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ABSTRACT. The Shallow Ice Approximation (SIA) model in strong form is

commonly used for inferring the flow dynamics of grounded ice sheets. The

solution to the SIA model is a closed-form expression for the velocity field.

When that velocity field is used to advance the ice surface in time, the time

steps have to take small values due to quadratic scaling in the horizontal mesh

size. In this paper, we write the SIA model in weak form and add in the Free

Surface Stabilization Algorithm (FSSA) terms. We find numerically that the

time step restriction scaling is improved from quadratic to linear, but only

for large horizontal mesh sizes. We then modify the weak form by adding

the initially neglected normal stress terms. This allows for a linear time step

restriction across the whole range of horizontal mesh sizes, leading to im-

prove efficiency. Theoretical analysis demonstrates that the inclusion of FSSA

stabilization terms transitions the explicit time-stepping treatment of second

derivative surface terms to an implicit approach. Moreover, a computational

cost analysis, combined with numerical results on stability and accuracy, ad-

vocates for preferring the SIA models written in weak form over the standard

SIA model.
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INTRODUCTION

The Shallow Ice Approximation (SIA) problem is a commonly used momentum balance model which de-

scribes the non-Newtonian, viscous, gravity driven flow of the ice in grounded ice sheets (Hutter, 1983).

The model is typically used either as a standalone model or in combination with the Shallow Shelf Ap-

proximation (SSA) in hybrid models for sea-level rise predictions (Goelzer and others, 2020; Seroussi and

others, 2020) on time scales of a few hundred years. Another use case are paleoclimate spin-up simulations

(Seroussi and others, 2019) and paleosimulations with duration 10 000 years (Weber and others, 2021) and

five million years (Pollard and DeConto, 2009). The SIA model is a simplification of the nonlinear (full)

Stokes problem on the premise that an ice sheet is thin, neglecting all stress-components except vertical

shear stresses. The advantages of the SIA problem over the nonlinear full Stokes problem are that the

standard SIA problem is linear with respect to the velocity and computationally less expensive to solve.

Some of the disadvantages when compared to the nonlinear Stokes problem are: (i) the degraded model

accuracy, (ii) that when coupled to the free-surface equation the simulation time steps have to be taken very

small at high mesh resolutions. The time step restriction for a SIA model with an explicit or a semi-implicit

discretization of the free-surface equation is of the form ∆t < C∆x2, where ∆t is the time step, and ∆x is

the horizontal mesh resolution (Hindmarsh and Payne, 1996; Hindmarsh, 2001; Bueler and others, 2005;

Cheng and others, 2017). Only for extremely thin ice or steep surface gradients a linear time-step restric-

tion occurs (Cheng and others, 2017). A recent study showed that this quadratic behaviour carries over

to hybrid models combining the SIA model with the SSA model (Robinson and others, 2022). Resolving

complex coastal ice dynamics requires a fine spatial resolution in the horizontal direction, so that ∆x may

be less than 1 km locally, and a time resolution of around 0.1 years to 10 years Bueler (2023). Using the

SIA velocity fields, the simulations, however, require significantly finer time resolutions due to numerical

instabilities, rather than physical instabilities Bueler (2023). To alleviate the problem when considering

moving ice margins, the SIA model was combined with a fully implicit time stepping scheme in (Bueler,

2016). This requires an implementation of a nonlinear iteration increasing the computational cost and is

not guaranteed to converge for bedrocks with steep gradients when the horizontal resolution is fine.

The SIA model is most commonly posed in strong form from which a closed-form solution (explicit

expressions) is obtained. Evaluating the closed-form solution requires (i) numerical differentiation of the

ice surface position, (ii) numerical integration in the vertical direction, observed from the bedrock to the

ice surface. To facilitate (ii) the mesh vertices have to be aligned over lines following the vertical direction,
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i.e., extruded meshes are needed. A simpler approach to implementing the SIA model in software based on

Finite Element Method (FEM) is to pose the SIA model in weak form and solve the problem as a coupled

system. This is computationally more expensive as compared to evaluating a closed-form solution, but

the weak form SIA models are still a linear problem with respect to the velocity, in addition allowing for

fully unstructured meshes and an easier implementation using one of the FEM libraries. SIA models are

implemented in a weak form in at least two of the large-scale FEM ice sheet models (Larour and others,

2012; Gagliardini and others, 2013).

FSSA (Free Surface Stabilization Algorithm) is an easy-to-implement, computationally inexpensive

method for overcoming the small time steps invented for mantle convection simulations (Kaus and others,

2010), and later introduced in the scope of ice sheet modelling for the nonlinear (full) Stokes problem

(Löfgren and others, 2022; Löfgren and others, 2023). One of the requirements of the stabilization method

is that the governing equations are written as a system of equations in weak form.

In this paper, we consider the SIA models written as a system of equations in weak form. This makes

it possible to add the FSSA stabilization terms. We discuss how the weak SIA formulation can best be

implemented using FEM and how it can be combined with FSSA. We show computationally that when the

SIA problem is stabilized by using the FSSA terms, the time step restriction is improved from quadratic

to linear scaling in terms of the horizontal mesh size. We further modify the weak SIA formulation to the

weak linear Stokes formulation, which is a full Stokes model using the SIA viscosity function. The model

does not require evaluating nonlinear iterations, but at the same time includes all stress components in the

momentum balance. We argue that this improves the model robustness in terms of the numerical stability,

but also improves the model accuracy (as compared to the weak SIA formulation) for a negligible increase in

the computational cost. For all the enhanced SIA formulations we give a theoretical performance analysis

estimating the operation count, and draw a comparison towards the operation count of the standard SIA

formulation. We focus our study on simplified two-dimensional ice sheet domains: slab on a slope with

a surface perturbation (Cheng and others, 2017; Hindmarsh, 2001), an idealized ice cap, and a horizontal

cross-section of Greenland (Morlighem and others, 2017).

