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Abstract

The Hubble constant, H0, or its dimensionless equivalent, “little h”, is a fundamental cosmological property that is now
known to an accuracy better than a few per cent. Despite its cosmological nature, little h commonly appears in the
measured properties of individual galaxies. This can pose unique challenges for users of such data, particularly with
survey data. In this paper we show how little h arises in the measurement of galaxies, how to compare like-properties
from different datasets that have assumed different little h cosmologies, and how to fairly compare theoretical data
with observed data, where little h can manifest in vastly different ways. This last point is particularly important when
observations are used to calibrate galaxy formation models, as calibrating with the wrong (or no) little h can lead to
disastrous results when the model is later converted to the correct h cosmology. We argue that in this modern age little h
is an anachronism, being one of least uncertain parameters in astrophysics, and we propose that observers and theorists
instead treat this uncertainty like any other. We conclude with a ‘cheat sheet’ of nine points that should be followed when
dealing with little h in data analysis.
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1 INTRODUCTION

By and large, cosmology remains a science built on phe-
nomenology. Although an increasingly accurate model of
the Universe has been determined from increasingly accu-
rate observations (e.g. Blake et al. 2011; Hinshaw et al. 2012;
Sanchez et al. 2013; Planck Collaboration et al. 2013), the
physics of the underlying cosmological model is still yet to
be understood. Hence, the favoured model of the Universe
is parameterised. One parameter, the Hubble constant H0,
has been the focus of much attention given its importance in
quantifying the expanding nature of space–time. H0 (com-
monly refereed to by its alter ego, “little h”, defined below)
often appears in the measurement of galactic properties at
cosmological distances, and more generally throughout com-
putational cosmology. Its presence is required whenever an
assumption about the underlying cosmology must be made,
no matter how subtle. These assumptions are often hidden
from the final results that feature in published research.

This dependence, and its transparent nature, has the po-
tential to create problems. In particular, one must know the
value of little h to make quoted results meaningful. Specifi-
cally, because little h is a measurement-dependent quantity,
different ways to measure the same property may result in

different little h dependencies. Comparing results can be an
exercise in frustration if the terminology is different between
sub-disciplines, or has changed with time.

Hence, it is perhaps not surprising that many (silently)
struggle when using little h in their particular scientific situ-
ation. Issues often arise when presenting results for galaxies
at large distances for a particular value of H0, or comparing
two observations that have assumed different H0 values, or
making comparisons between theory and observation, where
H0 sometimes manifests itself differently, to name but a few
examples.

The aim of this paper is to clarify what little h is and how
it arises in the determination of both the observed and theo-
retical properties of galaxies. In particular, we examine how
to compare observations and simulations that have assumed
different (or no) Hubble constant values. We conclude by
providing a cheat sheet that gives clear direction on the use
of H0 for common applications.

2 THE ORIGIN OF LITTLE h

In astronomy, everything in the Universe is moving relative
to everything else. The Earth moves around the Sun, the Sun
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around the Milky Way, the Milky Way moves relative to the
other Local Group galaxies, and the Local Group relative to
more distant galaxies and galaxy clusters. Within the large-
scale cosmic web we find bulk motions in every direction
on the sky. Such relative velocity can be measured using a
variety of techniques depending on the objects of interest. For
galaxies, this is typically achieved through the identification
of known spectral features that shift from where they should
be because of their relative motion. The degree of this shift
is known as either redshift (for galaxies moving away from
us) or blueshift (for galaxies moving towards).

It was then a curious set of observations in the early 1900s
that revealed that the majority of objects outside our own
galaxy (then called nebulae, now known as other galaxies)
were all moving away from us (i.e. redshifted), and in ap-
proximate proportion to their distance, called the distance–
redshift relation. This was explicitly seen in the pioneer-
ing work of Slipher (1917), Lundmark (1924), and Hubble
(1929), amongst others of the time. Although Hubble is often
credited with its discovery, closer examination shows a more
complex history with no one single eureka moment (see Pea-
cock 2013). However, suffice to say that once the correlation
was established, its ramifications changed our understanding
of the Universe.

