1]2)) log vi .

From the point of view of our theorem, it would be interesting to know if for any
self-affine set there exists a positive probability vector p that gives rise to distinct
Lyapunov exponents. Pinching is definitely a necessary condition for this: having distinct
Lyapunov exponents implies that α1(i|n) gets exponentially larger than α2(i|n) νp-almost
everywhere. Since it is easy to define Bernoulli measures having distinct Lyapunov
exponents on self-affine carpets we see that twisting is not a necessary condition. We
also remark that there exist affine iterated function systems where the mappings are not
similitudes but the Lyapunov exponents coincide for all ergodic measures. For example,
choose mappings that have the same linear part which is a composition of a diagonal
contraction having distinct eigenvalues and a rotation of 90 degrees. Since the second-
level compositions of the mappings are similitudes it is impossible to have λ1 < λ2 for any
ergodic measure.

Remark 3.3. Assumption (2) in Theorem 3.1 is referred to as the projection condition.
It is satisfied, for example, if the projection of the set

⋃m
i=1 fi (X) in any direction is a

line segment, where X is the convex hull of E . To see this, fix a line ` that intersects⋃m
i=1 fi (X). Let j1 be such that ` intersects f j1(X). The crucial observation now is that

the line f −1
j1
(`) intersects

⋃m
i=1 fi (X). If this were not the case, then the line f −1

j1
(`)

would divide the convex hull X into two parts, both of which contain sets fi (X). This
contradicts the assumption. Therefore, if j2 is such that f −1

j1
(`) intersects f j2(X), then we

see that ` intersects f j1 ◦ f j2(X). Continuing in this manner, we find j= ( j1, j2, . . .) ∈
IN such that π(j) ∈ `, which is what we wanted to show.

It is worth noticing that in the carpet case, if (3.1) holds, then it suffices to consider
only one projection: there are exactly two singular directions which are invariant under
all the maps, so that in any case, in order for assumption (2) to hold, it suffices to
consider at most two directions. We may assume that the right-hand side of (3.1) is
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greater than the left-hand side. This guarantees that the horizontal direction is the direction
ϑ1(i) for νp-almost all i ∈ IN. Indeed, notice that for almost all i ∈ IN, eventually
diam(projx (Ri|n )) > diam(projy(Ri|n )), where projx and projy denote the projections
onto the x-axis and y-axis, respectively. This means that for almost all i ∈ IN, eventually
diam(projx (Ri|n ))= α1(i|n). Hence the vector ϑ1(i|n) eventually becomes horizontal.
Observe that it is essential that the projection condition is defined pointwise.

Remark 3.4. Assumptions (1) and (2) of Theorem 3.1 imply that E is not contained in
a line: assume, to the contrary, that E is contained in a line `. Then, for any n, all the
rectangles Ri|n intersect this line. Condition (1) guarantees that E itself cannot be a line
segment. Thus Ei|n is not a line segment. Also, the direction ϑ2(i) is not the direction of
the line ` for any i in a set of full measure, since then the projection onto ϑ1(i)would be a
single point and not a line segment. Thus, for almost all i, the angle between ϑ2(i) and `
is positive, implying that projϑ1(i)

(Ei|nj) is not a line segment, thus giving a contradiction
with assumption (2).

Therefore, since E is not contained in any line, there is a construction level k0 such
that when |i| = k0, no line in any direction intersects all ellipses fi(B), where B is a ball
containing E . Without loss of generality we may assume that k0 = 1, since otherwise we
can consider the iterated function system { fi : i ∈ I k0}. This is not a restriction, since
tangent sets of E only depend on the set E itself and not on the iterated function system
that generates E .

We will now start preparations for the proof of the main result. Working in the setting
of Lemma 2.5, we introduce a sequence of lemmas gradually converging to the proof. Fix
% > 0 and let E% be as in Lemma 2.5. Furthermore, let K ∈ N and denote

ε(K )= Lδ−1αK ,

where L is as in Lemma 2.3 and δ > 0 as in assumption (1) of Theorem 3.1.