The paper is organized as follows. In Section we state the different SIA and Stokes formulations that

we consider in this paper, together with the free surface equation. In Section we provide information

on the semi-implicit time-stepping method for solving the free-surface equation. In Section we outline

the spatial discretization methods for solving the momentum balances. In Section we define the FSSA
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stabilization terms and make indications on how their addition to the SIA model impacts the free surface

equation. In Section we outline a computational cost analysis of the considered SIA formulations. In

Section we provide the results to a set of numerical experiments assessing the time step restrictions and

the error vs. runtime ratios for all the considered SIA formulations. In Section we give our final remarks.

GOVERNING EQUATIONS

In this paper, we consider ice sheets that evolve in their shape as a function of time t. A simplified

two-dimensional ice sheet geometry is accounted for by a computational domain Ω = Ω(t). One of the

approaches to advance Ω(t) from time tk to time tk+1 is to:

1. solve the momentum balance equations over Ω(tk) for horizontal and vertical velocity components uk
1

and uk
2,

2. extract the ice sheet surface velocities uk
1,s and uk

2,s from uk
1 and uk

2 respectively,

3. solve the free surface equation using uk
1,s, uk

2,s as data coefficients to get a new ice sheet domain Ωk+1.

In this section, we state the free surface equation and all the different momentum balance equations that

we consider in this paper.

Free surface equation for advancing the ice surface in time

To compute the evolution of the ice surface function h = h(x, t) in time we solve the free-surface equation:

∂th = −u1,s(x, h) ∂xh + u2,s(x, h) + a(x, h),

t > 0, x ∈ Ω⊥.

(1)

where Ω⊥ is a projected domain only taking into account the horizontal components of Ω. Furthermore

u1,s(x, h) and u2,s(x, h) are the surface horizontal and vertical velocity functions respectively. Term a =

a(x, h) is the surface mass balance in this paper set to a(x, h) = 0. We chose to work with the free surface

equation rather than the thickness equation (common when using the SIA models), as this allows for better

flexibility in terms of using the free surface equation discretizations already available from the existing full

Stokes model codes such as Elmer or ISSM. The two equations can be derived one from another without

any spurious residual terms. Their properties in terms of the largest feasible time step do not differ from

an asymptotical perspective (comparing Cheng and others (2017) and Appendix ).
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Fig. 1. A sketch representing the ice sheet boundary ∂Ω subdivision into parts: Γl (the two lateral boundaries),

Γs (the ice sheet free surface), and Γb (the ice sheet bedrock).

The evolution of the ice surface height h defines the evolution of shape of the domain Ω, where Ω is

representing the volume of an ice sheet. The boundary of the domain ∂Ω ⊂ R consists of three disjoint

parts:

∂Ω = Γb ∪ Γs ∪ Γl,

where Γb is the ice sheet bedrock, Γs is the ice sheet free surface defined by the surface height h, and Γl

is the ice sheet lateral boundary. A sketch of an ice sheet with the corresponding domain parts is given in

Figure 1.

As is observed from (1), the surface h is a function of the velocities u1 and u2. The velocities are

computed before solving (1), by solving the momentum balance equations (SIA or Stokes) over Ω. The

coupling between h, u1, and u2 has an important impact on the time step restriction in the ice sheet

simulations and is thus one of the main focus points of this paper.

When solving (1) we impose the boundary conditions as follows. We let the lateral margins of the ice

sheet surface fixed, and use either the periodic boundary conditions:

h(xL, t) = h(xR, t), (2)

where xL = minx∈Ω x and xR = maxx∈Ω x, or Dirichlet boundary conditions:

h(xL, t) = 0, h(xR, t) = 0. (3)

This excludes influence from nonlinearities introduced by the moving lateral boundaries, which is a complex

problem in itself (Werder and others, 2013; Wirbel and Jarosch, 2020; Bueler, 2023). The margins are

sometimes fixed in practice for technical reasons, see some of the models in the ISMIP6 Antartica benchmark

(Seroussi and others, 2020), but it is important to get the right physical response.
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Strong form nonlinear full Stokes equations

We use the full Stokes equations as a reference model for computing the velocity field u = (u1, u2) over an ice

sheet geometry, when drawing the comparison towards solutions of the different SIA model formulations.

This is reasonable as the SIA model is an approximation of the full Stokes equations. The full Stokes

equations are:
−∇ · (2µ∗(Du)Du) + ∇p = ρg on Ω,

∇ · u = 0 on Ω,

(4)

where ρ > 0 is the ice density, g = (0, −9.81) m s−2 is the gravitational acceleration, p is the pressure, and

the symmetric strain rate tensor Du = 1
2

(
∇u + ∇uT

)
is defined through four components:

D11 = ∂xu1, D12 = 1
2

(∂yu1 + ∂xu2),

D21 = D12, D22 = ∂yu2.