This relationship has since come to be known as Hubble’s
Law, written as

v = H0 d, (1)

where v is the recession velocity of the galaxy, d is its proper
distance, and the proportionality constant, H0 (Hubble’s con-
stant), was determined by fitting the data and has units of
inverse time. Hubble estimated H0 �500 km s−1 Mpc−1, as
shown on the left-hand side of Figure 1 (open symbols and
solid line), where we have reproduced the data and fit from
his original paper (we will discuss the closed symbols on the
right-hand side below).

The observed ‘fact’ that every distant galaxy in the Uni-
verse appears to be red and not blueshifted is itself remark-
able. In effect, it tells us that the motions of all galaxies
beyond our local volume are in a direction away from us,
and the Hubble diagram shows that the further away a galaxy
is, the faster its recession velocity. This was, of course, pre-
dicted by a simple solution to Einstein’s equations of general
relativity assuming a Friedman-Lemaı̂tre-Robinson-Walker
metric, where the scale factor was shown to have a time de-
pendence. A somewhat crazy idea when first discovered, Ein-
stein himself was dissatisfied with the concept of a dynamic
space–time, which led him to add his famous cosmological
constant, �. However, that is a story for another time (in a
slightly expanded Universe).

During the second half of the 1900s debate raged (primar-
ily between de Vaucouleurs and Sandage) as to the precise
value of H0, with observations placing it either close to 50
or 100 km s−1 Mpc−1 (see the excellent review by Tammann
1999, and references therein). The significant difference here
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Figure 1. Hubble’s original measurement of distant galaxies (Hubble
1929), plotting their redshift against distance. The left side shows
Hubble’s published data (open symbols): black circles mark individual
galaxies, red diamonds group these galaxies into associations, while the
solid line is his fit to the relation v = H0 d, where H0 = 500 km s−1 Mpc−1.
However, the distances Hubble used are now know to be wrong. Following
Peacock (2013), we re-anchor Hubble’s distance ladder to the correct value
of M31 and replot the data on the right side (closed symbols). The dashed
line shows Hubble’s Law assuming H0 = 70 km s−1 Mpc−1, close to the
modern value. Clearly there were greater problems with Hubble’s original
distances than just its local calibration.

with Hubble’s original measurement was due to errors in the
earlier distance calibrations (see below). The modern value
of H0, measured to about 2% accuracy, is 67.3 ± 1.2 km s−1

Mpc−1 (Planck Collaboration et al. 2013). This means that
a galaxy 1 Mpc away from us is receding with a velocity of
67.3 km s−1 due to expanding space, a galaxy at 2 Mpc is
receding at 134.6 km s−1, and so on.

Returning to Figure 1, following Peacock (2013) we create
a modern version of this iconic plot by re-anchoring Hubble’s
distance ladder using the known distance to M31 of 0.79 Mpc,
then re-scale the data appropriately. This is shown on the
right-hand side with closed symbols. Also shown is a fiducial
Hubble Law assuming 70 km s−1 Mpc−1 (dashed line). The
lingering disagreement reveals Hubble’s distance problems
ran deeper than simply calibration uncertainties. As Peacock
(2013) argue, he was perhaps somewhat fortunate to be able
to demonstrate any distance–redshift relation given the data
he had on hand at the time.

Regardless, measurement (and later confirmation) of the
Hubble expansion heralded in the age of modern cosmology.
It underpins our modern cosmological paradigm. It factors
into all observed galaxy properties that need to assume a
cosmology to be measured. In short, it is important and must
be understood.

3 LITTLE h DEFINED

Hubble’s Law, as given by Equation 1, describes the rela-
tionship between the recession velocity and distance of a
galaxy. For practical application Hubble’s constant is often
re-expressed as

H0 = 100 h km s−1Mpc−1, (2)
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where h is the dimensionless Hubble parameter, pronounced
‘little h’.

