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0. Introduction

Let M" denote a complete and connected n-dimensional Riemannian manifold with-
out boundary and S be a connected immersed submanifold without boundary. When
S is a point, a well-known result of Ambrose [A2] says that the integral of the Ricci
curvature along a geodesic y(f) emanating from .S cannot be infinite if y is free of con-
jugate points. It is natural to generalize this result to the case where the dimension of
S is greater than zero. As shown later, the generalization is quite different and
involves the second fundamental form of the submanifold and therefore is useful
to study the nonexistence of minimal or totally geodesic submanifolds in an ambient
space. We say that a geodesic y: [0, +00) —> M with y(0) € S is an S — path if
7'(0) L S and there is no focal points to S along y. Let S, be the linear self-adjoint
map associated with the second fundamental form o of S with respect to normal
vector y’(0) and let H be the mean curvature vector of S at y(0). Given linearly inde-
pendent tangent vectors v, w, let K(v, w) be the sectional curvature associated to the
plane generated by v and w. We have

THEOREM A. Let S be a submanifold immersed in M with dimension k > 1. Assume
that v is an S-path and v = v(1) is a parallel unit vector field along y with v(0) € T)y)S.
Then we have
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!
n= ltierinf/ K(v,7)ds + (Sy)v(0), v(0)) <0
—+00 Jo
and .
U= ltierinf/ RIC (Y (s))ds + (H,y'(0)) <0,
— 400 0

where RIC4(y') = Zf.;l K(y',e) and e\, e,, ..., e, are obtained by the parallel trans-
port along vy of an orthonormal basis of T)y)S.

If n =0, then K(v(t),y' (1)) = 0 and a(v(0), v(0)) L y'(0). If u =0, then the function
K(.,y'(?)) vanishes when restricted to the parallel transport of the tangent space of S
at (0). Furthermore, oa(u,u) L y'(0), for all u € T,)S. In particular, H L 7'(0), so in
the codimension 1 case, the condition u = 0 implies that S is totally geodesic at y(0)
and R(Y', )y’ vanishes along vy, where R is the curvature tensor.

As a corollary we have the following:

COROLLARY 0.1. Let M be a complete noncompact Kdhler manifold. Assume that
the holomorphic curvature H = 0 on M and H > 0 outside a compact set. Then M does
not contain compact totally geodesic hypersurfaces.

Remark 0.1. In the case of sectional curvature K > 0 a similar theorem was
proved by Galloway and Rodriguez ([GR]).

Our second result is a generalization of a famous result of Frankel ([F1]) about the
fundamental group of positively curved manifolds. Frankel proved that if M is a
complete Riemannian manifold with positive curvature and S is a compact minimal
hypersurface, then the natural homomorphism of fundamental group =;(S)—
n;(M) is surjective. Note that, under these conditions, m;(M ) is in fact finite and
is trivial when the dimension of M is even. Using the definition of partial curvature
in Definition 2.2, we generalize the above theorem and remark that, in our case, the
fundamental group 7,(S) can be infinite, since the curvature of S can be negative.

THEOREM B. Assume that S is a compact minimal hypersurface in M and that any
geodesic y with y'(0) L S satisfies Ric(y',y") = 0 and Ric(y'(0),7'(0)) > 0. Then the
natural homomorphism of fundamental groups ,(S) — ©;(M) is surjective.

The following result, which we will prove together with Theorem B, studies the
fundamental group of a hypersurface in a Kidhler manifold. It should be remarked
that a result of Tsukamoto ([Ts]) says that the fundamental group of a compact
Kéhler manifold with positive holomorphic curvature is trivial. The next result con-
siders the case H > 0 and M noncompact.

COROLLARY 0.2. Assume that S is a compact totally geodesic hypersurface in
the Kdhler manifold M and that the holomorphic curvature H > 0 on M and H > 0
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on S. Then the natural homomorphism of fundamental groups 7,(S)— (M) is
surjective.

The rest of this paper is organized as follows. In the first section we prove lemmas
about ordinary differential equations and prove Theorem A, its corollary and other
consequences. The proof of Theorem A motivates us to introduce some new defini-
tions about curvatures, so in Section 2 we discuss further applications. In the third
section we prove Theorem B and a related result in the case of radial curvatures. In
the fourth section we extend the Cartan—-Hadamard and Hopf-Rinow theorems to
the radial case. We would like to mention that our generalized Hopf-Rinow theorem
is now being used to prove a result about the existence of locally free totally geodesic
[R*-actions on spheres, in a joint work of one of the authors with F. Fang and S.
Firmo. We present some examples in Section 5.