LEMMA 3.5. Under the assumptions of Theorem 3.1, for every K ∈ N there exists t0 > 0
such that vi|t (j)≤ tε(K ) for all t < t0, i ∈ E%, and j ∈ I K .

Proof. The t-screen B(π(i), t) intersects at least two level n(i, t)+ 1 construction
cylinders, and by assumption (1) of Theorem 3.1, we have the estimate t ≥ α2(i|t )δ ≥
αn(i,t)δ, where δ is as in that assumption. This shows that we have a uniform lower bound
for n(i, t) that increases as t decreases. Take t0 > 0 so small that, for all t < t0, it is the
case that n(i, t) > K for all i ∈ IN. By Lemma 2.3, we then have

vi|t (j)≤ α2(i|t )α
K L ≤ tδ−1αK L = tε(K )

as claimed. �

As described in §2.4, we want to investigate the size of the set of points for which
the approximative scenery is not an ε(K )-pattern. For technical reasons we consider the
following sets. For every D > 0 and K , n ∈ N we define

An,K (D)= {i ∈ E% : there is t such that n(i, t)= n,

Dα2(i|n) > t, and P K
i,t is not an ε(K )-pattern},

and let BK (D)= lim supn→∞ An,K (D).

https://doi.org/10.1017/etds.2015.130 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.130
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In the following two lemmas, the reader should bear in mind that while the strong
separation condition guarantees the construction cylinders to be disjoint, the corresponding
construction rectangles may overlap. This is not a problem since, for example, the proof
of the following lemma concerns only the number of certain vertical edges. Recall also
that the choice of n(i, t) guarantees that the screen B(π(i), t) contains points only from
one level n construction cylinder.

LEMMA 3.6. Under the assumptions of Theorem 3.1, we have νp(BK (D))= 0 for all
D > 0 and K ∈ N.

Proof. Fix D and K , and let N (D) be as in Lemma 2.5. Our plan is to prove that
∞∑

n=1

νp(An,K (D)) <∞

since then the claim follows from the Borel–Cantelli lemma. To that end, we estimate the
measure of the sets An,K (D).

We will cover the set An,K (D) by construction cylinders corresponding to forbidden
words which will be defined shortly. Throughout, we are considering the situation in the
singular basis and thus, we shall refer to the directions ϑ1(i|n) and ϑ2(i|n) as horizontal
and vertical, respectively. This should not be a cause of confusion, as the basis in use is
clear from the context. The forbidden words are defined in the following way: for any
k ∈ N and |i| = n with N (D)k ≤ n < N (D)(k + 1) the word ij is n-forbidden, if |j| = k
and Ri(j) intersects any of the vertical line segments {c} × R where

c ∈ {e ± Dα2(i) : e is an x coordinate of any of the 2mK

vertical edges of the rectangles Ri(a) with a ∈ I K
}.

Now fix a point x = π(u) ∈ π(An,K (D)). Then there is t such that n(x, t)= n and P K
u,t is

not an ε(K )-pattern. By Lemma 3.5, for each |a| = K , the rectangles Ru|n (a) have height
at most ε(K )t . Thus the only way the approximative scenery P K

u,t around x is not an ε(K )-
pattern is if some endpoint of a rectangle is in the t-screen B(x, t). More precisely, this
means that within distance t from x in the horizontal direction, there is an endpoint of a
rectangle from level n + K . By Lemma 2.5(2) and the definition of An,K (D),

hu|n (u(n + 1), . . . , u(n + k)) > 2Dα2(u|n) > Dα2(u|n) > t,

so that in this case the rectangle Ru|n (u(n + 1), . . . , u(n + k)) necessarily intersects one
of the forbidden line segments and hence u|n+k is an n-forbidden word. (See Figure 2.) By
this argument, we see that π(An,K (D)) is covered by n-forbidden rectangles, as claimed.

