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Two General Theorems in the Differential Calculus.

By WiLLiam Brasn.

(Received 22nd April 1912. Read 1jth June 1912.)

Theorem 1. Let .a, denote

1 -
F{an(z?) - (1) + ﬁ%}%ﬂ@ﬂ) ot pisn(z) )

J H
d
where SEd_ac' Then jor any change in the independent variable x,
=flx), the coeffici tqf—fii in = ;
say z =f{x), d ien, T g 1 a0

This theorem is true for all positive integral values of » and p.
The expression under the brackets becomes symmetrical on adding
the term 2#8"(z°), which is zero, and is left out except in the
particular case of n=0, when it is 2*.

Ezample: z=¢, or z=logx.
By the above theorem

& A d 17 d a? a2 1 43
e o (oga) |-+ a{w(‘%x)’ k= <‘°g””>}5;f o

3f?

d d d
e L _o}(* _1\2
=¢ (dz 2)(dz 1)dz’

agreeing with a result well known in the theory of differential
equations.

i . & &
— —_— — 24
=e {2dz St s

Proof of Theorem I. by Induction.
‘We have

8,2,) = pi![{wzf’) PP 4 .. £ prBH(2))

~ P FET) — (p - 12 ) + ... F (p - 1)28(2)} ]
= 1@ = 0(2) a8 (A)
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Now if
d'u du dr1u dru
de d +- +""’dm+tvdp s
then
d du dPu
=) . 2+t g 3+ 8a) o s
du d*u

='+la1¢7z_ + ... +,+1ap—d;; +.., by (A).

Thus if the theorem holds for all positive integral values of p
when n =3, it also holds when n=s+1.

Again, when n=1, ;a,= 8(z)

and (p>1), 1a,,:i}'_{S(z"’) — p2d(2* 1) + ... + p2”8(2)},
) pip-1)
"(p-l)!{l‘(”“l)‘L 1.3 1)
=0,

Whence —=8(z )d .

So when n=23, .,a =2082),
={8(z)}%
(p>2), .a,=0,

w
e

whence %—8() +{8( ). f

Hence the theorem holds for all values of p when n=1, 2. It
follows in the usual way that the theorem holds for all values of
p and n.

Cor. When p>n, ,a0,=0.

Note.—A more rigorous proof of this theorem can be based on
a ‘p’ induction for all values of ». The above proof, however,
has the advantage of much greater simplicity.

2.
In (A) let n=p-1, then ,a,=0.
2% = 8(2) * p1®p)

= (sz)zp—ﬂap—ﬁ
ete.
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Again, from (A) we have, putting n=p+1 and using (B),
oty =8{(32)} +8(2) . 3, 1,

= P82 8(2) + 8(2){ (p — 1)(SP—6'%} +(de)*{(p - 2)(de). &2}
+ ...+ (82)71{8%},

L oenle= (82 p+(p-1)+(p-2)+... +1}.

= Qj‘)li . (S2)P 6%,

Or,a, = p(P‘; D (B2 8% e ©).
Similarly

_Hp=D@=2(P3) sy KEZDPZ2) iy (D)

L 2.4 2.3
0,5 18 of the form «(8%2)*(82)P—¢ + B(8%)(8°2)(82)* + y(8=)P 6%z,
where a, B8, y involve p and not z.
And ,a, is a sum of terms of the form
A(S)YS%)P(F2)Y ...... 1))
where a+2B+3y+...=p,
and A involves p and r», but not 2.

dr
Now in the transformation of — e by means of the substitution

z=flx), we are dealing with the coefficients ,a,, [r=p, p-1, ...1].

To find when all these coefficients will be constant multiples of
one another. 'We must have from (B) and (C) the relation

(8z)P = k(8z)P28%,

or k&z=(8)......... e (F).
_ 1
Tex+d
z=log(cxz+d).

By (F) the terms in ,, all reduce to the form
A(82)%(82)% (82)%...,
t.e. to the form A(Sz),

and (F) therefore denotes a necessary and sufficient condition.
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ar
Hence z=1og(cx + d) alone transforms oy into

4’(”){ b3t zv——'+ +kd}

where a, b, ...k are constants. ¢(x) has then the value

k
(cz+dy

and we see that z=log(cx+d) transforms the differential equation

ez + d)'-';;{f —0 into a linear equation with constant coefficients.