1. Ricatti Equations and the Proof of Theorem A

Let M be a complete and connected n-dimensional Riemannian manifold. Let S be a
connected Riemannian submanifold isometrically immersed in M. Along an S-path
(1) we take a parallel unit normal vector field v(z) with v(0) € TS and define
@(1) == K(v(1), y'(1)). Let S, be the linear self-adjoint map associated with the
second fundamental form of S. We have

LEMMA 1.1. Lety: [0, B] = M be a geodesic withy(0) € S andy'(0) L S. If there is no
focal point to S along | g, then for any b € (0, B] the following boundary value problem

I"O+e0f(=0,  [fO)=4, f(0O)=1, f(b)=0 (1.1)

has no solution on [0, b], where A = —(v(0), S,)v(0)).

Proof. Assume by contradiction that there exists a solution for (1.1). Set
X(t) = f(H)v(r). From the generalized Morse index I associated with S (see, for
example, [A1] or [Ch], page 131) we have

0<I(X,X)

b
== /0 U+ K@ (0, v(0)} di = (0(0), £(0)0(0)) — ((0), S,y v(0)) =0.  (1.2)

The above contradiction proves our lemma. O

Again with the hypotheses of Lemma 1.1 we analyze the equation with the initial
value

" +of=0,  fO)=4, f(0)=1. (1.3)

Since Equation (1.3) is linear, we know that it has a solution f; [0, +00) — R. By
Lemma 1.1 we have that f(f) > 0 for all z. So we can define w(¢) = f”(¢)/f () which
then satisfies the following Ricatti equation:
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W (t) + w(1) + (1) = 0, w(0) = A.

LEMMA 1.2. If liminf,_ fol @(s)ds = A, ¢ is a continuous function and a is a
positive constant, then there is no solution on [0,400) of the following problem

W (1) + aw*(t) + o(1) <0, w(0) = A, (1.4)

with [~ w?(s)ds = +oo0.
Proof. Assume that w: [0, +00) — R satisfies (1.4). Then we have

w(t) + a/t w(s)ds + /t @(s)ds—A4 <0 (1.5)
0 0

Since liminf,_, fot @(s)ds — 4 = 0, given ¢ > 0. There exists 7 > 0 such that, for
t > T, it holds that fé ¢(s)ds — 4 > —¢. For the sake of contradiction, assume
that V(¢) = fot w2(s)ds — 400, as t — +oo. So we have

! 13
—w(t) = a[ w2 (s)ds — e = E/ w?(s) ds,
0 2 Jo
for all ¢ greater than certain 7' > T. Then we obtain
2
V(1) = T V), forallt> T/,

hence —(1/V(1)) = a*>/4. Thus for any T, > T; > T, it holds that

L1 @(h-T)
1) W)~ 4 '

If we let 7, tend to +o0o we have a contradiction, since V() — +o00 as ¢ goes to +oo.
Lemma 1.2 is proved. O

LEMMA 1.3. Let @,w, A satisfying (1.4) for all t = 0. Then

!
n:= liminf/ @(s)ds — 4 <0.
—+00 0

If, furthermore, n =0 then ¢ =0 and A = 0.

Proof. Assume by contradiction that n > 0. Then there exist ¢ and T > 0 such
that for 1t > T we have fot @(s)ds > ¢ > A. By (1.5) we obtain w(t) < 4—c <0,
which implies that f0+°° w?(s)ds = 400, and this is not possible by Lemma 1.2. So we
have 1 < 0.

Now assume that # = 0. We assert that w(s) = 0. If not, there exists ¢ > 0 such that
(a 0+°° w2(s)ds) > ¢. Since n =0, there exists 7> 0 so that for r> T we have
fol ¢(s)ds — 4 > —e¢/2. Inequality (1.5) implies that for ¢ > T we have w(f) < —¢/2
and again f0+ “w2(s)ds = 400, thus we arrive at a contradiction. So we conclude
that w(s) = 0. By (1.4) we obtain ¢(f) <0 for all f and 4 =0. Now n=0, 4 =0,
¢() <0, and the continuity of ¢ imply together that ¢(z) =0. The proof is
complete. O
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We are now in a position to complete the proof of Theorem A.