Now, let i ∈ I n . By Remark 3.4, no line in any direction in the rectangle Ri intersects
all the sub-rectangles Ri( j) of level n + 1. Therefore, the relative total mass of the sub-
rectangles Ri( j) that the line intersects in the vertical direction is at most 1− p. By the
self-affinity and properties of the Bernoulli measures, we see that the relative total mass
of the level n + 2 sub-rectangles, which the vertical line intersects, is at most (1− p)2.
Iterating this, and noticing that there are 4mK forbidden line segments, we get that

νp(An,K (D))≤
∑

ij is n-forbidden

νp(Eij)≤
∑
i∈I n

νp(Ei)(1− p)k4mK
= (1− p)k4mK

(3.2)
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FIGURE 2. The point x belongs to a forbidden rectangle because within distance t away in the horizontal direction
an endpoint a of level n + K construction rectangle Ri|t (a) appears.

FIGURE 3. The possible positions of x in the proof of Lemma 3.7.

for N (D)k ≤ n < N (D)(k + 1). Thus
∞∑

n=1

νp(An,K (D))≤
N (D)−1∑

n=1

νp(An,K (D))+ N (D)
(1− p)4mK

1− (1− p)
<∞,

finishing the proof. �

LEMMA 3.7. Under the assumptions of Theorem 3.1, for every K ∈ N and for almost every
i ∈ E% there exists t0 > 0 such that dH (P K

i,t , Mi,t ) < 5
√
ε(K ) for all 0< t < t0.

Proof. Let i ∈ IN be generic in the sense that ϑ1(i) from Lemma 2.1 exists. Now t0 > 0
is determined from n0 of assumption (2) in Theorem 3.1 and from Lemmas 2.1 and 3.5 so
that, for all 0< t < t0 and j ∈ I ∗, the projection projϑ(i)(Ei|tj) is a line segment, ϑ1(i|t )

is close to ϑ1(i), and the height of Ri(j) is at most ε(K ) for all j ∈ I K . Notice that
Mi,t ⊂ P K

i,t . Fix a point x ∈ P K
i,t and let j ∈ I K be such that x ∈Oi,tZπ(i),t Ri|t (j). We

now wish to prove that within 5
√
ε(K ) away from x there is a point y ∈ Mi,t . The study

divides into three separate cases; see Figure 3.
If x is far from the boundary of the screen, we can find the point y on the line `

crossing through Z−1
π(i),t (x) in direction ϑ2(i). Assume that x ∈ B(0, 1− 2ε(K )), say,
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and denote by θ the angle between ϑ1(i) and ϑ2(i|t ). By Lemma 2.1, we may assume
that sin(θ)≥ 1/2. By assumption (2) of Theorem 3.1, there exists z ∈ ` ∩ Ei|tj, as the
projection projϑ1(i)

(Ei|tj) is connected. By Lemma 3.5, we get that vi|t (j)≤ tε(K ).
Thus dist(Z−1

π(i),t (x), z)≤ 2tε(K ), and so z ∈ B(π(i), t) by the triangle inequality. When
zooming out, we get dist(x, y)≤ 2ε(K ) for the point y = Zπ(i),t (z) ∈ Mi,t .

If x is very close to the boundary of the screen, it is possible that the above reasoning
gives a point y which is not inside the screen. These points need to be dealt with
differently. Consider first the case Oi,tZπ(i),t Ri|t (j) ∩ B(0, 1− 2ε(K ))= ∅. Let y ∈
Mi,t ∩Oi,tZπ(i),t Ri|t (j) be arbitrary – such a point exists by the definition of P K

i,t . By
estimating the length of line segments contained in the annulus B(0, 1) \ B(0, 1− 2ε(K )),
we can bound the horizontal distance between x and y by 4

√
ε(K ). Thus dist(x, y)≤

4
√
ε(K )+ ε(K ).
To conclude, let x 6∈ B(0, 1− 2ε(K )) but assume that Oi,tZπ(i),t Ri|t (j) ∩ B(0, 1−

2ε(K )) 6= ∅. Then there is a point x ′ ∈ B(0, 1− 2ε(K )) such that, as for x and y above,
dist(x, x ′)≤ 2

√
ε(K ). For this x ′ we find y ∈ Mi,t as in the first case, with dist(x ′, y)≤

2ε(K ). Thus dist(x, y)≤ 2
√
ε(K )+ 2ε(K ). Since ε(K )≤

√
ε(K ), the proof is complete.

