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Abstract

This paper establishes an estimate for the asymptotic behaviour of the spectrum of a
direct strain feedback (DSF) control system. The results show that the system operator
corresponding to the closed loop system cannot have an analytic extension and that the
decay rate for the system energy is not proportional to the feedback constant.

1. Introduction

Direct strain feedback (DSF) is used in practise to control the vibration of flexible
arms. It is known for its effectiveness and simplicity of implementation in many
applications (see [2]). However, no rigorous theoretical results were available until
the work of [3]. In [3], it was shown that the closed loop DSF control system is
asymptotically stable. In fact, the DSF can make the system exponentially stable
because it is equivalent to the standard one-end stabilizer system which has been
studied extensively in [1] and [4]. In this paper, we shall establish an estimate for the
asymptotic behaviour of the spectrum for a typical DSF control system. The results
show that the system operator corresponding to the closed loop system cannot have
an analytic extension and that the decay rate for the system energy is not proportional
to the feedback constant. These results may help us to understand qualitatively the
effect of DSF in the control of the vibration of flexible robot arms.

Suppose there is a single-link uniform flexible arm of length t. One end of the arm
is attached to the shaft of a control motor which rotates it in the horizontal plane. Let
y(x, t) denote the bending displacement of the arm at time t and at a distance x from
the base. Then, if the other end of the flexible arm is free, the dynamics of the closed
loop system of bending vibration of the flexible arms with DSF control are known
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(see [3]):

y(0, t) = / (0 , 0 = /'(€, t) = fit, t) = 0,

where k > 0 is the feedback constant. To simplify notation, the ratio of bending
rigidity with the mass density is taken to be 1. Define the operators A and IB in
Jf = L2(0, t) as follows:

A<t>(x) = <T(x),
€ JT |0(O) = 0'(O) = cj>"(i) = <t>'"(l) = 0 } ,

). (2)

Then (1) can be written as the following second order evolution equation in M':

y,,(t, x) + Ay(t, x) + kBy,{t, x) = 0. (3)

The following results are known (see [1,4]).

THEOREM 1. The system (3) admits a unique solution in 34? x Jf

Ajo "I

&h\ J
for any initial condition (y(x,O),y,(x,O)) = (yo(x), y{(x)) e D(A) x D(A*). Fur-
thermore, it satisfies the following uniform exponential decay

| e ^ ' | < Me~°" for some M > 1 andco > 0,

where e**' is the Co-semigroup generated by the system operator

[ 0 A? 1 I" 0

—Â  0 [ '

Theorem 1 is significant, as it indicates that the DSF can make the system exponentially
stable.

2. Spectral analysis

We shall characterize the spectrum of the operator si in the sequel. The following
well-known results about the operator si are used frequently throughout the paper.

https://doi.org/10.1017/S033427000000758X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000758X


88 Bao Zhu Guo [3]

LEMMA 1. (i) A is self-adjoint and positive definite on Jtf and has eigen elements

{(^,0.)}~,;
(ii) kn = ft > 0, fa = o{n), 2 + [exp(A/) + exp(-fai)] cos(fal) = 0;
(Hi) {<pn} forms an orthogonal basis of iff and can be expressed as:

1 + Y 1 - Y<t>n(x) = — exp(fax) — exp(-fax) + y sin(A,x) + cos(#,x),

exp(PJ) - sin(ft£) + cos(/3n£)
V = >• —1 as n —> <x>.

exp(/3€) + sinifiHt) + cos(^£)

oo

x = Y^bn<t>n{x) in
n=\

Then

Since a (#/) consists of only eigenvalues of operator srf, it is easy to show that a
necessary and sufficient condition for k e CT(J^) is that there exists a nonzero element
<(> T̂  0 satisfying the second order eigenvalue problem:

(JC) + <p""(x) + kxkct>"(0) = 0,
0(0) = f (0) = «"(€) = </>'"(£) = 0, K}

or

X20 + A(f> + UB0 = 0, (6)

in operator form. By Theorem 1,

Rek <-co<0. (7)

From Lemma 1 and (7), if (A., <p), <j> / 0, is a solution of (6), then A.2 e p(—A), the
resolvent set of the operator —A. Therefore

({> = -kk(p"(0)(k2 + A)~lx. (8)

On the other hand, by twice integrating (5) from I to x, we obtain

0"(O)(1 + k£) + k2 [ x<t>(x)dx = 0. (9)
J Jo

Substituting (9) into (8), we have

[ I? fe

l+kk—-kki x[(k2 + A)-lx]d
3 Jo

= 0"(O) | 1 + kk f x[A(k2 + A)"1 x)dx = 0.
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So 0 ^ 0 if and only if 1 + kk /„' x[A(k2 + A)~lx]dx = 0. Thus we have proved the
following:

LEMMA 2. A necessary and sufficient condition for (A., <p), </> ^ 0, to be a solution of
(5) is that

Jo
F(k) = 1 + kk I x[A(kz + A)~*x]dx

V*2II* .H 2 = ° . (10)

that is, X is a zero point of the meromorphic function F(k). Meanwhile

(t>(x) = (k2 + Ay1x. (11)

LEMMA 3. Let F(k)andbn,n > 1 be defined as in (10). Thenbn ^ 0 for every n > 1,
and

t$8
where

f(k) = 4 + exp(/X€) + exp(-i kl) + exp(ki) + exp(-Ai),

that is, F(k) = 0 if and only if f(V2k) + §/'(V2l) = 0, {±ift) = {±i*/K}
consists of the poles of the function F(k).

PROOF. Let y(x) = (k2 + A)-1*. Then

( k2y(x) + y""(x) = x,
1 y(0) = / (0 ) = y»(l) = /"(£) = 0.

Taking the inner product with x on both sides of the above equation, we obtain

X2 f Xy(x)dx + y"(0) = ^.
Jo J

Therefore

P fl

F(k) = 1 + kk— - kk3 / xy(x)dx
3 Jo

0) = l+k^-^-, (13)

where g(x) is the solution of

8(0) = g"(Q = g"\t) = 0, g'(0) = - 1 .
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Throughout this paper, we use y/k to denote the positive branch of the complex
function k, that is,

X = pe
ie, -7i < i? < n,

(15)

Now the solution of (14) can be written as

g(x) = a\ exp(Vkix) + a2 exp(—VxLc) + a3 sin(-/kix) + a4 cos(vX7x),

where a,, i = 1, 2, 3,4, are determined by the boundary conditions of (14), that is,

01 0 1
- 1 - 1 0

exp(-Vkll) - sin(VX7 )̂ - c<
a2

0
0

Solving this algebraic equation, we obtain

a4=

We observe that

ii) = [exp(/ Jlii) + exp(-i VAl (16)

±i Lz

Thus

1 - exp(-/

y/2k 4 .

Finally, we obtain the explicit expression of

F{k) =

J [exp(/

k
A

k f'(V2k)
I f(V2k)'
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which is (12). Using a Taylor's expansion, both /(\/2X) and f'(*j2k) are entire
functions of A.. Let \JlX = a + ib. Then it follows that

f(V2X) = 4 + (ebe + e~bt) cosial) + {eal + e'al) cos(W)

+i [(e~M - ebt) sin(ai) + (e"e - e'"1) sin(bl)],

•Jlk
-— f ' (V2k) = -{ebl + e~be) sin(a€) + (eat - e~at) cos(W)

+i [(e-be - eM) cos(ai) + (eat + e~at) si

By (ii) of Lemma 1, it can be easily shown that

= 4 + 2[expO3n£) + exp(^£)] cos(A,£) = 0, (17)

and by (10), we see that {±/ffi} consists of all zeros of f(k). Also {±*'/^} are the{}
poles of F(k). In fact, if / ' (y2(±/0J)) = 0, then

) + exp(-A^)] sin(A€) +

( ^ , ) p ( A O ] ( / n ) [ p ^ ) p ( ^ J ) ] ( ^ ) ] = 0

and hence

or
sin(f}nl) = -2

by (ii) of Lemma 1. Since

we have

which is a contradiction. Thus

I/(A)| + |/'(X)| # 0 (18)

and the proof is complete.

In view of (15), the analytical transformation \flk maps the positive imaginary
axis onto a ray y = {k\Rek = Imk] of the first quadrant and maps the negative
imaginary axis onto a ray y = {k\Rek = —Imk} of the fourth quadrant. Meanwhile,
01 corresponds to kn — e'^{}„ on y and — /J2 to kn = e^fa, respectively.

Our main result is the following.
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THEOREM 2. There is an infinite number of eigenvalues {/xn, /An}~ to (6). Further-
more, they posses the following asymptotic property :

where /2n is the conjecture of fin, and 6n is the circle with center at iy/ki,and radius
2k/1.