The conditions that z=/{«) transforms

&y

X"dz"

where X,...X, are functions of z, into an equation with constant
coefficients are

X?pap=a’1
pr P_1+X-p_1p—l p—l_ﬂ,

X,, p_g+x,_1p—l p—2+Xp-29-2ap—2=7!
etc.

dp—l
+X,, ; yl+...+X.,y=0,

Thus if X, =2, these conditions give X, , =aa*?, X, ,=bz""?,
etc. This is the case above discussed.

1
If X,= cos’x

and ea=1, ... 2z=sinz,
Thus the equations
y" + (acosz + tanz)y’ + cos™z.y =0,
y'+ tanz.y' + cot’z. y =0,
are both reducible by the substitution z=sinz.

3.

Theorem II. For a general transformation of the form

2=flz), y=u. $(z),

thccoeﬁctmtqf—’i n :%/ 18

5807}~ rig@). )+ i 9. ) - (g0}
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In particular the coefficient of » in :—;‘Z— is &{(x)},

and the coefficient of :;:" dg'/‘ is ¢(x) (6z)"
Exzample: z=¢, y=ue*=ux’
By the theorem, the coefficient of
T4 in Yy (= logey} - 2loges(a7loge} ),
-3 _+410gx B 4logz]
z x z I
=3[z =3¢,
the coefficient of

du . dy AN
&?lnqa? xa-;)—xe =€,

d3
and the coefficient of % in y

These results agree with the formula used in differential

equations, viz.,
&Py _dsd d
d* ¢ dz( dz 1)(7 + .)u,

__,{d’u ju jduy
= \i2 T @

Theorem II. follows at once from Theorem I., and the Theorem
of Leibniz, for if y—u P(x),

a du
_y—¢ dz.'+ﬂ 18¢ dz,,_l + +u8”¢’

and the coefficient of

du .
= the right
=¢uar+ucls¢ e a1t ..t 8“4’ * 0%

- ;1_!—[{4;8"(2') + 0. @) + ., + 8. ) - ete.],

= (567} - rar () + T ”8"{4» =)

L Fr g 2z} 227 0)
Also, since ,a,= (62), it follows that the coefficient of

du . dy dz\*
= in oy 18 4>(:c)(d—z) ,
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and the coefficient of w is clearly &"{¢(x)}. Hence Theorem II.
is proved.
4,
Theorem: By the substitution z = (az + b)/(cx + d), y = u(cz + d)™!

j%'/‘ is transformed into (o f 3

This Theorem follows from Theorem II. Thus, using the
substitution z=£{z), y=u.¢(x),

e Z””’ where p=ad - be.

r=n

—becomesz —[8"{¢(:r) £} - reo{p(z) . 7} + .. +z'8"{4>(x)}] o

The sufficient conditions that all the differential coefficients up
to the (n — 1)™, as well as the term in u, may vanish, are

(@)} =0......(0),
{p(x) .2} =0...... (ii),
M p(x).2*} =0...... (iii),
& {p(x). 2"} =0...... (n).
*(i) gives @) =ay+ax+...+a, a7
Aj+Ax+...+A, 2!
G+ T+ ... +a, 2’
and from (i) it follows that z=(ax + b)/(cx+d).
Hence also ¢(x) = (cx +d)*, and the theorem follows at once.
Thus if we take the equation
(ax*+ B+ y)"y" =ky where az’+Px+y=(ax+b)(cx+4d)
and apply the substitution z=(az+b)/(cx+d), y=u(cx+d)*",

du
v dpTa e
azx + b\" dﬁ_ ,
(cx+d dr

n) then gives 2" !=
(n) g

it becomes (ax + b)*(cx + )"

=ku,

m=m,

which has the solution u= 3 A"
m=ml

where m,, ..., m, are the roots of the equation
mm-1)..(m-n+1)-¥=

or 2™
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b.

Generally speaking, it is only when we are dealing with linear
equations that the discovery of a particular integral helps us to
the complete solution. Thus for the equation

Qxy’y” +2=0,
it is easy to find the particular integral y=a'3, but since the
equation is not linear, this does not lead to a complete solution.
If we apply the transformation z=1/x, y=wux, which is a

particular case of the transformation of §4, p=1, and the equation
reduces to

ulu’ +2/9=0.
The complete solution
du
% _ s =2
J'( gy~ 23+ o) =231+ )
is now easily obtained.
In this example we reduced the equation to a known form.