Proof of Theorem A. n < 0 follows from Lemmas 1.1, 1.2 and 1.3. The case # = 0
is obtained also from this lemma. To estimate u we consider an orthonormal basis
ey, e, ..., e of TS, and take its parallel transport e,(2), . . ., ¢,(¢) along y. For any
t>0let W, C T,,)M be the parallel transport of 7S along y. By Lemma 1.1 we
obtain C* functions w;: [0, +00) — R, i=1,2,..., k with

wi+wi KO e) =0, wi(0) =—(S,qee). (1.6)
Set y(1) = Zf:l w;. So using the definition of RZCg, we have

k
Y+ Y wi +RIC() =0. (1.7)
i=1

Since

1
Y+ %yz +RIC() <0,  »0)=—(H,7(0)). (1.8)

Now we apply Lemma 1.3 to (1.8) and obtain u < 0. Assume that u = 0. Take any
we W,O. We can choose the orthonormal basis e,...,¢, in such a way that
e,(ty) = w. By Lemma 1.3 we get y(¢) =0 and RZCq(y'(r)) = 0. Thus (1.7) implies
that w;(#) =0 for all i and (1.6) implies that K(y'(?), e,(t)) = 0. In particular, we
have K(y'(fy), w) = 0. The system (1.6) also implies that (S, e;, ;) =0 for all i.
Given a unit vector u € TS, of course we can choose the orthonormal basis ¢;
in such a way that e; = u, hence o(u, u) L y'(0) for all u € T,)S. If k =n—1 then
W, = {y/(t)}L, hence R(y’,.)y" vanishes. To see this just consider a basis of ortho-
normal eigenvectors for the restriction (R(Y,.)y"): W, — W,. At y(0) we have
oau, u) = 0 for all u € T, S. If we consider a basis of orthonormal eigenvectors
for S, we conclude easily that o = 0. The proof is complete. O

As a direct consequence of Theorem A we have
COROLLARY 1.1. Let S be a k-dimensional closed submanifold of M. Assume that vy
is an S-path. Let v = v(t) be a parallel field along y with v(0) € T, )S. Suppose that the

second fundamental form a(v(0),v(0)) =0 (respectively, that S is minimal at 7(0)).
Then we have

!
n = lim inf/ K(v,7)ds <0,
—+00 0

!
(respectively, lim inf / RIC(7 (s))ds < 0).
=400 J
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If this integral limit vanishes then K(v,y') = 0 (respectively, K(y', .) vanishes on W, for
all t =20, where W, is the parallel transport of TS along .

Using this corollary we can complete the

Proof of Corollary 0.1. Assume by contradiction that S is a compact totally
geodesic hypersurface with dimension k£ > 1. Since M is noncompact there exists a
ray vy: [0, +00) — M, with y(0) € S and d(y(¢), y(0)) = ¢, for all £ > 0. This can be
easily obtained by taking a sequence of points p; — oo and a sequence of minimizing
geodesic segments joining p; and S. The existence of such a ray follows from the
compactness of the unit normal bundle of S. From the index theorem of Ambrose
([A1], see also [Ch], page 131) we know that 7y is an S-path. Since y’(0) L S we have
Jy'(0) € TS, and we know that Jy" is parallel along y. So we apply Corollary 1.1 to
the parallel field v = Jy’ and conclude that # < 0. Our hypotheses however lead to
n = 0. So we conclude that K(y'(¢), v(¢)) = 0, and this contradicts the hypotheses of
the corollary. [

2. Radial Curvatures

In this section we will give more applications of Theorem A. Throughout the section
we assume that M is a complete and connected n-dimensional Riemannian manifold
and S is a connected Riemannian submanifold isometrically immersed in M.
Galloway and Rodriguez proved ([GR]) that if M is noncompact, has nonnegative
sectional curvature, and positive sectional curvature outside a compact set, then
M does not have compact minimal submanifolds. Theorem 2.1 below extends this
result, and it also partially extends Theorem 1 in [Ka] for codimension greater
than 1. We say that the k-Ricci curvature® at p € M is greater than ¢ if for any
v € T,M and any k orthonormal vectors ey, ..., ¢, which are perpendicular to v it
holds that Y5 | K(v, ¢)) > c.

THEOREM 2.1. If M is complete and noncompact, the k-Ricci curvature of M is
nonnegative, and is positive outside a compact set, then M does not admit k-dimensional
compact minimal submanifolds.