(5)

The viscosity function µ∗ = µ∗(Du) relates the strain rates to the deviatoric stress tensor Su as

Su = 2µ∗(Du)Du, (6)

and is defined by:

µ∗(Du) = A(T )− 1
n (1

2
∥Du∥2

F + ε2)
1−n
2n . (7)

Here n > 0 is Glen’s exponent (we use n = 3 throughout the paper), A(T ) is constant since we consider

isothermal conditions and ε is the regularization parameter (a small number) which we define as in (Hirn,

2013).

In all the considered test cases we impose stress-free boundary conditions (Du − pI) · n = 0 at the ice

sheet surface Γs, where n is the normal vector pointing outwards of Γs. Depending on the test case we

impose either the periodic or the no-slip (u = 0) boundary conditions over the ice sheet lateral boundary

Γl. On the ice sheet bedrock Γb we impose no-slip boundary conditions in all test cases.

In this paper, we use full Stokes equations written in weak form (abbreviated W-Stokes) defined later

in the final paragraph of Section . The full Stokes equations are nonlinear which leads to an increase in

computational cost when discretized and solved on a computer, as compared to a linear problem such as

the SIA equations.
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Strong form SIA equations (SIA)

The SIA model is derived by using that the normal stress deviators are negligible compared to vertical

shear stress. Also, due to the disparity in the order of magnitudes of the spatial derivatives of velocity

components, the horizontal derivative of the vertical velocity can be neglected. The stress tensor S as

defined in (6) is then (Greve and Blatter, 2009):

S =

S11 S12

S12 S22

 ≈

 0 S12

S12 0

 =

 0 µ∂yu1

µ∂yu1 0

 . (8)

The strong form SIA equations are:

−∂yµ∂yu1 + ∂xp = 0 on Ω,

∂yp = ρg on Ω,

∂xu1 + ∂yu2 = 0 on Ω,

(9)

where g = −9.81 ms−2 is the second component of the gravity vector g defined in the scope of Section .

The boundary conditions for (9) are:

u1 = 0 on Γb, u2 = 0 on Γb,

p = 0 on Γs, S12 = 0 on Γs,

(10)

where the different ice sheet domain parts are illustrated in Figure 1. We let y ∈ [b(x), h(x)] be the vertical

ice sheet coordinate, where b(x) and h(x) are the bedrock height and the free surface height respectively,

and where x is the horizontal coordinate of an ice sheet. As the pressure is decoupled from u1 and u2, we

first solve the second equation of (9) for pressure. We vertically integrate the equation from y to h(x) and

obtain:

p = ρg(y − h), (11)

where we additionally used that p(x, y = h) = 0. Inserting this hydrostatic pressure in the first equation

of (9) and solving for S12 = µ∂yu1 using the vertical integration gives:

S12 = ρg ∂x(y − h), (12)
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where we also used that S12(x, y = h) = 0. We then compute the SIA viscosity µ starting at the relation

of fluidity Greve and Blatter (2009): µ−1 = 2A(T )σn−1
e = 2A(T )∥S∥n−1

F . In the relation we first use n = 3

and then ∥S∥2
F ≈ S2

12 arising from (8). Simplifying A(T ) ≈ A0 and taking an inverse of the fluidity relation

gives µ = 1
2 A−1

0 (S2
12)−1. Finally, inserting (12) gives the SIA viscosity:

µ = 1
2

A−1
0 (ρg)−2 (y − h(x))−2 (|∂xh(x)|2)−1

≈ 1
2

(
A0(ρg)2(y − h(x))2(|∂xh(x)|2 + ε

)−1
,

(13)

where we have in the end also added Hirn’s regularization parameter preventing the viscosity from taking

infinite values where |∂xh(x)|2 ≈ 0. We observe that the SIA viscosity (13) only depends on y and h(x), but

not on the velocity. To derive (13) we also assumed isothermal conditions A(T ) = A0 = 100 MPa−3yr−1,

where T is the temperature, but this is generally not a limitation of the SIA model. Using the viscosity

function (13), the horizontal velocity u1 is given by integrating the first equation of (9) along a vertical

line from the bedrock height b(x) to y, and inserting that u1|b(x) = 0. The vertical velocity u2 is obtained

by inserting the computed u1 into the third equation of (9), integrating over a vertical line from b(x) to y,

and inserting u2|b(x) = 0. The closed form expressions are:

u1 = −1
2

A0(ρg)3(∂xh)3
(
(y − h)4 − (b − h)4

)
u2 = 1

2
A0 (ρg)3 · ...((1

5
(y − h)5 − 1

5
(b − h)5 − (b − h)4 (y − b)

)
· ...

3(∂xh)2 ∂xxh − (∂xh)4 ((y − h)4 − (b − h)4) − ...

4(∂xb − ∂xh) (∂xh)3(b − h)3 ((y − h) − (b − h)
))

(14)

These closed form velocity expressions are computationally inexpensive to evaluate as compared to solving

the full nonlinear Stokes system. The vertical integration however requires the mesh nodes to be aligned

in the vertical direction in the case of adiabatic conditions, that is, when A varies with depth.

The free surface equation requires the velocities to be evaluated at the surface. Setting y = h in (14)
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leads to:
u1,s = 1

2
A0(ρg)3(∂xh)3

(
(b − h)4

)
u2,s = 1

2
A0 (ρg)3 · ...((
− 3

5
(b − h)5 + 3(b − h)5

)
(∂xh)2 ∂xxh + ...