The subscript ‘0’ in H0 indicates a measurement at the
present epoch and sets the normalisation of Hubble’s Law.
However in general, the value of the Hubble ‘constant’ ac-
tually depends on redshift. Measured at redshift z by an ob-
server at redshift zero,

H(z) = H0 E(z), (3)

where

E(z) =
√

�M(1 + z)3 + �k(1 + z)2 + �
�
. (4)

H(z), often called the Hubble parameter, will change with
time in different ways depending on the mass (�M), curva-
ture (�k), and dark energy (��) densities of the Universe.
However H0 does not change, and thus by construction, nei-
ther does little h. In other words, little h is just a number,
a constant.1 Remember this and repeat it to everyone you
meet.

Note that the units of H0 are inverse time. Hence, the
inverse of the Hubble constant has come to be known as the
Hubble time, tH:

tH ≡ 1/H0 = 9.78 h−1 Gyr. (5)

And the speed of light, c, times the Hubble time is just the
Hubble distance, DH:

DH ≡ c × tH = 3.00 h−1 Gpc. (6)

These are both fundamental numbers that astronomers often
use as yardsticks against which to judge the relative age
or distance of various cosmological properties. For further
discussion on this and more we recommend the excellent
paper, Hogg (1999).

4 HOW LITTLE h ARISES IN THE
MEASUREMENT OF GALAXIES

The Hubble constant is a global cosmological property of the
Universe (at least in the vanilla �CDM paradigm) and not
a local property of the individual objects within it (galaxies,
gas, ...). However, measurement of such objects does often
depend on the background cosmology, and thus uncertainties
about that background can propagate into the measurements
themselves. In this way, the Hubble constant (typically ex-
pressed as the dimensionless little h parameter) can appear
in the quoted values of galaxy (and other) properties. Signif-
icantly, from Equation 3, the fact that H0 is separable from
E(z) is the reason why we can separate out little h in such
measured quantities, even when the dynamics of the back-
ground cosmology are complicated and evolve.

Let us take a common but simple example from extra-
galactic astronomy. Observationally, the measurement of a
galaxy’s stellar mass often carries a h−2 dependence. So,

1 Neither is little h a unit, although it is often (unfortunately) written and
used like one. We will return to this point in Section 8.

picking a random example galaxy, its mass might be writ-
ten as Mstars = 1010.5h−2M�. This particular h dependence
arises from the way galaxy masses can be determined from
the light that the telescope collects. In short, a galaxy’s lumi-
nosity is drawn from the observed apparent magnitude and
thus flux, the latter of which has units of area. Area has units
of distance squared, for which each dimension carries the
little h uncertainty through the angular diameter distance.
Thus, galaxy luminosity carries an inverse h squared depen-
dence. Moving from luminosity to stellar mass is non-trivial
(one way is to multiply the luminosity by a stellar population
model mass-to-light ratio). But throughout such calculations
the h−2 dependence usually carries through.

In general, the key point to take away is that a galaxy prop-
erty may or may not have a little h dependence, depending on
how the property was measured. The measurement itself will
determine how little h manifests in the property. Importantly,
the numerical component of a property alone is not the value
of the property. The value of the property is the combination
of the number and the little h uncertainty (if one exists).

5 HOW LITTLE h IS PRESENTED IN
THE LITERATURE

The above all sounds simple, right? If everyone presented
their results in the same way it would be. But that’s not
what happens in the real world. Here we identify four broad
cases outlining how astronomers have dealt with little h in
the literature. Examples are given in Section 5.1.

CASE 1: The authors do not mention the chosen H0 value
in the paper, nor do they mention any of the h dependen-
cies when the properties of galaxies are plotted or results
given. Somehow we are magically meant to know what
they assumed. Perhaps there was a standard practice
back when the paper was written, but alas, that lore is
long lost.