Proof. From the compactness of S there exists an S-path as in the proof of
Corollary 0.1 above. So the conclusion follows directly from Corollary 1.1. O

To discuss more applications we need to introduce some more definitions. The
notion of minimal radial curvature was first introduced by Klingenberg in [KI]
and was studied for example in [Mcl], [Mc2], [MS], [CX], [MM], [M]. We extend
here such a definition to submanifolds. The notion of minimal S-radial curvature

*Our definition of k-Ricci is different from the one used in [Sh]. The definition here is weaker and we
think that it is more natural.
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appears — even without an explicit definition — for example in [E] and in [HK]. Given
p € M we say that a minimal geodesic y: [0, a] — M is a minimal segment between p
and S if y(0) € S, y(a) = p and the distance d(p, S) = a. Given linearly independent
tangent vectors ,w we denote by K(, w) the sectional curvature associated to the
plane generated by and w.

DEFINITION 2.1. Given p € M, we say that the minimal S-radial curvature
K2 (p) > ¢ (KTn(p) < ¢) if for any minimal segment y between p and S, and any v
orthogonal to the tangent vector y’ at p it holds that K(y', v) = ¢ (K(y',v) < ¢).

DEFINITION 2.2. We say that the minimal S-radial Ricci curvature Ric®"(p) = ¢
if any minimal segment y between p and S satisfies Ric(y’,y’) > ¢ at p, and that the
S-radial parallel Ricci curvature RIC?in(p) > ¢ if any geodesic segment y between p
and S satisfies RZC4(y') > ¢ at p.

It should be pointed out that RZC¢(y') defined in Theorem A does not depend on
the choice of the orthonormal basis {e;(0), ;(0), ..., ¢,(0)} of T,()S. Note that if the
dimension of S is n — 1 then Ricg™(p) = ¢ is equivalent to RZCS " (p) = c¢. In Section
5, we will see some examples of radial curvature bounded from below.

The following result, whose proof is very similar to that of Theorem A, shows
that, if the distance from S has no upper bound on M, then the fact that S is minimal
implies that radial curvatures tend to be nonpositive in some integral sense. Let

p(x) := d(x, S). Precisely we have:

THEOREM 2.2. Assume that M satisfies RICS™(x) = kK(p(x)) for any x € M,
where K(p) is a continuous function. Suppose that the distance function from S is
unbounded. Then

(a) liminf,_ . [; K(p)dp < +o0;

(b) v:=liminf,_ . fo K(p)dp — tsup,cs|H(p)| < O;
furthermore, if v =0 then we have K(p) =0 and S is minimal;

(c) for any j=1, if the j-Ricci curvature at x equals at least jR(p(x)) for some
continuous function R(p), then

t—+00

t
lim inf / R(p)dp < +oo. 2.1)
0

Of course the distance from S could be bounded even if M is noncompact. For
example, let S be a line in a cylinder M. When S is minimal and RZC§™ > 0 Theo-
rem 2.2 implies that for any » > 0 it holds that

inf{lRZCE™(x) | p(x) =1} =0 (2.2)

(see, for example, the case that S is a meridian of a paraboloid).
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Proof of Theorem 2.2. First we prove (b). If sup,, S|H(p)‘ = +o0 there is nothing
to prove. So we assume that suppes‘H(p)‘ < +00. We modify slightly Lemma 1.1:

LEMMA 2.1. Let y: [0, B] > M be a minimal segment between S and y(B). Then for
any b € (0, B] the following boundary value problem

"+ Kof=0  f(O)=4,  fO=1  f(b)=0 (2.3)
has no solution on [0, b], where A = (1/k) suppes‘H(p)|.

To prove Lemma 2.1, we take orthonormal parallel vector fields v,(¢) along y with
v:(0) € TS, and let X;(1) = f(H)v,(?). In a similar way as above, if there is a solution
to (2.3) on [0, b], then we have

n—1
0< > IX,X)
i=1

1 1

b
< - /0 {kff" + kf2K(0)} dt — Z(Ui(O)af/(O)vi(O)) - Z(”i(o)’ S, 00))
= —kA — (H(7(0)).7(0)) < — kA + [H(x(0))| < 0.

This contradiction shows Lemma 2.1.

We do not have necessarily an S-path in M, but we still have a sequence of mini-
mal segments y;: [0, B;] - M with y}(0) L Sand B; — +oc. Since B, — +00, we con-
clude from Lemma 2.1 that the boundary value problem

fTHKOf=0;  f(0)=4,  f(0)=1

has a positive solution f on [0, +00). So we can finish the proof of (b) by setting
w = f’/f and using Lemma 1.3.

To prove (a) we need the following lemma:

LEMMA 2.2. Let y: [0, Bl - M be a minimal segment between S and y(B). Then for
any b € (0, B] the following boundary value problem

f"O+Kof=0  f(O)=1,  f0O)=0, f(b)=0
has no solution on [0, b].