(
4(b − h)4 ∂xb (∂xh)2 − 3(b − h)4(∂xh)3

)
∂xh

)
(15)

The derivatives in this expression are evaluated by: (i) interpolating the surface function onto a piecewise

linear finite element space, (ii) taking a derivative within each element of a mesh, and (iii) L2-projecting

the element-wise derivative back to the piecewise linear finite element space.

After inserting the SIA velocities from 14 to the free surface equation 1, we write the free-surface

equation problem as a nonlinear advection-diffusion PDE:

∂th = −u1,s ∂xh + u2,s = C1(h) ∂xh + C2(h) ∂xxh, (16)

where:
C1(h) = 1

2
A0(ρg)3 · ...(

(b − h)4 (∂xh)2 + 4(b − h)4 ∂xb (∂xh)2 − ...

3(b − h)4(∂xh)3
)

C2(h) = 1
2

A0 (ρg)3
(

−3
5

(b − h)5 (∂xh)2 + 3(b − h)5 (∂xh)2
)

.

(17)

The time step restriction has a quadratic scaling in terms of the mesh size due to the second derivative

term (diffusive term) ∂xxh in (16). The standard way to theoretically assess the timestep restriction is to

linearize (16) with respect to h and then perform a von Neumann (Fourier) analysis. This was done in e.g.

(Cheng and others, 2017) for the thickness equation in the case of a perturbed slab on a slope. We repeat

this exercise for the free surface equation in the appendix and will revisit it for a new SIA formulation

where the FSSA stabilization of (Löfgren and others, 2022; Löfgren and others, 2023) is added.

Weak form SIA equations (W-SIA)

The easiest approach to implementing the SIA equations within an existing FEM code – such as Elmer,

ISSM, or FEniCS – is to write (9) in weak form and discretize the weak form using the standard finite

element methods. This also allows for fully unstructured meshes, which can be of higher quality on certain
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geometries, and is sometimes technically easier to construct. The weak SIA formulation is obtained by

multiplying each equation of (9) using piecewise continuous test functions v1 = v1(x, y), v2 = v2(x, y),

q = q(x, y), respectively, and integrating over Ω. The first term of the first equation is additionally

integrated by parts. In the end the weak SIA formulation is:

∫
Ω

µ∂yu1 ∂yv1 dΩ −
∫

Ω
∂xp v1 dΩ = 0,

−
∫

Ω
∂yp v2 dΩ =

∫
Ω

ρg v2 dΩ,∫
Ω

(∂xu1 + ∂yu2) q dΩ = 0,

(18)

where µ is the SIA viscosity defined in (13). In this paper we abbreviate the weak SIA formulation as W-

SIA. Solving W-SIA on a computer is cheaper as compared to solving the full nonlinear Stokes system (4),

since W-SIA is a linear problem due to that the viscosity is not a function of the computed velocity. W-SIA

is possible to solve in terms of three subsequent matrix systems: first for pressure, secondly for u1, and lastly

for u2. This only holds as long as W-SIA is not further stabilized using the additional stabilization terms

that couple the velocity functions. A disadvantage when solving W-SIA is that the many stress components

are not present in (18). This implies that the full stress term Su is not guaranteed to have an upper bound

when the problem is solved on a computer and the mesh size approaches zero. A consequence is potentially

sharp velocity gradients that deteriorate the numerical stability as well as the solution accuracy.

Under the assumption that the PDE data is regular enough, the solution to the weak formulation is

identical to that of the strong formulation. However, we do not expect this to be true numerically across

W-SIA (18) and SIA (9), as the surface derivatives in the closed form SIA solution (15) are evaluated

numerically. The differences across the solutions are highly dependent on the choice of the numerical

evaluation of the derivatives. This is also a potential source of the differences across the two formulations

in the largest feasible time step when using the velocities to advance the surface function in time.
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Weak form linear Stokes equations employing the SIA viscosity function

(W-SIAStokes)

We add the missing stress components back to (18) resulting in the following weak formulation:

∫
Ω

2µ∂xu1 ∂xv1 dΩ +
∫

Ω
µ(∂yu1 + ∂xu2) ∂yv1 dΩ + ...

... −
∫

Ω
∂xp v1 dΩ = 0,∫

Ω
µ(∂yu1 + ∂xu2) ∂xv2 dΩ +

∫
Ω

2µ∂yu2 ∂yv2 dΩ + ...

... −
∫

Ω
∂yp v2 dΩ =

∫
Ω

ρg v2 dΩ,∫
Ω

(∂xu1 + ∂yu2) q dΩ = 0.

(19)

We abbreviate 19 as W-SIAStokes, as that formulation combines the full Stokes problem and the SIA

viscosity function. W-SIAStokes is a linear problem, computationally less expensive to solve as compared

to the full nonlinear Stokes problem. However, the system can no longer be solved as three separate matrix

systems as is the case in the unstabilized W-SIA formulation (18). An advantage of W-SIAStokes over W-

SIA is a guaranteed bound over the full stress term Su, which improves the numerical stability properties

as the mesh size goes to 0.

We note that the nonlinear full Stokes problem (4) but written in weak form (W-Stokes) takes exactly

the same form as W-SIAStokes (19), where we use the (full) viscosity function (7) instead of the SIA

viscosity (13).