CASE 2: The authors thankfully provide the chosen H0
value near the start of the paper (usually at the end of the
introduction, or in the method section), and continue to
assume this value throughout the paper. However, they
omit all references to h when presenting their results
and figures. To convert results between assumed Hubble
parameter values you would either need to guess the h
dependency (so hopefully it is a common and obvious
one) or contact the authors for clarification.

CASE 3: The authors mention the chosen H0 value near the
start of the paper and then continue to assume this value
throughout the paper, as per Case 2. However, unlike
Case 2, when plotting figures and discussing results
they continue to explicitly show all h dependencies with
a subscript stating the chosen H0 value (e.g. h−2

70).
This notation can potentially mean a number of things
though, which we will illustrate below, so be warned.
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CASE 4: The authors do not choose a H0 value when
presenting results and figures. Rather, properties that
depend on little h have had it factored out and are
labelled so that the dependence is clear. Such results
are numerically equivalent to a cosmology where h =
1. Converting to your preferred H0 cosmology is as
simple as replacing little h with the desired value and
evaluating.

5.1 Examples

At this point we do not claim to make a judgement on the
“right” way to present little h in a published work (see Section
8 for that). However, it is worth emphasising how inconsis-
tent the literature can be and why it can be a bit of a jungle
for the h-inexperienced. We undertook a (admittedly highly
incomplete) review of some of the recent highly cited liter-
ature (many of these papers have several hundred citations)
to find the following examples of the above four cases:

• Hu et al. (2004) manage to plot the luminosity func-
tion of z = 6 galaxies without revealing the cosmology
they had assumed when converting apparent to absolute
magnitude. Similarly, Shapiro et al. (2010) examine star
formation in early-type galaxies using SAURON data
and also compare with galaxy formation models, but
fail to mention the cosmology they had adopted. These
are two recent examples of Case 1 above.

• Two good examples of Case 2, i.e. stating the cosmology
early then dropping little h for the rest of the paper,
are Schawinski et al. (2010) and Peng et al. (2010).
The first examines AGN and their host galaxies using
Galaxy Zoo and SDSS data. The second studies the
mass function with SDSS and zCOSMOS data. Both
are quite clear in their application. There are countless
other examples of this common usage.

• Case 3 and its variants can be a lot of fun. The most
popular is to define h70�H0/70 = 1.0, assuming H0 =
70 km s−1 Mpc−1, as e.g. Cooray & Ouchi (2006) did.
Then, all presentations of h70 are mathematically neu-
tral, with the chosen H0 already absorbed into the nu-
merical value of the properties being presented. How-
ever variations can and do crop up in the literature, of-
ten unintentionally. For example, Maughan et al. (2006)
mistakenly2 define h70 � H0/100 = 0.7, while Hilde-
brandt et al. (2009) break all the rules and claim h =
100/H0 in their paper. Drory et al. (2005) also take
H0 = 70 km s−1 Mpc−1 and quote h70 when presenting
results, but do not clarify its exact definition.

• Probably the most common usage of little h is to factor
it out and explicitly state the dependence, as per Case 4.
For example, Brown et al. (2007) plot the evolution of
the red galaxy luminosity function in a h’less universe,

2 Private communication.

clearly stating how h arises for each property consid-
ered. Croton et al. (2005) do the same but for galaxies
in differing environments.
Combinations of Cases 2–4 in the same paper can also
be found. Here are a few highlights:

• When analysing survey data, a popular trend is often
to quote distances using Case 4 (e.g. h−1 Mpc) but
absolute magnitudes using Case 2, taking h = 1 and
dropping the h scaling [i.e. dropping −5log (h)]. See,
for example, Zehavi et al. (2011), Coil et al. (2008)
and Hogg et al. (2004)3. The rationale is presumably
that these are equivalent representations of the data, but
they are not4. See Section 7 for some of the problems
this can lead to.