�

We now combine the above lemmas to prove Lemma 3.8. We will then be in a position
to prove the main theorem.

LEMMA 3.8. Under the assumptions of Theorem 3.1, for νp-almost all i ∈ E%, the
modified tangent sets at π(i) are either of the form (R× C) ∩ B(0, 1), where C is a
closed porous set, or of the form (`× {0}) ∩ B(0, 1), where ` is an interval containing at
least one of the intervals [−1, 0] and [0, 1].

Proof. Recall that by Lemma 3.6, the set B(M)=
⋃
∞

K=0 BK (M) has zero measure for all
M ∈ N. Fix a point i ∈ E% \

⋃
∞

M=1 B(M), and a modified tangent set T = limk→∞ Mi,tk
at x = π(i). We assume that i is generic, in the sense that ϑ1(i) from Lemma 2.1 exists.

Now, there are two options. Either

lim
k→∞

α2(i|n(i,tk ))

tk
= 0, (3.3)

or there exist D > 0 and infinitely many k such that

α2(i|n(i,tk ))

tk
>

1
D
. (3.4)

We will first consider the situation where (3.3) holds. For the time being, fix t > 0
and the corresponding n = n(i, t) so that n − 1≥ n0, where n0 is as in assumption (2) of
Theorem 3.1, and assume that both endings of the construction rectangle Ri|n can be seen
in the screen. It might be that one of the endings of projϑ1(i)

(Ei|n ) is at the end of the line
segment projϑ1(i)

(Ei|n−1), but not both of them. Thus, by assumption (2) of Theorem 3.1,
for at least one of the endpoints of Ri|n , a line ` in the direction ϑ2(i) through the endpoint
necessarily also intersects another cylinder Ei|n−1 j for some j ∈ {1, . . . , m}. This is the
case, since otherwise there is a hole in the projection of Ei|n−1 onto the line in direction
ϑ1(i).
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Let d denote the distance from x to that ending of the rectangle Ri|n and let e denote the
distance between Ei|n and Ei|n−1 j along the line `. Notice that e is bounded from above
by vi|n−1/ cos θn , where θn is the angle between ϑ2(i|n−1) and ϑ2(i). By Lemma 2.1,
taking t small enough, we may assume that cos θn ≥ 1/2, and hence e ≤ 2vi|n−1 . We want
to show that d/t→ 1 as t→ 0. Assume that this is not the case, that is, d < ct for some
c < 1. Then, since the screen B(x, t) intersects only the cylinder Ei|n , using Lemma 2.3,

t ≤ dist(x, Ei|n−1 j )≤ d + vi|n + e ≤ ct + vi|n + 2vi|n−1 ≤ ct + L(1+ 2α)α2(i|n).

This gives t ≤ Cα2(i|n) for some absolute constant C > 0. Thus, for all small t ,

α2(i|n(i,t))

t
> 0.

These observations mean that if (3.3) holds, then either both endings of the construction
rectangle Ri|tk can be seen in the screen for only finitely many k, or at least one of the
endpoints of the rectangles reaches the boundary of the screen B(x, tk) in the limit.

In the latter case, using Lemma 2.3, P0
x,t consists of a strip with height converging to

zero. By the argument of Lemma 3.7 and compactness, the modified tangent set T is
a horizontal line segment, containing at least one of the line segments [1, 0] × {0} and
[−1, 0] × {0}.

Assume now that at most one of the endings is seen in the screen, apart from perhaps
finitely many (tk). Since there are only two endings, there is a sub-sequence of (tk) such
that, along that sub-sequence, either the left or the right endpoint is never in the screen, and
we can use the argument from the previous paragraph to deduce the same claim. Notice
that because the limit set T exists, it is unique, and thus it suffices to prove the convergence
along a sub-sequence.