FINITE DIFFERENCE DISCRETIZATION OF THE FREE SURFACE EQUATION

We first denote that h = h(x, t), and discretize the free surface equation (1) in time using the first order

semi-implicit Euler method. This results in:

hk+1 − hk

∆t
= −uk

1,s∂xhk+1 + uk
2,s, k = 1, 2, 3, .. (20)

where hk, hk+1 are h(x, tk), h(x, tk+1) respectively, and where uk
1,s, uk

2,s are the surface velocities u1(xk, yk
s ),

u2(xk, yk
s ) extracted from the bulk velocity functions defined over an ice sheet domain Ωk at tk. We note

that x ∈ Ω⊥, where this domain is defined in the scope of Section . Now we discretize the spatial derivatives

in (20) using the second-order accurate centered finite difference stencil weights, resulting in the following
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system of equations:

hk+1 − hk

∆t
= −diag(uk

1,s)Dxhk+1 + uk
2,s, k = 1, 2, 3, .. (21)

where hk+1
i = h(xi, tk+1), hk

i = h(xi, tk), (uk+1
1 )i = u1(xi, ys), (uk+1

2 )i = u2(xi, ys), i = 1, .., N . The

components of the matrix Dx are defined by the second-order accurate finite difference stencil weights that

discretize the first-order derivative operator. The final time-stepping iteration scheme is:

hk+1 = (I + ∆t diag(uk
1,s)Dx)−1 (hk + ∆t uk

2,s), k = 1, 2, 3, .. (22)

We impose the boundary conditions as described within the scope of Section by reducing the system of

equations (22) in the unknowns related to the Dirichlet conditions, or by transforming the Dx matrix into

a circulant matrix in the case when we use the periodic boundary conditions.

Using a fully implicit scheme would require access to uk+1
1 , uk+1

2 , but this is computationally expensive

as the velocity functions and the surface position are coupled. The surface h depends on uk+1
1 , uk+1

2 due

to (20), while the velocities depend on the surface that determines the shape of the computational domain

Ω on which we solve the momentum balance equations. As a consequence, computing uk+1
1 , uk+1

2 requires

an expensive nonlinear iteration as demonstrated in the SIA model case in (Bueler, 2016).

FINITE ELEMENT DISCRETIZATION OF THE SIA / STOKES MODELS

Throughout the paper, we use FEM not only to solve partial differential equations in weak form, but also

to evaluate the surface gradient functions. The meshes we use are extruded. To create a two-dimensional

ice sheet mesh we first generate a rectangular mesh with dimensions [xmin, xmax] × [0, 1], where xmin and

xmax are the minimum and maximum horizontal coordinates of the ice sheet geometry. Then we transform

the vertical mesh coordinates using an ice sheet initial surface function.

When evaluating the SIA velocities using the closed-form expression (14) we employ FEM to evaluate

∂xh, the gradient of the ice sheet surface. We first interpolate h into a piecewise linear finite element space.

After that we compute the gradient ∂xh|Ki , i = 1, .., N over each mesh element Ki. As the gradient of the

piecewise linear function across the element interfaces is discontinuous (not well defined), we L2 project the

computed gradients back into a piecewise linear finite element space. By that, we compute a continuous

(well-defined) surface gradient.
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When solving the nonlinear Stokes problem (4) in the weak form we use Taylor-Hood elements (P2P1)

to fulfill the inf-sup condition (Babuška, 1973; Brezzi, 1974), that is, piecewise quadratic polynomials for

approximating the velocity functions, and piecewise linear polynomials for approximating the pressure

function. This is a requirement to make the finite element discretization numerically stable.

When solving W-SIAStokes (19) we use the same type of elements as in the nonlinear Stokes problem

case, for the very same reasons related to numerical stability.

When solving W-SIA the inf-sup condition does not need to be fulfilled, and we can therefore use

piecewise linear finite elements (P1P1) for approximating the velocity functions as well as the pressure

function. This is an advantage as the amount of unknowns when using P1P1 elements is smaller as

compared to when using P2P1 elements. This is attributed to the fact that P2 finite element spaces

require an addition of three midpoints over the edges of a triangle in a mesh, which then increases the total

count of the degrees of freedom.

FREE SURFACE STABILIZATION ALGORITHM (FSSA) FOR THE SIA /

STOKES MODELS

In (Löfgren and others, 2022; Löfgren and others, 2023) the authors introduced FSSA for the full nonlinear

Stokes model to mimic an associated implicit solver advancing the ice surface from time tk to time tk+1,

k = 1, .., N , where tk+1 > tk. This is done by predicting the gravitational force in the weak form at tk+1

by adding an extra surface force term:

∫
Ωk+1

ρg v2 ≈
∫

Ωk
ρg v2 + θ∆t

∫
∂Ωk

(u · n) ρg v2 ds. (23)

Here θ ∈ [0, 1] is a user-defined constant parameter. The relation (23) was derived from a finite difference

discretization of the Reynolds transport theorem (the multi-dimensional Leibniz rule). The FSSA thus

relies on the assumption that the flow is predominantly gravity-driven so that computing the gravitational

force at tk+1 leads to a good approximation of the ice flow at tk+1. This in turn enables taking larger

time steps when solving the free-surface equation. Hence an implicit discretization (Löfgren and others,

2022; Löfgren and others, 2023). From a physics standpoint, the FSSA term is an extra surface pressure

term acting as a damping term – when the ice is rising, the FSSA term acts as an extra surface pressure,

and when the ice is sinking, it reduces the pressure. FSSA was originally introduced by (Kaus and others,
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2010) for mantle convection simulations.