To prove (c) we need the following lemma:

LEMMA 2.3. Lety: [0, Bl > M be a minimal segment between S and y(B). Then for
any b € (0, B] the following boundary value problem

SO+ ROM(=0;  fO)=1,  fO0)=0, f(B)=0

has no solution on [0, b].
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The proofs of Lemmas 2.2 and 2.3 are similar and easier than the proof of Lemma
2.1. So we will not present them here. Since the distance from S is unbounded we
obtain as above that the boundary value problem

S"O+Kof(n=0;  fO)=1 f(0)=0 24

has a positive solution on [0, +00). Set as above w :f7 Fix ¢, > 0 and let w(zy) = wy.
We get the Ricatti equation

w4+ w? + K(t) = 0; w(ty) = W,

for all # > #,. By Lemma 1.3 we obtain
!
lim inf/ K(p)dp < wy,
1——+00 fo
and (a) is proved. The proof of (c) is completely similar. OJ
Set S, = {x € M|d(x,S) =t}. An easy consequence of Theorem A is

COROLLARY 2.1. Let S be minimal and compact without boundary. Assume that M
is noncompact and satisfies K'Snin > 0, and in addition that K‘;‘in(p) > 0 for all p in some
sphere S,. Then S is a point, hence M has finite topological type and at most one end.

By Theorem A we have that S must be a point. To complete the proof of Corollary
2.1, we use the result of Machigashira and Shiohama (see [Mc2], [MS]), which says
that in this case M has finite topological type and admits no line. So M has at most
one end.

Corollary 2.2 below is a direct consequence of Lemma 2.1 by making K(¢) = ¢ and
noting that the function f(¢) = cos t/c + (4//c)sin t,/c is a solution for (2.3) with
b=1/ccot™ (=(4//0)).

COROLLARY 2.2. Let S be an isometric immersion with dimension k = 1. Suppose
that the image of S is a closed set and that the k-Ricci curvature is bounded below by
ke > 0. Let A= (1/k)sup,cs|H(p)|. Then S is (1//ccot™ (—(4//c)))-dense in M.

To the best of our knowledge Corollary 2.2 above is new, even if we assume that
Ric = (n — 1)c > 0 and that S has constant |H|.

We recall that the radius rad(X) of a compact metric space X is the radius of the
smallest ball which contains X, that is, rad(X) = min,.y max,y d(x, y). It follows for
example from [JX] that there is no compact minimal immersion contained in an open
hemisphere of §”. Corollary 2.3 below extends this fact and follows directly from
Corollary 2.2.

COROLLARY 2.3. Assume that the k-Ricci curvature of M is bounded from below by
a positive constant k¢ > 0. Given p, g € M and 0 < r < d(p, q) — (n/2./¢), there is no
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compact without boundary minimal immersed submanifold of dimension k contained in
B(p,r). In particular, if M has Ricci = n — 1 and the metric radius rad(M) > /2 then
there not exist any compact minimal immersed hypersurface in B(p,rad(M)—
(n/2) C M.

By making R(7) = ¢ in Lemma 2.3 we obtain:

COROLLARY 2.4. Let S be an isometric immersion without boundary with dimen-
min

sion k = 1, and whose image is a closed set. If Ricg™ = (n — 1)¢ > 0, then S is n//c-
dense in M. In particular, M is compact if S is compact.

If we consider circles in a Euclidean 2-sphere, it is easy to conclude that the
sestimates in Corollaries 2.2 to 2.4 are sharp.
Corollary 2.5 below follows easily from Lemma 1.1 and will be used in Example 5.1.

COROLLARY 2.5. Assume that S is an isometric totally geodesic immersion and its
dimension k = 1. Suppose that for any p € M there exists a minimal segment y between
p and S, and a parallel vector field v(1) along y(t) with v(0) € TS, such that
K@/ (2),v(8)) = ¢ > 0 for all t. Then S is n/2/c-dense in M.

3. The Fundamental Group

To prove Theorem B we need the following general lemma for the existence of vari-
ations. Frankel in [F2] constructed without proof some similar variation, and for the
sake of clearness we present a detailed version of it below.

LEMMA 3.1. Lety: [0,d] — M be a geodesic. Consider a parallel field V' along y with
V' orthogonal to y, and smooth curves u,n:[—9,0] — M containing, respectively,
p =(0) and q = y(d), with 1/(0) = V(0) and n'(0) = V(d). Then there exists a varia-
tion f(t,s) of vy with 9f/9s(t,0) = V(¢) and 9f/0s(0, s) = 1/ (s), 0f/Os(d, s) = n/(s), for |s|
sufficiently small.