• Another example is the famous ‘NFW’ paper by
Navarro, Frenk, & White (1997). The assumed cos-
mologies for their simulations are clearly stated in their
section 2.1, and halo masses are discussed using h−1

M� in the subsequent text. However, figures 2 (showing
density) and 7 (showing mass) then make no reference
to little h, whereas they should if a consistent terminol-
ogy is being employed. Are we to assume Case 2 or 4
here if we want to compare with their results?

• It is common to compare model galaxy stellar mass
functions with observations. However, while observed
mass often caries a h−2 dependence, simulated mass
only caries a h−1 dependence, as we will discuss in
Section 7. It is curious then to see stellar mass function
comparisons showing both kinds of masses plotted with
the a h−2 dependence (e.g. Kitzbichler & White 2007),
or both with a h−1 dependence (e.g. Bower, Benson,
& Crain 2012). We can only presume that they have
multiplied (divided) their model (observed) masses by
an additional power of h to make them consistent. This
is an unusual thing to do, however, as little h is a mea-
surement dependent uncertainty, and theoretical versus
observed masses are obtained through very different
methods.

• On the topic of observed stellar masses, it is not un-
common to see an x-axis labelled with either Mstars h−2

M� or Mstars / h−2 M� (from Case 4). In both presen-
tations, the same meaning is usually implied: that the
units of mass are M� and that mass has a h−2 depen-
dence. However it is easy to see that they are actually
mathematically different; one multiplies the numerical
part of the result by h−2, while the other divides. Taken
literally, you will get different results when a particular
little h cosmology is applied.

• Another such example is the presentation of galaxy
magnitude. The little h dependence for magnitude is
commonly written (taking the K-band as an example)
‘MK−5log (h) = number’. However this is inconsistent

3 In fact, Hogg et al. (2004) do not actually state they have assumed h = 1
for their absolute magnitudes.

4 This is only true in a universe where h actually equals 1, which is not our
Universe.
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with the common labelling of mass discussed above
(and almost all other properties): with magnitude the
h dependence is placed on the side with the property,
whereas with mass it is placed with the numerical value
of the property. Thus, to convert between h cosmolo-
gies (see Section 6 below), one needs to know to treat
magnitudes differently to mass.

• To give a final example for this section, even the author
of the current paper somehow managed to publish a
quasar luminosity–halo mass relation where the x- and
y-axes had assumed different little h cosmologies! See
figure 1 of Croton 2009 for a smile.

6 CONVERTING BETWEEN DIFFERENT
HUBBLE PARAMETER VALUES

Let us say you understand all of the above, and have two
sets of data that you would like to use in your paper. Perhaps
one you have collected yourself and the other has been taken
from the literature. Blindly comparing the numerical values
in each data set will lead to problems if your data has assumed
one of the little h cases listed in Section 5, and the literature
another.

For example, if you are comparing the K-band magnitudes
of galaxies, you may have to output your data assuming Case
4, i.e. with the h dependencies factored out. For the sake
of argument, let us assume that the literature results you
are comparing with have instead assumed h = 0.7, as per
Cases 1–3. So although you may be able to find two galax-
ies (one from each data set) that appear to be numerically
equivalent, they of course are not. Since little h typically
manifests in galaxy absolute magnitudes as −5log 10(h), any
two such galaxies actually have a magnitude difference of
5log 10(0.7) = −0.77.

So how would you go about re-normalising your galaxy
magnitudes to the published h values? It is simple: since
little h is just a number that has been factored out, replace
all little h’s with the h value you would like to assume and
evaluate. This goes for any property where little h plays a
part. Once the evaluation has been done, that property is then
numerically correct for a universe where the Hubble constant
equals that value.