In this paper, we add the FSSA stabilization term to the vertical momentum balance equation. In

the W-SIAStokes case (19) (and similar in the W-Stokes case) the vertical momentum balance equation

becomes: ∫
Ω

µ(∂yu1 + ∂xu2) ∂xv2 dΩ +
∫

Ω
2µ∂yu2 ∂yv2 dΩ + ...

... −
∫

Ω
∂yp v2 dΩ =

∫
Ω

ρg v2 dΩ + θ∆t

∫
∂Ω

(u · n) ρg v2 ds.

(24)

In the W-SIA case (18) the vertical momentum balance, after adding the FSSA stabilization term, becomes:

−
∫

Ω
∂yp v2 dΩ =

∫
Ω

ρg v2 dΩ + θ∆t

∫
∂Ω

(u · n) ρg v2 ds. (25)

In this case, it is the added FSSA term that couples the pressure to surface velocities us. Without the

FSSA term the pressure is decoupled from the velocity, reducing the computational cost of the solution

procedure. The coupling is however essential for numerical stability reasons.

Effects of the added FSSA terms on W-SIA

The FSSA term is using the discretized free-surface equation (22) to estimate how the force of gravity will

change between times tk and tk+1. The argumentation is provided as follows. Assume the domain Ω is such

that the horizontal and vertical integration can be separated, i.e.,
∫

Ω(·)dΩ =
∫

Ω⊥
∫

y(·)dy dx, where Ω⊥ only

contains the horizontal coordinates of Ω and is defined in the scope of (1). Then the vertical momentum

equation (25), after setting θ = 1, becomes:

−
∫

Ω⊥

∫ hk

b
∂yp v2 dy dx =

∫
Ω⊥

∫ hk

b
ρg v2 dy dx + ...

... + ∆t

∫
Γk

s

(u · n) ρg v2 ds.

(26)

As the normal vector and the arc length of a surface are respectively defined as n = (−∂xh, 1)/
√

∂xh)2 + 12

and ds =
√

∂xh)2 + 12 dx, we have that (u · n) ds = (−u1,s∂xh + u2,s) dx. Using that, and (20) to make an
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additional relation to the discretized free-surface equation, we write the FSSA term in (26) as:

∆t

∫
Γk

s

(u · n) ρg v2 ds = ∆t

∫
Ω⊥

ρg (−u1,s∂xh + u2,s) v2 dx

=
∫

Ω⊥
ρg (hk+1 − hk) v2 dx

(27)

We now look at the expression
(
hk+1 − hk

)
v2 as a left point rule approximation of the integral

∫ hk+1

hk v2 dy.

Then we have
∫

Ω⊥ ρg (hk+1 − hk) v2 dx ≈
∫

Ω⊥
∫ hk+1

hk ρg v2 dy dx. Combining this with (27) and then with

(26) we obtain:

−
∫

Ω⊥

∫ hk

b
∂yp v2 dy dx ≈

∫
Ω⊥

∫ hk

b
ρg v2 dy dx + ...

+ ...

∫
Ω⊥

∫ hk+1

hk
ρg v2 dy dx =

∫
Ω⊥

∫ hk+1

b
ρg v2 dy dx.

(28)

Rewriting the double integration in the equation above back to integration over Ω, and inserting that to

the FSSA-stabilized vertical momentum balance (25), we have that:

−
∫

Ωk
∂yp v2 dΩ =

∫
Ωk

ρg v2 dΩ + ∆t

∫
∂Ωk

(u · n) ρg v2 ds

≈
∫

Ωk+1
ρg v2 dΩ.

(29)

The left-hand-side integral of (29) is integrated over Ωk. However, we observe that the addition of the

FSSA terms implies that the right-hand-side forcing term of (29) is integrated over Ωk+1 in place of Ωk.

Thus, we expect that the solution p from (29) is approximated at time tk+1. When this p is used to compute

the velocity in (18) we expect the computed velocities to also be approximated at time tk+1. Using such

velocities when advancing the free surface in time through (22) renders an approximately implicit time

stepping treatment, which in turn allows taking larger time steps. A more precise observation on this effect

is given for the strong form SIA model, which is the focus of the next section.

Stability analysis of SIA combined with FSSA

In the following section, we show how a strong form version of the FSSA terms impacts numerical stability

of SIA. The strong setting allows us to derive formulas for the FSSA-stabilized pressure and also for Fourier

analysis. We note that the analysis is meant to give a better insight into how FSSA works. The results,

however, cannot be directly transferred to the weak setting.

We construct a strong form of FSSA for the strong SIA vertical momentum equation (9). We do that by
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starting at the SIA pressure (11) evaluated at tk, and then adding a scaled normal velocity term, inspired

by the FSSA stabilization term in (25). We have:

pk
∗ = ρg(y − hk) − ∆t ρg (u · n)|y=hk(x). (30)

Assuming that the free surface is close to flat we have that (∂xh)2 ≈ 0 (equivalent to (∂xh)2 ≪ 1). The

surface normal is then n = (−∂xh, 1)/
√

(∂xh)2 + 12 ≈ (−∂xh, 1). Using this in (30) we have:

pk
∗ ≈ ρg (y − hk) − ∆t ρg (−u1,s ∂xh + u2,s). (31)

Using (22) on the second term of the right-hand-side of equation above, we arrive at:

pk
∗ ≈ ρg (y − hk) − ρg (hk+1 − hk)

= ρg (y − hk + hk − hk+1) = ρg (y − hk+1) = pk+1.