Proof. Consider a tubular neighborhood U of the extended geodesic
y: (—¢,d+¢) — M, and extend V' to U by the parallel transport along geodesics
which are orthogonal to 7y.

Now consider a closed tubular neighborhood Q of u, where Q consists of points
whose distance from u does not exceed v > 0. If 6 and v are sufficiently small we
can assume that Q C U. Extend u’ to a field W in Q by parallel transport along geo-
desics which are orthogonal to u. This construction implies that W agrees with V
along yNQ. Let a: U—[0,1] be a smooth function such that «(x) =0, if
d(x, u) <v/4 and a(x) =1, if d(x,u) = 3v/4. Set X =aV + (1 —a)W. Clearly X
agrees with 7 along y and agrees with u' along u. Similarly we can modify X in
such a way that X agrees with #' along . The variation f(z, s) can be given by the
integral curves of X starting at y(¢). O
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Now let us prove Theorem B and Corollary 0.2.

Proof of Theorem B and Corollary 0.2. Let m: M — M be the universal covering
of M.

CLAIM. n'(S) is connected.

Assume by contradiction that S; U S, = n~'(S) where S, is a connected compo-
nent of 77!'(S) and S, is the nonnempty union of the other connected components.
Both S, and S, are submanifolds which are also closed sets in M. We assert that
there exist two points x € S| and y € S, such that d(x, y) = d(S;, S,). To prove
this we consider the continuous function on S; defined by f(x) = d(x, S,). First we
show that f(x,) = f(x,) for any x|, x, € S| with n(x;) = n(x,). In fact, let ¢ be a con-
tinuous path joining x; and x, in S;. Then ¢ = no g is a loop in S. We can look at ¢
as an isometry of M such that 7 o ¢ = 7. So it is easy to see that S, and S, are inva-
riant by ¢. Then

S(x3) = d(x;, 85) = d(oxy, 05,) = d(xy, S) = f(x)).

So we can define a function ¢: S — R by ¢(x) = d(x, S,), where X is any point in S,
with n(x) = x. Since S is compact, there exists x € S such that ¢(x) is minimal. For
the corresponding X € S; we have that d(X, S,) is also minimal. The existence of
y € S, with d(x, ) = d(S}, S,) is trivial.

Now assume the hypotheses of Theorem B. Let us consider some minimal geo-
desic y: [0,d] — M joining X to y. We can choose an orthonormal basis ¢;(0),
e5(0),...,¢e,_1(0) of T:S, and its parallel transport e(¢), e;(¢),...,e,_;(¢) along
7. Let Sy and S, be the linear self adjoint maps associated with the second
fundamental forms of S| and S,. Because of Lemma 3.1 we can choose any
smooth curves y; C S, and 5, C S, with p/(0) =¢;(0) and %/(0) = ¢;(d). Lemma
3.1 provides corresponding variations. From the fact that S, and S, are minimal,
we have

n—1

0< ) Iee)

i=1

n—1 n—1

b ( n—1
= e Syl — 3160, 5,000~ [ { 3K, e»} i
n i i=1

i=1 i=1

n—1
= —/b { ZK()/, ei)} dr < 0.
0 Uiz

This contradiction proves our claim.
Now assume the hypotheses of Corollary 0.2. We consider y as above and the
parallel field v = Jy'. Then we have
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0<I(v,v)

b
= (0. S, = (000 S,10000) = [ K/, vy
b
= —/ K@, Jy)dr <0,
0

and we have a contradiction. So the claim is proved.

For any element [y] € m;(M), there is a representative loop ¢ with base point
p €S. We can lift £ to a curve E in M such that both initial point Eo and end
point 81 belong to n~'(p). Since n~'(S) is connected there exists a curve v in
n~'(S) connecting Eo and El which is homotopic to E.Somovisa loop in § and
[ o ¥] = []. This proves our conclusion. O

Remark 3.1. Note that the proof of Corollary 0.2 shows that we can replace the
hypothesis that S is totally geodesic by the hypothesis: the second fundamental form
a(JN,JN) =0 for all unit vectors N L S.

4. The Nonpositive Case — the Cartan—-Hadamard Theorem

Let v(S) be the normal fibre bundle of the submanifold S. The next result extends the
classical Hopf~Rinow Theorem ([HR]). It will be needed to prove below a generali-
zation of the Cartan-Hadamard Theorem. It is also being used to prove a result
about the existence of locally free totally geodesic R*>-actions on spheres, in a joint
work of one of the authors with F. Fang and S. Firmo.