Of course the same basic rules of mathematics apply when
converting between different little h cosmologies, from h =
0.70 to h = 0.73 say. As long as you know how little h presents
for each property of interest you can easily and systematically
reverse then reapply any h value. This is one key reason why
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Figure 2. To get a sense of the uncertainty in a property or result between
two little h cosmologies, we show the fractional change in the property,
relative to h = 0.7, when little h is changed continuously from 0.60 to 0.90
(this brackets the currently favoured range). The three lines show the change
for little h dependencies of h, h2, and h3, as marked in the legend. Different
measurements of the Hubble constant from the literature are highlighted
by the shaded regions (±1σ , and spaced arbitrarily along the y-axis for
clarity), taken from figure 16 of the Planck 2013 XVI results paper (Planck
Collaboration et al. 2013, and references therein).

keeping the little h’s visible can be particularly valuable.
As a reference, in Table 1 we show how property values will
change when moving from h = 1 (or h’less) to the commonly
used value of h = 0.7.

Figure 2 shows the fractional change in little h away from
a value of 0.7, when h is rescaled to anywhere between h =
0.60 and h = 0.90, a range that brackets the currently favoured
estimates (as indicated by the shaded regions). The three lines
mark this difference for h, h2, and h3 dependencies. With
volume measurements (h3) for example, there will be a shift
of over 30% in a derived number between using the 2013
Planck H0 value (centred on h = 0.67) and that measured
from SZ clusters (centred on h = 0.77). When properties are
expressed with the h’s factored out (Case 4 above), which is
numerically equivalent to assuming h = 1.0, the discrepancy
can be as large as 70% from Planck.

7 COMPARING OBSERVATIONS WITH THEORY

If you are not using (or interested in understanding) theory-
related data, then you can probably skip this section. For those
who do (and are), the whole little h ambiguity rises to another
level when you begin comparing models with observations
(which is one of the primary uses of theory data, right?).

To start with, let us assume you have obtained a popular
galaxy formation model so you can over-plot its predictions

Table 1 A simple chart for quickly converting a property with numerical value N from a h = 1 (or h’less)
cosmology to h = 0.7, close to the currently favoured value and that used in Figure 2. Seven common little h
scalings are shown. To go in the other direction, simply divide instead of multiply, or add instead of subtract.

N h [units] N h2 [units] N h3 [units] N h−1 [units] N h−2 [units] N h−3 [units] N+5log (h)

1.0 ⇒ 0.7 ×0.700 ×0.490 ×0.343 ×1.429 ×2.041 ×2.915 −0.775
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Figure 3. We highlight one of the potential pitfalls when calibrating models against observations if you
do not first assume a value for little h. In the left panel we show the stellar mass function of galaxies at
z = 0, where all h’s have been explicitly separated out (Case 4 of Section 5), numerically equivalent to
a universe where h = 1.0 (and hence marked this way). Here the model (solid line) has been calibrated
perfectly against the data (shaded region; Baldry et al. 2008), as is commonly done. In the right panel, we
then update both model and data for a universe where h = 0.7 (close to the actual value). Notice that the
good agreement has been lost. This is due to the different ways in which the Hubble constant manifests in
these different data sets, as discussed in Section 7.

against some of your own results. When using someone else’s
data, the first step is to understand how it was generated and
the units. In particular, where appropriate one must deter-
mine which of the above four cases (or other) apply to the
assumed little h so that the correct conversions can be made to
enable an apples-to-apples (a.k.a. fair theory-to-observation)
comparison.

On the other hand, you may instead want to build your
own model. Such models often must be calibrated, and this
is where a reference set of observations are employed. Let
us do this as an exercise, taking the standard practice of
using the observed stellar mass function to calibrate the effi-
ciency of the various model parameters. However beware! As
mentioned in Section 5.1, mass in numerical data typically
carries a h−1 dependence, in contrast to the h−2 dependence
often found in observations (i.e. Section 4). The ‘one less
power of h’ comes from the way mass arises in dark matter
simulations.

To see this, consider an expanding universe where Hub-
ble’s Law reigns. As discussed previously, distance carries a
h−1 dependence, and in fact, within the numerics of an N-
body simulation, all distances typically have such a scaling.
Now, the masses of simulated objects are usually calculated
dynamically, expressed mathematically by

G m

r
≈ σ 2, (7)

where G is the gravitational constant, and m is the mass
contained within a radius r and supported against gravity
by a velocity dispersion σ . Since r is simply a distance,
when masses are determined—i.e. m�σ 2 r—they pick up
an inverse h dependence by construction.

