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Stefan problems are moving boundary problems that model how pure materials
undergo phase transitions due to the conduction of heat and exchange of latent heat
energy. Their solution involves satisfying the heat equation in each phase (liquid and/or
solid, say), subject to specific boundary conditions on the moving phase interface.
As the location of the moving boundary is unknown in advance, Stefan problems
are nonlinear. Despite appearing relatively simple, the solutions can display highly
complicated behaviour leading to many theoretical studies, but also give accurate
results for a wide range of industrial applications in physics and engineering.

McCue et al. [10] study a particular two-phase Stefan problem for a melting
nano-sized particle. Their model includes the Gibbs–Thomson equation: a nanoscale
condition where the melting temperature is dependent on the particle size, and includes
surface tension effects (see also [5, 14]). They find that the inner solid core becomes
superheated in the sense that the temperature of the solid is everywhere greater than
the size-dependent melting temperature (albeit less than the bulk melting temperature),
and is quickly followed by finite-time blow-up of the solution. An infinite temperature
gradient develops at the moving boundary and the melting speed becomes unbounded.
As with all types of finite-time blow-up, these predictions are unphysical, which is
strange as the original problem without the Gibbs–Thomson effect is well posed. This
mathematical blow-up suggests the model is incomplete.

In Chapter 3 (and [2]) we investigate two related moving boundary problems, both
of which are particularly useful in demonstrating the key properties of a melting
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sphere with surface tension. The first is the ill-posed one-phase Stefan problem for
a superheated solid in one Cartesian coordinate. This problem is known to exhibit
finite-time blow-up, with behaviour reminiscent of that found in [10] for the two-
phase Stefan problem for a melting sphere with surface tension. This unphysical
behaviour is characterised by the speed of the moving boundary becoming unbounded
and an infinite temperature gradient developing in the blow-up limit. A second one-
phase problem simulates aspects of the spherical two-phase problem with surface
tension. We study this novel moving boundary problem numerically. Our results
support the hypothesis that the blow-up of the superheated Stefan problem and the
more complicated two-phase Stefan problem for a melting sphere with surface tension
are related, in that the two problems exhibit a similar type of finite-time blow-up.

The finite-time blow-up of the ill-posed one-dimensional Stefan problem for a
supercooled liquid can be regularised by the addition of kinetic undercooling [7].
Kinetic undercooling provides a small correction term to the Gibbs–Thomson rule
which, without the kinetic term, is derived under the assumption that the system is
in equilibrium [8]. Equivalent moving boundary problems with kinetic undercooling
are used to model the diffusion of solvents in glassy polymers [9, 12], or the flow of
viscous fluid in a Hele-Shaw cell [4]. In Chapter 4 (and [1]), we consider the addition
of kinetic undercooling to a particular energy conserving one-phase version of the
full two-phase Stefan problem with surface tension for a melting sphere [13]. We
use numerical simulation to show that kinetic undercooling regularises the finite-time
blow-up of this problem, so that the model has solutions that remain regular right up
to complete melting. The solutions also have rather interesting extinction behaviour,
due to the competition between the surface tension and the kinetic undercooling.

Motivated by the results of Chapter 4, we consider the fully two-phase Stefan
problem for a melting sphere with surface tension and kinetic undercooling in
Chapter 5 (and [3]). We again consider the effects of kinetic undercooling on finite-
time blow-up and show that the singular behaviour found in [10] is suppressed when
kinetic undercooling is included. The results of this new model are found to be
consistent with experimental findings of abrupt melting of nanoscaled particles. This
problem is studied further in Chapter 6, where we examine the blow-up regime,
regularisation by kinetic undercooling, and subsequent extinction behaviour more
closely. To study the blow-up of the ill-posed problem, we consider a novel one-
phase problem valid for times near blow-up [11], which is the spherical version of the
problem in Chapter 3.

In Chapters 3–6, the density is assumed to be constant throughout the phase change
process. In Chapter 7, we relax this assumption and study the Stefan problem with
surface tension and density change effects (see also [6]). Specifically, we study this
problem in the context of a density change as a regularising mechanism. We produce
numerical solutions to two Stefan problems used in the literature, before adding kinetic
undercooling as a second regularising mechanism. The competition between these two
regularising mechanisms is also explored.
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In Chapter 7 we also develop a Stefan problem that accounts for size-dependent
latent heat effects. We find that while this addition does not regularise finite-time
blow-up, the results highlight the need for a regularising mechanism in these melting
nanoparticle models.

In summary, the key contributions to the literature are twofold. The first is the
development of a continuum model for a melting metal nanoparticle that provides
physically reasonable results. The melting of small nano-sized particles is
nonstandard, as the solid becomes locally superheated such that heat flows into
the moving boundary from both phases. This local superheating leads to ill-posed
behaviour in the (locally) superheated solid, but can be regularised with the addition
of kinetic undercooling. We also utilise a material-dependent scaling to examine the
melting behaviour of metal particles to produce actual physical predictions. The
second contribution is an investigation into the finite-time blow-up which arises
in several ill-posed Stefan problems, and the relationship between these problems.
Possible regularisation mechanisms are considered, such as kinetic undercooling,
density change, and the novel addition of size-dependent latent heat of fusion.
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