PROPOSITION 4.1. Let N be a connected Riemannian manifold and S a complete C?
submanifold of N without boundary. Assume that for any point q € N there existsp € S
with d(p, q) = d(q, S) and assume further that exp*(v) is defined for all v € v(S). Then
N is complete.

Proof. The proof below, with slight modifications, is presented in [Cm] for the
case that S is a point.

CLAIM. For any point q € N there exists a minimal segment between q and S.

Set r = d(q, S). Take a point p € S with d(p, ¢) = r. Consider a small normal ball
B(p, ). Choose x; in the sphere S(p, 0) such that d(x,, ¢) is minimal. It is easy to see
that r = 0 4+ d(x,, ¢). So the normal geodesic y with y(0) = p and y(J) = x; is a mini-
mal segment between x, and S. Then y is orthogonal to S and satisfies d(y(s), S) = s,
for 0 < s < §. By hypothesis y(7) is defined for all # > 0. We assert that y(r) = q. For
this, consider the equation

d(y(s),q) =r —s. 4.1
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This equation is true for s = 0. Let s, be the maximum value of 0 < s < r such that s
satisfies (4.1). Assume by contradiction that s, < r. We prove that for a small 6’ > 0
Equation (4.1) remains satisfied for s, + &', obtaining a contradiction. Let B(y(s,), 8")
be a normal neighborhood of y(sy). Let x;, be in the boundary ofB(y(sO), 5’) with the
minimal distance from ¢. Then we have d(y(s,), ¢) = ¢’ + d(x{, ¢).

Then

d(p, xp) = r —d(xp, ) = r —d(y(sy), ) + 6 =50+,

hence d(p, x;) = sy + ¢ and x{, = y(sy + &'). So we have
d(y(so + 9, q) = d(xp, @) = d(v(s0), ¢) = 0" =1 — 50— 9,

and s, + ¢ satisfies (4.1), thus arriving to a contradiction. The claim is proved.
Now we prove that bounded closed subsets of NV are compact, hence N is complete.
Since S is complete, the normal bundle v(S) with the canonical (flat) metric is also
complete. Let 4 C N be bounded and closed. Since 4 is bounded, the above claim
implies that there exists a ball B(S, r) = {(p,v) € v(S)|d((p, v), S) < r} such that 4
is contained in the image expt(B(S,r)). Take a point (p,v) € B(S,r) such that
expt(p,v) € A. If D is the diameter of A, then for any (x,w) € B(S, r) such that
exp L(x, w) € 4 we have that d(p, x) < D + 2r. Then there exists a compact subset
L C B(S, r) such that exp*(L) D 4. Thus 4 is a closed subset of the compact set
expt(L), hence 4 is compact. Proposition 4.1 is proved. O

Next we want to extend the classical Cartan—-Hadamard Theorem to the radial
case.

THEOREM 4.1. Let S be a compact without boundary totally geodesic submanifold
of M. Assume that the natural homomorphism i,: n,(S) — n,(M) is onto (in parti-
cular, if M is simply connected) and that M satisfies K(y',v) < 0 for all y orthogonal to
S and all v tangent to M at y(t). Then exp* is a diffeomorphism.

Proof. We proceed similarly as in the proof of the classical Cartan—-Hadamard
Theorem. First we investigate the existence of focal points of S. For this, take a
geodesic y: [0, +00) — M with 7'(0) € v(S). Let J be a Jacobi field along y with
J(0) € T, ;S and J'(0) + S,()/(0) € v(S), where S, here is the linear and self-
adjoint map associated with the second fundamental form of S. Since S is totally
geodesic we have S, J(0) = 0. Consider the function f(7) = (J(2), J(1)). Then we
have f/ =2(J/, J) and

fr=20000 4207 ) =200 = 2RG, ) ) =0,

because of one of our hypotheses. Since f”(0) = 0 and f”(f) = 0 we conclude that fis
nondecreasing, hence |J(7)| = |J(0)| and S is free of focal points in M.

So we have that exp*: v(S) — M is a local diffeomorphism. Thus we can define a
Riem annian metric in v(S) in such a way that exp’ becomes a local isometry.
The rays y in v(S) which are orthogonal to S are geodesics in such a metric. By
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Proposition 4.1 v(S) with the induced metric is complete. Then we have that exp' is
a covering map.