The differing powers of h between simulation and observa-
tion must be accounted for before proceeding, and for those
unclear about what little h actually represents this can be a

dangerous trap. For example, which set of properties should
be converted, the observations or the model, and how ex-
actly? One may think that the model properties must all be
made to have exactly the same factors of h as the observa-
tions, e.g. by multiplying all model masses by an additional
h (see one of the real-world examples in Section 5.1). But
this would be a grave mistake of course. On the other hand,
a tempting compromise is often to explicitly factor out the
h’s (i.e. Case 4 above) delaying a determination of the full
numerical values of each property, perhaps until one can
say with greater precision what the Hubble constant actually
is.

Let us do exactly this second suggestion and calibrate our
model galaxy stellar mass function against its observational
equivalent, in both cases keeping the (different) little h’s
factored out. We plot the result of such an exercise with
the solid line in the left panel of Figure 3 and compare it
to observational data marked by the shaded region (Baldry,
Glazebrook, & Driver 2008). Note the good match of the
model is due to a precise calibration against the data. Note as
well that this is typically how models have been historically
calibrated and presented (see Croton et al. 2006 and Bower
et al. 2006 for two popular and well-cited examples).

Now let us assume that a new set of cosmological mea-
surements are published locking the value of little h down to
good-enough precision to be applied to our results. Remem-
ber that, as emphasised earlier, little h is not a unit; it is part
of the numerical value of a measurement, just an uncertain
part that we were able to factor out. Once we know what it
is we probably should use it.

So what will taking this new little h value do to our well-
tuned result? We can expect there to be a re-normalisation
along the y-axis, as volume has a h−3 dependence for both
model and data. Along the x-axis, however, the model will
be shifted by one power of h, while the data shifted by two.
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The right panel of Figure 3 shows this result for h = 0.7.
Note the good calibration is now gone. So, for this particular
galaxy formation model, was the original calibration good or
bad?

The lesson is to know what little h is and how it manifests
in both the observations and theory, before the data is used
together. Our general advice for modellers and simulators is
to always work with a H0 value as close to the best measured
value at the time, while clearly stating the scalings for each
property. In other words, do not factor out little h under the
guise of convenience; this is not accurate and can lead to
problems later on.

Finally, when it comes to the Hubble constant and simula-
tions, it is important to remember that N-body and pure adi-
abatic hydrodynamic simulations are (generally) completely
scale-free, in that little h can be factored out of all properties
and the simulation scaled to any h value in post-processing.
This of course also holds true for the semi-analytic and halo
occupation distribution models that are constructed on top
of N-body simulation merger trees. However, for more so-
phisticated hydrodynamic simulations, where absolute time-
scales, distances, temperatures, etc. need to be established to
model processes like cooling, star formation, and supernova
feedback, such little h scaling breaks and one can only work
with the Hubble constant assumed when the simulation was
originally run.

8 SUMMARY: RECOMMENDATIONS FOR
USING AND EXPRESSING LITTLE h

On the surface, the use of little h when quoting the values
of observed or simulated galaxy properties appears simple.
However, in practice it can get confusing due to the differ-
ent ways the Hubble constant can manifest in data, and the
different ways that authors present their results.

In this paper, we provide an introduction to the origin of
the Hubble constant and the definition of little h, describe
how little h arises in the measurement of galaxy properties
(notably for survey data), and highlight four general ways in
which little h is commonly expressed in the literature. We
then walk through the method to convert between galaxy
properties that have been expressed using different values of
the Hubble constant. This is notably tricky when compar-
ing observed and simulated results, where the same galaxy
property can have a different little h dependence.

