
23

Multiplicative weights update method

The authors are grateful to Sander Gribling for reviewing this chapter.

Rough overview (in words)

The multiplicative weights update (MWU) method is an algorithmic strategy,

sometimes referred to as a “meta-algorithm,” with varying applications in clas-

sical and quantum algorithms. Reference [58] gives an overview of the MWU

strategy. The introductory example problem where the MWU method is used

is the problem of making predictions for a binary outcome given advice from

a panel of n “experts.” The MWU approach assigns a weight to each of the n

experts, and the weight is reduced by a multiplicative factor whenever the ex-

pert makes an incorrect prediction. The outcome of the process can be shown

to give an approximately optimal strategy.

This general approach can be applied to convex programs including linear

programs (LPs) and semidefinite programs (SDPs). The SDP version general-

izes the MWU method to allow for matrix-valued weights and matrix-valued

costs. These weight matrices are positive semidefinite operators with trace

equal to one, that is, density matrices. In fact, the states that arise in the SDP-

solving algorithm are Gibbs states. Thus, they can be naturally represented as

quantum states on a logarithmic number of qubits and generated through the

process of Gibbs sampling. The existence of fast Gibbs samplers can lead to a

quantum speedup in certain circumstances.

299

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

300 23. Multiplicative weights update method

Rough overview (in math)

We present an example problem. Let 1 denote the all-ones vector. Consider the

following set of linear constraints on the vector x = (x1, . . . , xn) ∈ Rn

⟨a(j), x⟩ ≥ 0 j = 1, . . . ,m

⟨1, x⟩ = 1

xi ≥ 0 i = 1, . . . , n

for m fixed vectors a(j) ∈ Rn with entries in [−1, 1], for j = 1, . . . ,m, where

⟨·, ·⟩ denotes the standard dot product between vectors. Suppose we are given

a value of ϵ and promised either that there is no choice of x that satisfies all

the constraints or that there exists an x∗ such that ⟨a(j), x∗⟩ ≥ ϵ for all j, with

⟨1, x∗⟩ = 1 and x∗
i
≥ 0 for all i. We wish to determine which is the case and find

a vector x∗ in the second case. This problem is equivalent to the machine learn-

ing problem of finding a linear classifier for a set of m labeled n-dimensional

training points, similar to a support vector machine [58, 697]. The problem is

also similar to the form of an LP and to the problem of solving for the optimal

point of a zero-sum game [58, 46], and the MWU meta-algorithm can also be

straightforwardly applied to solve these problems.

A classical solution to this problem is given by the multiplicative weights

method [58]. The algorithm iteratively updates the vector x, with initializa-

tion x = 1/n. At each iteration, the algorithm finds a constraint j for which

⟨a(j), x⟩ < 0 (or if no such j exists, it terminates and outputs x). Let η = O(ϵ)

be a fixed constant. Once j is found, the entries of the vector x are updated

according to

xi ←
xie

ηai j

∑
ℓ xℓeηaℓ j

, (23.1)

where ai j denotes entry i of vector a(j), and the denominator works to enforce

⟨1, x⟩ = 1. By upweighting x in the direction of the violated constraint a(j), this

update rule brings the x closer to satisfying the constraint. The magic of the

multiplicative weights method is that the promise problem described above can

be solved after only O(log(n)/ϵ2) iterations [58]. By searching for a violated

constraint using a Grover search, the runtime of each iteration can be sped up

quantumly, giving rise to polynomial speedups for solving zero-sum games

and LPs more generally [46].

In the analogy to a panel of experts, we may view the above problem as

follows. Each expert i ∈ [n] produces a prediction for each of j ∈ [m] data

points, denoted by ai j. We wish to produce a weighting x over the n experts

such that the weighted majority of the n experts yields a positive value for all

m data points. The multiplicative weights method solves this iteratively by be-

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

23. Multiplicative weights update method 301

ginning with a uniform weighting over the n experts, and repeatedly observing

an index j where the weighted majority misclassifies (i.e., predicts a negative

value for) data point j, assessing a multiplicative penalty of eηai j to the weight

of expert i. In a machine learning context, the weighting of experts produced

by the algorithm can then be used as a classifier that allows us to predict a label

for a new data point, by following the opinion of the weighted majority of the

experts.

The matrix MWU method generalizes the n-dimensional vector x to an n×n

symmetric matrix X. An example problem generalizing the above is

⟨A(j), X⟩ ≥ 0 j = 1, . . . ,m

⟨I, X⟩ = 1

X ⪰ 0 ,

where A(j) are fixed symmetric constraint matrices and the notation ⟨U,V⟩ :=

Tr(UV) generalizes the dot product from vectors to matrices. Here I denotes

the identity matrix, and X ⪰ 0 denotes that X is positive semidefinite. The

problem above is related to the general form of an SDP, and the matrix MWU

approach can be applied to solve SDPs. Note that we recover the vector ex-

ample if we specify that the matrices A(j) and X are diagonal. The final two

constraints indicate that X is a density matrix and is associated with a quan-

tum state on log2(n) qubits. When X is updated by a generalization of the rule

in Eq. (23.1), then at every iteration of the MWU method, X will be a Gibbs

state for a certain Hamiltonian that is a weighted sum of the symmetric con-

straint matrices A(j). Thus, the quantum state X can be prepared on a quantum

computer using algorithms for Gibbs sampling. Taking this approach, quan-

tum algorithms can achieve guaranteed polynomial speedups for performing

an iteration of the MWU method compared to classical approaches, and it is

conceivable that larger speedups could be available if the associated quantum

systems admit faster-than-worst-case Gibbs sampling.

Dominant resource cost (gates/qubits)

The MWU method, both in the classical and quantum setting, consists of some

number T of iterations, where each iteration updates a classical data structure.