(32)

Hence, the FSSA-inspired correction to the SIA pressure in (30) contributes to approximating pressure

at time tk+1. In Appendix we perform the Fourier analysis to show that when using pk+1 to compute

the strong SIA velocities (i.e. using an implicit representation of the pressure) is enough to alleviate the

quadratic time step restriction ∆t < C∆x2 when solving the free surface equation. To derive this result

we extended the Von Neumann type analysis for a slab on a slope test case from (Cheng and others, 2017).

In (Cheng and others, 2017) the authors show that, assuming thick ice with low surface inclination, the

quadratic dependence on ∆x is:

∆t <
3
5

A0|ρg|3C2
αH̄5(∆x)2, (33)

where Cα is the average surface slope and H the ice thickness. The result stems from that the vertical

velocity u2 contains a second derivative of the surface ∂xxh. Furthermore, the second derivative of the

surface origins from the vertical velocity is a function of ∂xu1 which is in turn a function of the horizontal

pressure derivative ∂xp = ρg ∂xhk. Following the derivation of the compact form free surface equation (16)

with the coefficients (17), we now write the time discretized free surface equation when assuming that the

velocities are derived from pk+1, but that the intermediate integration steps involve hk. We have:

hk+1 = hk + C0 ∂xhk + C1 ∂xhk+1 + C2 ∂xxhk+1 (34)
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where:

C0 = 1
2

A0(ρg)3
(
−3(b − hk)4(∂xhk+1)3

)
C1 = 1

2
A0(ρg)3

(
(b − hk)4 (∂xhk+1)3 + ...

+ 4(b − hk)4 ∂xb ∂xhk+1
)

C2 = 1
2

A0 (ρg)3
(

− 3
5

(b − hk)5 (∂xhk+1)2 + ...

+ 3(b − hk)5 (∂xhk+1)2
)

.

(35)

We now have an implicit treatment of the leading diffusive ∂xxh term in (34) which leads to a linear time

step constraint:

∆t ≤
(3

2
A0|ρg|3C3

αH̄4
)−1

∆x, (36)

where Cα is the average surface slope. We derive the above time step restriction for the slab on a slope

with a perturbed ice surface case in Appendix and validate the estimate numerically for W-SIA and

W-SIAStokes in the numerical experiments section.

COMPUTATIONAL COST ESTIMATION FOR THE DIFFERENT SIA / STOKES

FORMULATIONS

The computational work when solving momentum balance models is highly dependent on both software

and hardware. However, it is still possible to make estimates of the computational cost, for instance a

type of performance analysis approach of (Bueler, 2023). In this section we make rough estimates of the

computational cost for ice sheet simulations, where the velocity functions are computed using SIA (9),

W-SIA (18), W-SIAStokes (19), W-Stokes (7), and the ice surface is advanced from time tk to time tk+1,

k = 1, .., N∆t, using the discretized free-surface equation (22). We write the approximate computational

cost on the form:

Computational cost = C(d, α) CS m1+γ/(d−1)+α,

where:

m is the number of mesh vertices (nodes) in the horizontal direction,

α ∈ [0, 2] denotes the choice of a linear solver (α = 2 dense direct solver, α = 1 sparse direct solver,

α = 0.05 algebraic multigrid solver (Bueler, 2023)). For pure SIA no linear solver is needed and
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α = 0.

γ is the scaling exponent in the simulation time step restriction ∆t ≤ Ct ∆xγ , where ∆x is the

horizontal internodal distance.

CS is a constant specific to the computational cost of the nonlinear Stokes problem which involves

the nonlinear iteration count and the choice of hardware,

C(d, α) is a constant depending on α and d, where d is the dimension count of the considered ice

sheet geometry.

Following (Bueler, 2023) we have that W-Stokes requires CS m1+α floating point operations until conver-

gence per one time step.

In the W-SIAStokes case the computational cost is the same as in W-Stokes, but divided by the nonlinear

iteration count Niter. The cost is 1
Niter

CS m1+α. This is due to that W-SIAStokes only differs from W-SIA

in the choice of the viscosity function (linear) (13) and thus requires one iteration to be solved. When

making the estimate we also assumed that the different viscosity function preserves the preconditioning

quality.

When W-SIA (18) is not FSSA stabilized then the three (d + 1 equations in general) equations are

solved one by one, and so, in this case, m → m
d+1 . This gives the estimate d+1

(d+1)1+α
1

Niter
CS m1+α. When

W-SIA is FSSA stabilized then the decoupled solution procedure is not possible to perform anymore and

the computational cost is the same as in the W-SIAStokes case, that is, 1
Niter

CS m1+α.

Computing the SIA velocities by means of the closed-form expressions (9) requires CSIA m floating point

operations.

The computational cost for advancing the ice surface from the initial state to time t = T is proportional

to the number of time steps N∆t we take along the way. The number of time steps itself is given by

N∆t = T
∆t ∼ 1

∆t . For a time step restriction on the form ∆t ≤ Ct ∆xγ , we have that N∆t ∼ 1
∆xγ ∼ mγ/(d−1).