Now we prove that exp' is a diffeomorphism. Of course exp™ is onto. First we
assert that (expt), is onto. Fix p € S and take a loop n C M at p. Since i, is onto,
n is homotopic to a loop u C S at p. Since (exp™),(u) = p we have that (expt), is
onto. Finally we assume that exp’(v) = exp~(w). We connect v and w by a curve
o. Then mog is a loop in M. Since (expt), is onto this loop must be lifted to a
loop at v. Since the lifting of 7 o ¢ starting at v is unique, we conclude that v = w.
Thus exp’ is a diffeomorphism. O

Remark 4.1. If we consider an Euclidean sphere S" ¢ R""!' we see that the fact
that S is totally geodesic is essential in Theorem 4.1.

Remark 4.2. The proof of Theorem 4.1 shows something more. We can replace
the curvature condition by the fact that S is free of focal points.

QUESTION. Does Theorem 4.1 remain true if we replace the condition on i, with
the condition n;(M) = =;(S)?

5. Examples

First we present examples of manifolds with bounded minimal radial curvature and
parallel minimal S-radial Ricci curvature.

EXAMPLE 5.1. Let M = CP™ be the projective space of C! with the invariant
Riemannian metric defined in [Wg]. The sectional curvatures of M have been known
well by the work of Wong ([Wg]). Denote by S the totally geodesic submanifold of
real dimension m which is isometric to a real projective space RP™. Given x € S,
y € M, it has been proved in [Wg] that | < K(7, T>) < 4, for all T}, T, € T,M and
K(T,, T,)=1forall T}, T, € T,S. Then

RICT™ > m 4 3. (5.1)

The proof of (5.1) is outlined below, to understand the details a reading of [Wg] is
needed. S is a maximal totally real submanifold of M. For any x € M\S there
exists a minimal segment y: [0,d] — M between x and S with y(0) € S and
7(d) = x. We can choose an orthonormal basis {e, e, ..., e,} in TS such that
the section P spanned by y'(0) and e; is a unitary section at y(0) in the sense of
[Wg]. So the sectional curvature of P is 4 and is constant after parallel transport
along 7. (5.1) follows because the other sections have sectional curvatures not less
than 1. Using this and Corollary 2.2 we obtain that S must be n/(24/m + 3)-dense
in M. Using the properties of the section P and Corollary 2.5 we can conclude
that S is n/4-dense in M. It is well-known that the maximal distance 7/4 from S
is attained. From (5.1) we also have Ricf™ > m + 3+ (m — 1) = 2m + 2.
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EXAMPLE 5.2. Let S, N be complete manifolds and M = S x N be a Riemannian
product. Assume that N satisfies the sectional curvature K = ¢ (K < ¢). Then M
satisfies K" > min{c, 0} (K" < max{c, 0}), where S = S x {n,}.

In fact, take p € M and a minimal segment y: [0, ] — M between p = (s, n) and S
with ¢ = y(0) € S and y(a) = p. We assume that K > ¢ in N (the other case is similar).
Set v = v/(a). Since y’(0) € v(S) we have that 7'(0) is tangent to N, hence 7y is con-
tained in N. Now consider a unit vector w L v. If w is tangent to N we have
(R(v, w)v,w) = c. If w is tangent to S x {n} then we have (R(v,w)v,w)=0.
Assume that w is a sum of a vector ug which is tangent to S with a vector uy
which is tangent to N. Then we have

(R(v, wyv, w) = (R(v, ug)v, ug) + (R(v, un)v, uy) + 2{(R(v, uy)v, ug).
We have that R(v, uy)v is tangent to N, hence (R(v, uy)v, ug) = 0. Clearly
(R(v, ug)v,ug) =0 and  (R(v, uy)v, uy) = cluy|*.
If ¢ >0 we have c|uN|2 > 0. Since |uy| <1, if ¢ <0 we have c|uN|2 >c. So we

conclude that KM" > min{0, c}.

EXAMPLE 5.3. Let S* be a complete manifold with metric gg and R’ be an
Euclidean space with the standard metric. Let M = S* x R’ x [0, +00) be the
Riemannian manifold whose metric is

gy = A + f2(Ngs + & (Nggr

where f(r) and g(r) are smooth functions on [0, +00) and positive on (0, +o00) and
satisfy f(0) =1, £/(0) = 0; and g(r) = r — (K/6)r* + o(r}) when r is close to zero.
Then some standard calculations show that

S"r(x) _g”(r(X))}
Sr(x) " g(r(x)

KMin(x) > min{ -

and

kf"(r(x)) 18" (r(x))

Sr(x)  g(r(x)

This kind of models could be used to apply the volume comparison theorems in [HK]
and [E].

RicT"(x) = —

We point out that in [W] there is an another example of a similar type of
Example 5.3.
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