Our take-home message is this: First, the clearest way to
express your results is to state the h scaling of each property
at the beginning of your paper, then evaluate all properties
assuming your best guess for the actual h cosmology of the
Universe, e.g. h = 0.7. Once that is done for all results pre-
sented (measured in as many different ways as you like),
each numerical value will be the actual value (assuming that
cosmology) and can be compared with any other having the
same units.

Second, the most sensible, less error prone approach to
little h is to treat it like any other uncertainty in the data.
The Hubble constant is a relic of bygone times. It is one of
the least uncertain parameters in astrophysics, and the case
for continuing to single it out as an independent parameter is
weak.

Third, we emphasise that little h is not a unit. Units are
physical quantities, like M�, Mpc, and km s−1. It is best
to be explicit about this. If you feel compelled to display
little h when presenting each result, then separate out the
units of the property from the combination of the numerical
value and little h. For example, masses should be written
M = 1012h−1M�, not M = 1012M� h−1 or 1012M�/h. The
latter two imply the h is coupled to M�, which is not true.

To conclude, in Table 2 we provide a list of common galaxy
properties, their little h dependencies, and popular units to
aid the uninitiated data user. Our key points are summarised
below in a ‘cheat sheet’ providing nine rules for dealing with
little h. Follow these and we will all live happier lives as a
result.

1 Little h is NOT a unit. h expresses an unknown part of
the numerical value of a property. Units are L�, Mpc,
etc. h is a number.

2 Little h manifests in a galaxy property due to the
method of measurement. For example, to measure
the luminosity of a galaxy its luminosity distance
must be known, and cosmological distances carry a h
dependence.

3 In general, when h is presented in a property you know
that the h dependence has been factored out, with the h
scaling explicitly shown.

4 To put the property into a particular h cosmology,
replace the h in the property with the desired h value
and evaluate.

5 To change from an already assumed h to a new value,
reverse the above by doing the opposite with the as-
sumed h. You can then substitute the new h value in.

6 The terminology ‘h = 1.0’ and ‘h’s factored out’ are
often used interchangeably in the literature. Mathemat-
ically, the numerical value of a property will be iden-
tical. But in reality they represent different things. The
first assumes a particular Hubble constant. The second
assumes none and lets you decide at a later date.

7 Sometimes the same property can be measured in dif-
ferent ways that have different dependencies on h, e.g.
mass estimated from luminosity (h−2M�), from dy-
namics (h−1M�), or even in non-cosmological ways
(e.g. reverberation mapping) that have no h dependence
(M�). In such cases, as you change little h the different
determinations of the property will scale differently.

8 When you want to compare the same property that was
obtained by two different ways having different depen-
dencies on h (e.g. theoretical and observed masses),
DO NOT transform one to match the h scaling of
the other. Instead, choose a h value and convert both
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Table 2 An (incomplete) list of common galaxy properties, their little h scalings, and units.

Property Common h scaling Common units Notes

Time, Age h−1 yr, Myr, Gyr Can also have no h scaling,
e.g. SN1A decay rates

Distance h−1 kpc, Mpc
Area h−2 kpc2, Mpc2

Volume h−3 kpc3, Mpc3

Mass (from luminosity) h−2 M� Common in observations
Mass (from dynamics) h−1 M� Common in simulations
Mass (direct measure) None M�
Luminosity h−2 L�
Absolute magnitude +5 log (h) Note: mag−5 log (h) = N

⇒ mag = N+5 log (h)
Apparent magnitude None
Surface brightness None mag arcsec−2 Physical units may

collect a h scaling
Velocity (models/simulations) None km s−1 h scalings cancel (see above)
Velocity (line-widths) None km s−1

SFR (models/simulations) None M� yr−1 h scalings cancel (see above)
SFR (from luminosity) h−2 M� yr−1

Temperature K The h scalings here can
Power erg s−1 be highly dependent on
Pressure K cm−3 the measurement method

independently to that cosmology using point 4 above.
Only then can they be meaningfully compared.

9 Always clearly state what you have assumed with re-
gards to little h at the start of your paper. For the love
of God!
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