We shall consider from this point of view the general equation

&
d—x% +Y(@Y) =0 .coiiiiiiiinn 1)
Putting z=f(z), and y=u.¢(x), (1) becomes
d*u du
R P 7+ Q=0,
_Bz.p] -~ 202.04+¢.8%
where P= P (o
_u8b + Y(zy)
and Q= P
dQ ¢.82.u.8p+¢.82.Y,+¢.02.9,. udd - (udP +¢) (5¢.52+2¢ . &%)
dz $*(32)*
dP  2¢.(%)". 8- 2¢.82. &2. 8+ ¢°82 . 8% — 2(82)*(8¢)” — 24%(8%2)?
& $(82)" '

Hence P and Q are independent of z if
¢ . 82, ubp + pioy, + PSafudp - (uFP + ¢¥) (8¢ . 82+ 24 . &2)=0, (A)
and 2¢(82)"8P — 2482828 + $*828°2 — 2(82)(B)? — 2} (§2)2 = 0. (B)
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We have a particular solution of (B) when P =0,
t.e. when %+ 28¢ . 82=0 (a)
or Sz =afd? B).
Using (a) in (A) it reduces to
S2.{p. Y, +up.dp.y,+350. ¢ +u(¢pdp+38%.8¢)} =0.
of U +yBh. y,+356. ¥+ ySib 3”8’: % _0 [8:40) (C).
The Lagrangian Subsidiary System is
gz _dy _ dy
¢ y.¢ -36Y-yd”-3ys'd
é

de_dy o b 3y
v BT Ty
y/¢$ = a(const.).

Using this in the last equation, we have

d¢ 3 ¢Ill ¢"
3a— =
dpt g Ve riag=0

e ‘-ﬁ{&(gp +a¢”)}=0.
Hence (Y +ad”)=b

7"

or ¢’<¢ + y—%—) =} (const.).

Y ta—r

Hence the general solution of (C) may be written

1
¥=5x(¥/$) ~y/$. 4" [x arbitrary],

or = f;x(y/qb) -y 9"

Hence f—y— +%x(y/¢) -y/¢.¢"=0 can be reduced to
d*u
d a3
substitution

-5 +Q=0, where Q does not contain z by means of the

y=u¢, z= ;’dm
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Special cases :
1 cx+d
1° ¢"=0,.. p=ax+bd and ¢= ?-x(a—y——),and from(B),2 = ax+b
cx+d .
Hence substitution y=u(ax+5), z= 4 will reduce the
equation
J‘y 1
daB y’x<aw + b) B
20 1t =c/¢3'
ad?+ B
¢’2 = ¢’ ’
t.e. ———-—M(# =dx.
Vogi+ B
z+y=1/oad?+ B
. 1./ ______>
or ¢= Nad+bx e . ys"\J_+-bx+c
e dz
the substitution y=u. Vad+bx+e¢, 2= ard+bxr+c
. dy 1 y
reduces the equation — +— (————) =0.
1 da® o X Naxz? + bx +¢
6.

The substitution z = (az + b)/(cz + d), y =u(cz +d)"* will reduce

the more general equation :—;% +¢Y(xy)=0 to a known form if

1 1 ‘
¢= (cz+ d)._l X((C$ +d‘)"_l)' X arbltrary_

1.

The equation _y+ ysx(y/a,) 0 (1) is homogeneous in the
sense that all the terms are of the same order when y and « are
considered of order 1, and %" of order —3. In certain cases it is
also homogeneous when y is considered of order =, ¥’ of order
n-1, ete, and = of order 1, when it will be reducible to an
equation of the lst order by the substitution x=¢, y=ua" (2).
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Therefore, corresponding to the cases where (1) is homogeneous
in both senses, we have a soluble class of equations of the lst
order.

(1) is homogeneous in the 2nd sense when and only when
4n-2=a(rn-1) (3), and the equation is 3*y" = A(y/x)".
du

Using (2) and putting p=—, this equation becomes
dp A
—+ (2n — - - =0.
pdu+( n-1)p+n{n—1)u =t 0
dp -+l
Hence pa+(2n-1)p+n(n——l)u+Aw'—1=O
is a soluble class of equations.
Examples :
o Y o os .
1 Y7 ~ Y =sec’z can be put in the form
fy_ L (o)
da? _cos”x'( y *%

which is of the form of §56 when ¢”" = —¢, 1.6 ¢=cosz.

Therefore substitution z = tanz, y = u cosz reduces this equation.
So for yy" +y* = sech’.

1
2° == y=wux® reduces
" 1 1
Y =2y<—x7_m"’>
dp
° 'y u + 13 =0,
3 pdu+3p+ u+ul=0

dp
p;‘;—3p+2u+l=0

dp 1
P ~P* % =0
are of soluble type of §7.
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