Let us then assume that (3.4) holds, that is, Dα2(i|tk ) > tk along a sub-sequence which
we continue to denote by (tk). Let M be an integer with M ≥ D and notice that i /∈ B(M).
Fix K , and notice that also i /∈ BK (M), so that i ∈ An,K (M) for at most finitely many
n ∈ N.

For all k it is the case that Mα2(i|tk )≥ Dα2(i|tk ) > tk , so that if there are only finitely
many k such that P K

i,tk would be an ε(K )-pattern, then x ∈ An(x,tk ),K (M) for infinitely
many k. Since tk→ 0 implies n(x, tk)→∞, this gives infinitely many An,K , which
cannot be the case. Hence for all K there is a tK such that P K

i,tK
is an ε(K )-pattern and

that Lemma 3.7 holds. Since there is a sequence of ε-patterns converging to the modified
tangent set T , it must be of the form (R× C) ∩ B(0, 1) for some set C ⊂ [−1, 1]. Since,
by Lemma 2.4, T is closed and porous in B(0, 1), the same must hold for C in [−1, 1]. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. So far, in the previous lemmas, we have verified the claims for
almost all points in the set E% having measure at least 1− %. Since the claim of Lemma 3.8
does not depend on %, it actually holds for almost all points in E : if there is an exceptional
set of positive measure, then we can repeat the argument for some % smaller than half the
size of the exceptional set to get a contradiction.

Let us now assume that T is a tangent set of E at x = π(i), along a sequence (tn). By
the above discussion, we may assume that Lemma 3.8 holds at x . By compactness, we find
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a sub-sequence, also denoted by (tn), such that Mi,tn → F along this sub-sequence. By
Lemma 3.8, we know that F is either of the form (R× C) ∩ B(0, 1), where C is a closed
porous set, or of the form (`× {0}) ∩ B(0, 1), where ` is an interval with [−1, 0] ⊂ ` or
[0, 1] ⊂ `. Let O be the rotation taking ϑ1(i) to (1, 0), where ϑ1(i) is from Lemma 2.1.

It suffices to show that T =O−1 F . Since ϑ1(i|tn )→ ϑ1(i), the rotations Oi,tn
converge to O. Let ε > 0 and choose n0 so that dH (OT,Oi,tn T )≤ ε, dH (T, Ni,tn )≤ ε,
and dH (Mi,tn , F)≤ ε for all n ≥ n0. By the triangle inequality, we then have

dH (OT, F)≤ dH (OT,Oi,tn T )+ dH (Oi,tn T, Mi,tn )+ dH (Mi,tn , F)≤ 3ε

which completes the proof.

4. Discussion
We formulated our main theorem by using assumptions as general as possible. In
Remarks 3.2 and 3.3, we provided the reader with sufficient and checkable conditions.
In this section, we continue this discussion by examining the effect of some of the
assumptions and exhibiting examples. We also prove Corollary 1.1.

We say that a subset of the self-affine set A ⊂ E satisfies the line condition, if there
exists N ∈ N such that, for all π(i) ∈ A and for all large n, any line in direction ϑ2(i|n−N )

that intersects Ei|n also intersects Ei|n−Nj for some j ∈ I ∗ that satisfies i(n − N + 1) 6=
j(1).

PROPOSITION 4.1. Under the assumptions of Theorem 3.1, if for all % > 0 there is a subset
E% ⊂ E with νp(E%)≥ 1− % satisfying the line condition for some N% ∈ N, then for νp-
almost all x ∈ E the tangent sets are of the form O((R× C) ∩ B(0, 1)), where C is a
closed porous set and O is the rotation taking (0, 1) to ϑ1(π

−1(x)).