In typical applications, T = poly(log(n)/ϵ), where n is the problem size and

ϵ is a precision parameter related to how close to optimal the solution has

to be. This contrasts with other approaches to solving optimization problems,

such as interior point methods, for which the number of iterations can scale as

O(poly(n) log(1/ϵ)).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

302 23. Multiplicative weights update method

Each iteration typically takes poly(n,m, 1/ϵ) time and is carried out with

subroutines that can often be sped up with quantum algorithms. These sub-

routines can include Grover search / amplitude amplification and, in the case

of the matrix MWU method, Gibbs sampling, which end up dominating the

quantum cost of the algorithm.

Here it is important to point out that, especially in the quantum case, the

MWU method can benefit from keeping an implicit representation of the n-

dimensional vector x (or in the case of matrix MWU, the n × n matrix X). For

instance, in the example problem above, we need not explicitly write down the

vector x; rather, we can keep track of the indices j1, j2, . . . , jt corresponding

to the penalties assessed at iterations 1, 2, . . . , t. These indices can be orga-

nized into a t-sparse vector y ∈ Rm from which x is defined implicitly by

xi ∝ eη
∑m

j=1 ai jy j . In the context of optimization problems like LPs and SDPs, the

vector y can often be related to the dual version of the optimization problem

(see, e.g., [45]), where the goal is to find an optimal y, and each value y j may be

interpreted as the weight assigned to decision j ∈ [m]. Given y, the Gibbs sam-

pling primitive can then produce a quantum state on O(log(n)) qubits encoding

the vector x. At iteration t + 1, this quantum state is used to find an index jt+1

corresponding to a violated constraint without ever explicitly writing down the

vector x. This implicit representation is essential if the quantum algorithm is

to achieve complexity sublinear in n. The same situation arises in algorithms

for SDP based on matrix MWU, where Gibbs sampling is used to produce a

O(log(n))-qubit mixed quantum state ρ = e−H/tr(e−H), where on iteration t+1,

the Hamiltonian H =
∑

j y jA
(j) is given by a weighted sum of at most t distinct

input matrices. By keeping track only of the sparse vector y ∈ [m], one avoids

needing to write down the n2 entries of ρ. In fact, ignoring dependence on ϵ,

the Gibbs state ρ can typically be prepared using only Õ(s
√

n) queries to the

input data, where s ≤ n is the sparsity of the n × n input matrices A(j) (see,

e.g., [48, 45]). This represents a polynomial speedup in the per-iteration cost

compared to classical methods.

Additionally, there is also an appealing possibility that, for specific cases,

the Gibbs sampling step for the log2(n)-qubit system could be accomplished

in polylog(n) time if the system thermalizes rapidly, allowing quantum al-

gorithms based on the matrix MWU method to have faster runtime, perhaps

as fast as poly(log(n), 1/ϵ), representing an exponential speedup over their

poly(n, 1/ϵ)-time classical counterparts.

Caveats

One caveat is that the best outlook for quantum advantage occurs when the

constraint matrices A(j) that appear in applications are sparse matrices (and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

23. Multiplicative weights update method 303

especially if they correspond to physical local Hamiltonians). However, this

sparsity constraint may not be satisfied often in practice. There can in principle

still be a speedup for dense matrices, but in this case, access to a large quantum

random access memory might be required, which has its own caveats.

Another caveat to achieving a practically useful algorithm with either the

classical or the quantum version of the MWU method is that the theoretical

dependence of the runtime on the error parameter ϵ may lead to poor practi-

cal runtimes. The original quantum SDP solver based on MWU had O(ϵ−18)

dependence [181], and this was later improved to O(ϵ−5) [45]. While this is

technically poly(1/ϵ) scaling, the large power would likely lead the algorithm

to be worse than alternatives, such as classical or quantum interior point meth-

ods which have polylog(1/ϵ) scaling, unless it is tolerable for ϵ to be essentially

constant. In the case of zero-sum games, the quantum algorithm based on the

MWU method has a slightly more tolerable O(ϵ−3) dependence.

Example use cases

• The MWU method can be used to gain an asymptotic quantum speedup in

solving zero-sum games, and relatedly, solving LPs [46, 178]. This speedup

is generated by Grover-like methods and does not require Gibbs sampling

of quantum states. Many interesting optimization problems can be reduced

to an LP.

• The MWU method was used in [686] to give an algorithm for online portfo-

lio optimization, relevant to applications in finance.

• The matrix MWU method can be used to gain an asymptotic speedup for

solving SDPs in the regime where the precision parameter ϵ to which the

program should be optimized is large. Many interesting optimization prob-

lems can be reduced to an SDP. One notable example is that approximate

solutions to (discrete) binary optimization problems can be found by solving

the (continuous) SDP relaxation of the problem and performing a rounding

procedure on the solution (see, e.g., [183, 71]).

Further reading

• See Arora, Hazan, and Kale [58] for an overview of the MWU method from

a classical perspective, including its matrix generalization.

• The quantum algorithm for SDP based on the MWU method was introduced

by Brandão and Svore [181]. This was improved in subsequent works [182,

48, 45]. The method was applied to the specific application of solving SDP

relaxations of binary optimization problems in [183, 71], and to the specific

application of computing optimal strategies of zero-sum games in [46].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

304 23. Multiplicative weights update method

• In [178], a “dynamic Gibbs sampling” method is proposed to improve the

complexity of the MWU algorithm for zero-sum games. It would be inter-

esting if this method can be extended to other applications of the MWU

method.

• For an overview of multiplicative weights methods within quantum algo-

rithms, see [520].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.026
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.110, on 25 Jun 2025 at 19:55:35, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.026
https://www.cambridge.org/core