PROOF. From (12) and the previous discussion, let us investigate the values of

2f'(k)/(kf(k)) near kn and kn. By the conjugation relation

2f'(k)/(kf(k)) = 2f'(k)/(kf(k)),

it suffices to consider only such X located in the first quadrant (see Figure 1 below).
hetk = a + bi. Then

/(A.) = 4 + (ebl + e~M) cos(al) + {eat + e~al) cos(M)

+i [(e~u - ebl) sin(a^) + (eat - e~at) sin(M)],

/'(A.) = - ( e " + e-"e) sin(a£) + (eat - e~al) cos(W)

+i [(«"" - ebt) cos(al) + (eat + e~at) si

Since /(A.) is symmetric about a and b, it is sufficient to consider only the case of
b > a.

Now for a sufficiently small p > 0 and for every integer n, take £?„ to be the circle
with center at kn and radius p such that 6n D £?m = 0 if n ^ m (Figure 1). This is
possible because A.n = o(n).
Let k = a + b € Tn {b > a), the circumference of circle ^ n , that is,

& = /8n +psinO, n/4 <6 < n/4 + n.

Then

M = 4e~M + (1 + e"2*^ cos(a£) + (e(a-ft)< + g-(a+W>) cos(W)
(e("-b)t - e-

{a+b)t) sin(bi)]

cos(M) + i [ - sin(a£) + e(a-fc)' si

+ e - w [4 + e~bt cos(at) + e~at cos(bl) + i[(e~bt sin(a£) - e~at

ebtf'(k) = - sin(a€) + e(a~b)t cos(M) + i [- cos(a£)

+ «-"[-«-" sin(a£) - e""' cos(W) + i[(g-
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FIGURE 1. The region enclosed by circles with center at ~\n and radius p.

and hence

/(A.) +exp(2(a -

1 +exp(2(a -b)t) -2exp((a -

Furthermore,

1 + exp(2(a -

1 +exp(2(a -

2exp((a - &)€) cos((a

M

- 128e"M

- cos(p(cos0

+ 2exp(/o(cos6» - sin<9)£)[[cos(2A,£) + I]cos(p(cos6>

- sin(2/3n£)sin(p(sin6> + s

+2exp(p(cos0 — sin#)£)[l — cos(p(cos0 -

as n -*• oo uniformly for all A. € Tn. Here we have used the fact that

n£) = 2cos2(/?n£) =

Let

= [l - exp(p(cos0 - si

+ 2exp(p(cos0 - sin6)£)[l - cos(p(cos0

(19)

(20)

(21)

(22)
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Then, c(p, 6) > 0 for any p > 0, and 6 e [7r/4, 7T/4 + n]. If c(p, 0) = 0, then

cos# — sin# = cos# + sin# = 0,

which leads to a contradiction for the case of 2pl<2it. Hence co(p) = minc?(p,6) > Q
Finally we obtain

2 /'(A.) 52

l+exp(2(a-b)e)+2exp((a-b)e)cos((a+b)£)-me-M

—> 0 as n —*• oo uniformly for all X e Fn.

Take A7, > 0 such that

2 /'(A)
< 1 uniformly for all A. € Fn, n > Nx.

Applying Rouche's Theorem (see [5]), there is a unique zero point p,n e &n for every
n > A7, to the meromorphic function 1 + ^n^'

On the other hand, let y\ and y2 be two lines parallel to y and in contact with every
Gn as shown in Figure 2, and let <£„ be a closed contour defined as follows. Outside
of the region enclosed by the lines y\ and K2» ^n is denned by circular arcs of radius
(2$f + p2)J centered at the origin. Inside the region enclosed by y, and Y2,c€n is
defined by the lower section of the ffn nearest to the origin indicated by the thin curve
in Figure 2 below. Denote by 3>n the region enclosed by ^ n .

In our case of b > a, there exists a constant c0 > 0 such that b — a > c0 for all
(a, b) outside of @n and yly it follows from (19) that there exists an N2 > A7, such
that

2 /'(A)
outside of @n and /!, y2 when n > N2,< 1

that is, there is no zero point for 1 + ^ ^ outside of ^ n and the region enclosed by
yx and y2 when n > A .̂ Next, consider the region <£„ enclosed by Cn, &n+\, yx and
y2. Then

2 /'(A.) "
< 1 for X G F^ n and n> N = max {A7!, A7

2}

and hence there is no zero point for 1 + -^TJT in &'„ for all n > A7 by Rouch6's

Theorem. Meanwhile, there are just A7 — 1 zero points for 1 + | ^ in ^ w -

Finally, for n > A7, taking circle 60n to be the circle with its center at kn and radius

an = for some a > 0, (23)
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V /
n ^_—

2) ^ —
n

/

i n

0/
n i N

n + l

RGURE 2. The schematic representation of the regions %\, $>n and &n.