Proof. Fix % > 0. By the line condition, there exist a set E% ⊂ E with νp(E%)≥ 1− %
and an integer N% ∈ N, where

α2(i|t )≥min{α2(i) : i ∈ I N% }t

for all small t > 0. This means that option (3.3) in the proof of Lemma 3.8 is impossible
in this set. Hence, a closed porous set is the only possible outcome. Letting % ↓ 0 proves
the claim. �

Remark 4.2. Without the line condition, it is certainly possible that the tangent sets are of
the form O((`× {0}) ∩ B(0, 1)) for a suitable rotation O. For example, consider a self-
affine carpet for which the first-level construction rectangles are horizontally aligned and
disjoint, and their projection onto the x-axis is a line segment but, except for the vertical
edges, no construction rectangle is above another. It is evident that at a generic point the
tangent sets are of the form (`× {0}) ∩ B(0, 1), where ` is an interval containing at least
one of the intervals [−1, 0] and [0, 1].

With Proposition 4.1, we are now in a position to prove Corollary 1.1.

Proof of Corollary 1.1. To apply Proposition 4.1, we have to verify the assumptions of
Theorem 3.1 and check that the line condition holds. Assumption (1) is trivially satisfied
and, by recalling Remark 3.2, condition (3) of Corollary 1.1 implies assumption (3).
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(a) (b) (c) (d)

FIGURE 4. The tangent structure arises as one magnifies deeper and deeper in Example 4.3. Here the point we
zoom upon is (0.453 846, 0.486 659). For illustrative purposes we have used a square screen instead of a circular

one. (a) Scale = 1. (b) Scale = 0.04. (c) Scale = 0.005. (d) Scale = 0.0003.

Moreover, Remark 3.3 guarantees that it suffices to check the projection condition only
onto the horizontal direction. But this is guaranteed by condition (2) of Corollary 1.1
since every line in the vertical direction meets at least two of the first-level construction
rectangles. This also means that the whole set E satisfies the line condition (with N = 1).
Proposition 4.1 thus applies and shows that the tangent sets at almost all points are of the
form (R× C) ∩ B(0, 1), where C is a closed porous set. It remains to prove that C does
not contain any isolated points. Here one can argue in exactly the same way as in the proof
of [2, Theorem 1].

Example 4.3. We exhibit an example for which Proposition 4.1 applies. Let

f1(x)=
(

0.2 0
0 0.4

)
x, f2(x)=

(
0.7 0
0 0.3

)
x +

(
0.3
0

)
,

f3(x)=
(

0.7 0
0 0.2

)
x +

(
0

0.8

)
, f4(x)=

(
0.1 0
0 0.3

)
x +

(
0.4
0.4

)
,

and p = (1/6, 1/3, 1/3, 1/6). See Figure 4(a) for an illustration.
Let us verify the assumptions of Theorem 3.1 and check that the line condition is

satisfied. Looking at Figure 4(a), it is apparent that assumption (1) is satisfied. Verifying
assumption (3) just requires checking that (3.1) holds. For assumption (2) to hold, since
the right-hand side of (3.1) is greater than the left-hand side in this example, we only need
to check that the projection onto the x-axis is a line-segment. This is again clear from
Figure 4(a). It is also clear from the picture that the set Aλ = ([0, 1− λ] × [0, 1]) ∩ E
satisfies the line condition for all λ > 0. Since the Bernoulli measure νp has no atoms, we
see that for each % > 0 there is λ(%) > 0 such that νp(Aλ(%))≥ 1− %.

Therefore, according to Proposition 4.1, for νp-almost every x ∈ E the tangent sets are
of the form (R× C) ∩ B(0, 1), where C is a closed porous set. To perceive this result in
Figure 4, observe how the tangent structure begins to ‘converge’ as we magnify deeper and
deeper into the set E . In Figure 4(a–c), one can see the screen of the next magnification.
Each picture shows four subsequent levels of the construction so that the level n(x, t) is
white and the color gets darker as n increases.

The next example shows that Theorem 3.1 applies also outside the class of self-affine
carpets.
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(a) (b)

FIGURE 5. The first- and second-level images of B(0, 1) inside B(0, 1) for the iterated function system of
Example 4.4.