we have

where A. = a + bi 6 TOn, the boundary of <?On. From (21)

and

1 + exp(2(a - b)i) - 2exp((a - b)£) sin((a + b)£)

= 1 + exp(2(a - b)l) - 2exp((a - b)l) sin((a + b-2Bn + 2Bn)i)

= 1 + exp(2(a - b)t) - 2exp((a - b)i) sin((a + ft - 2/6n) cos(2Bnl)

- 2exp((a - 6)^) cos((a + b - 2Bn) s\n{2Bnt) + Se~bt

-> 2 uniformly for all A. € fOn as n -> oo,

B2
n[\ + exp(2(a -

= B2
n[\ - exp(a -

2exp((a - b)l) cos((a + b)t)]

+ 2B2
n exp((a - b)i)[l + cos((a + b)£)]

- sin= ^2[l-expf4-(o

+ 2 \e\p( — (cos0-sineKj Un
2 1 - cos ( — (cosO + sin0)£ J
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—> a 2((cos# — sin#)^)2 + a 2((cos0 + sin^)£)2 = 2l2a 2

uniformly for all A. e TOn as n —* oo. By (20)

2 f'OC) 2

-*• 2l~2a2 uniformly for all A. € TOn as n —• oo.

If
2r2ct2k2 < 1, (24)

then again by Rouch^'s Theorem, there exists an M > N such that when n > M,

/in = an + &„/, an = fin + —- cos0, bn = fin + —— sifor someO^e <2n. (25)

If

ir2a2k2 > 1, (26)

then there is no zero point for 1 + k2^^- in GOn for n > M > N. Let

fin = p}n/2 = xn + yni. (27)

Then

xn =a
2

n-b\ = ^ cos(;r/4 + 6) + ^(^) 2 cos(20) ,

/o 1 1
yn - P2 = anbn = sin(7r/4 + 6) + x( -7-) 2 sin(26>) for some 0 < d < 2n,

a 2. (xpn

(28)
or

y/2 J2
\Hn - 'A2| = — + o(P;1) for any — > 2k/L

Since 2l~2a2k2 = 1 if and only if ^ = 2k/l, we obtain the required result by
choosing @n to be the circle with center at y/K,i and radius 2k/1.

Theorem 2 indicates that the system operator srf defined in Theorem 1 cannot have
an analytic extension. The fact that the decay rate -co in Theorem 1 is not proportional
to the feedback constant k is established in the following theorem.
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THEOREM 3. The set of zero points of the entire function f'(y/2k) defined by (12)
consists of purely complex numbers |±/a*} which can be obtained from

Vm(aHt) = 2/(1 + e2"1) - 1 (29)

and
an = o(n), 0 < a, < ft, /?„_, < an < fa forn > 1. (30)

For any given N > 0, let [fin, fin} be the eigenvalues of (5). Then
(i) max {|iin - ifi|, \iin + ift|} -* 0ask -> 0;

1 ̂ I^OO

(ii) max {|/xn - /or2|, |/2n + /o£|} ->• 0 as A: -> oo.

PROOF. We only consider (ii), as the proof of (i) is similar. Let ~J2\^ = a + bi be a
zero point of /'(\/2X). Then

(e~at - eat) cos(W) + (ebt + c"w) sin(a£) = 0,

(e-« _ e
bt) cos(a£) + (ea< + <TO<) sin(6^) = 0,

which is symmetric about a and b. Since 2A.O = a2 — b2 + 2ab, 2ki = b2 — a2 + lab
is still a zero point of /'(V2X). Ifa^b, then either ReA.o > 0 or ReA.! > 0. Suppose
k0 < 0. Then consider a circle 6 located in the right half complex plane with center
at k0 so that A.o is the only zero point of /'(-N/2X) inside 6 and Y&. Let k > 0 be
large enough so that

<k/l f'(V2k)\ on YG.

By Rouch6's theorem, there is one zero point of f(V2k)+k/if'(y/2k) inside ^"which
contradicts Lemma 2 and Lemma 3. So k0 = ±a2i is a purely complex number and
a satisfies (29) and (30).

Next, for every —N < n < N, take (?n to be the cycle with center at ia2 such that
ial is the only zero point of f\s/l~k) inside @n and YGn. Let k > 0 be large enough
so that

|/(\/2X)| /* for all Y0n, -N <n<N.

Then, again by Rouch6's Theorem, there is a unique zero point inside Gn to the entire
function lf(Jlk)/k + /'(\/2X). Part (ii) is obtained by Lemma 3.
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