Example 4.4. Let R1 be the rotation of angle π/2 (counter-clockwise) and set

f1(x)=
(

0.5 0
0 0.05

)
x +

(
0.4
−0.4

)
, f5(x)=

(
0.2 0
0 0.05

)
x +

(
0.8
0

)
,

and fk+i (x)= Ri
1 fk(x) for k ∈ {1, 5} and i ∈ {1, 2, 3}. Finally, let f9(x)= 0.2R2(x),

where R2 is a rotation of angle θ so that π/θ is irrational.
From Figure 5(a) and (b) one sees that the strong separation condition and the condition

given in Remark 3.3, to ensure assumption (2) of Theorem 3.1, are satisfied. When
considering the projection condition, it is helpful to notice that the images of [−1, 1] × {0}
and {0} × [−1, 1] under fi are contained in fi (X), where X is the convex hull of E .
Examining how these images are located in fi (B(0, 1)) helps to verify the condition given
in Remark 3.3. In this reasoning, it is essential that f5, f6, f7, and f8 fix points in the unit
circle. Observe that it is not necessary for the linear parts of f1, . . . , f8 to be diagonal.

To verify assumption (3) of Theorem 3.1, we rely on Remark 3.2 and check that the
iterated function system is pinching and twisting. Given a constant C > 1, consider the
word i with i(n)= 1 for all n ∈ N. Now α1(i|n)= 0.5n and α2(i|n)= 0.05n , so it is
clear that for some large n we have that α1(i|n) > Cα2(i|n). On the other hand, given
a finite set of vectors {v, w1, . . . , wn}, consider the word i with i(n)= 9 for all n ∈ N.
Since π/θ is irrational, the set { fi|n (v)/‖ fi|n (v)‖}

∞

n=1 is dense in S1, and so there exists n
such that fi|n (v) is not parallel to any w ∈ {w1, . . . , wn}. Thus the Lyapunov exponents
are different for any Bernoulli measure.

We finish the discussion by giving an example which shows that assumption (2) in
Theorem 3.1 is necessary.

Example 4.5. Consider the set F = C1/3 × C1/4, where Cλ is the Cantor set constructed
by using the contraction ratio λ. Then F satisfies assumptions (1) and (3) of Theorem 3.1,
with p = (1/4, 1/4, 1/4, 1/4).

Let T be the tangent set of F along a sequence (tn) at a point (x (1), x (2)) ∈ F . Denote
by T1 and T2 the tangent sets of C1/3 and C1/4, at points x (1) and x (2) along the sequence
(tn). (If necessary, take the sub-sequence of (tn) along which these both exist.) Fix ε > 0.
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Denote by Aε the set of points within distance ε from a set A. For notational simplicity,
we interpret Zx,t to be a mapping defined on a square centred at x with side length t . We
use the same symbol Zx,t to denote the corresponding zoom on the real line. Then, for
large enough n,

Zx,tn (Q(x, tn) ∩ F)= Zx,tn (Q(x
(1), tn) ∩ C1/3)× Zx,tn (Q(x

(2), tn) ∩ C1/4)

⊂ (T1)ε × (T2)ε ⊂ (T1 × T2)3ε,

where the first inclusion uses the fact that F is a product set, and the second the definition
of tangent sets. Similarly, for large n,

Zx,tn (Q(x, tn) ∩ F)3ε ⊃ T1 × T2.

This proves that a tangent set at a point of F is a product of tangent sets of C1/3 and C1/4.
By [3], tangent sets of a Cantor set are C1+γ -images of the set itself. This implies that

the tangent sets at points of F are of the form T1 × T2 where T1 and T2 are C1+γ -images
of the Cantor sets. In particular, the claim of Theorem 3.1 does not hold.
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[5] T. Bedford, A. M. Fisher and M. Urbański. The scenery flow for hyperbolic Julia sets. Proc. Lond. Math.
Soc. (3) 85(2) (2002), 467–492.

[6] Z. Buczolich. Micro tangent sets of continuous functions. Math. Bohem. 128(2) (2003), 147–167.
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