We now combine the computational cost estimates for obtaining the velocity functions, with the com-

putational cost estimate for advancing the ice surface in time. The estimates for all the considered for-

mulations are gathered in Table 1. All the parameters to evaluate the computational costs in the above

table are known, except for the time step restriction exponent γ in the case of some SIA formulations. We

numerically compute the exponents γ in Section , and then compare the computational cost across the

different formulations.
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Model Computational cost estimate

W-Stokes CS m1+γ/(d−1)+α

W-Stokes-FSSA CS m1+γ/(d−1)+α

W-SIAStokes 1
Niter

CS m1+γ/(d−1)+α

W-SIAStokes-FSSA 1
Niter

CS m1+γ/(d−1)+α

W-SIA d+1
(d+1)1+α

1
Niter

CS m1+γ/(d−1)+α

W-SIA-FSSA 1
Niter

CS m1+γ/(d−1)+α

SIA CSIA m1+γ/(d−1)

Table 1. Computational cost estimates for obtaining the numerical solutions to a set of considered models. Here,

m is the number of mesh vertices in the horizontal direction, d is the number of dimensions, α denotes the choice

of a linear solver, γ is the time-step vs. mesh size scaling exponent, CS is a constant, related to the choice of the

nonlinear solver, that scales the number of nonlinear iterations used to solve the reference nonlinear Stokes problem

(W-Stokes), and Niter is the number of iterations to solve W-Stokes.

NUMERICAL STUDY

In this section we solve: SIA (9), W-SIA (18), and W-SIAStokes(19). We numerically compute the largest

stable time step size ∆t when the free surface of an ice sheet is advected in time as described in Section

. We find the dependence between ∆t and the horizontal mesh size ∆x (the CFL condition), compare

the errors of the different SIA solutions to the nonlinear Stokes solution and relate them to runtimes. We

do this for three different geometries. The experiments are performed by using the FEniCS 2019 library

(Alnæs and others, 2014, 2015) on a laptop with the AMD Ryzen 7 PRO 6850U processor and 16 GB

RAM.

An algorithm for computing the largest feasible time step when solving the free

surface equation

In this section we provide the criterion which we use to numerically compute the largest feasible time step

∆t∗ when updating the ice sheet surface in time using the free surface equation (1) over domain Ω⊥ as

defined in the scope of Section . Courant-Friedrich-Levy (CFL) condition limits ∆t∗ in terms of the mesh

size ∆x:

∆t∗ = C min
xi∈Ω⊥

(∆x)p, p > 0, (37)
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where C > 0 is the CFL number depending on the type of the discretization of (1) and the data in (1),

and the mesh size is:

∆x = min
(xi ̸=xj)∈Ω⊥

h

∥xi − xj∥2, (38)

We are interested in the exponent p from (37), where the severity of the time step restriction increases

with an increased p, whereas p = 0 implies no dependence of ∆t∗ on ∆x. To compute ∆t∗ numerically we

use the stability criterion:

∫
Ω⊥

(h(x, tk+1))2 dΩ⊥ −
∫

Ω⊥
(h(x, tk))2 dΩ⊥ ≤ 0, k = 1, 2, .. (39)

which has to hold for each time tk < T , where k = 1, 2, 3, .... The above stability criterion measures the

difference in the energy of the free surface function across two consecutive time samples. The relation

between (39) and the Von Neumann analysis is the following. Within the Von Neumann analysis, the

surface function is written as h(x, tk) =
∑M

j=−M δj(tk) eiwjx, where wj = 2π j
|P | are wavenumbers, |P | is the

domain (interval) size, and δk
j = 1

|P |
∫

P h(x, tk) e−iwjx dx are the Fourier coefficients. The final statement

of the Von Neumann analysis is that there exists ∆t > 0 such that:

|δk+1
j | ≤ |δk

j |.

Thus,
∑N

j=1 |δk+1
j | ≤

∑N
j=1 |δk

j |, and using Parseval’s identity
∑N

j=1 |δk
j | =

∫ L
−L h(x, t)2 dΩ⊥ on each side of

the inequality, and then moving the right-hand-side term to the left-hand-side we obtain (39). We pose

the computation of ∆t∗ as the following optimization problem. Find max ∆t∗ subject to:

∫
Ω⊥

(h(x, tk+1))2 dΩ⊥ −
∫

Ω⊥
(h(x, tk))2 dΩ⊥ < 0,

k = 1, 2, ..., NT ,

(40)

where
∫

Ω⊥(h(x, tk+1))2 dΩ⊥ and
∫

Ω⊥(h(x, tk))2 dΩ⊥ are the free-surface energies evaluated in two consec-

utive time steps, and NT is the number of time steps to perform the simulations in time t ∈ (0, T ]. The

stability criterion (40) applies to simulations where the physical (exact) surface energy does not grow in

time.

To understand how ∆t∗ depends on ∆x, we discretize (1) using different mesh sizes (∆x)j , j = 1, 2, ..,

and then for each (∆x)j compute (∆t∗)j by solving one optimization problem (40). We solve the opti-
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Slab on a slope surface case

Surface elevation propagation in time (reference solution)
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Fig. 2. Propagation of the surface elevation function in time when computed as a solution to the nonlinear Stokes

problem (reference), where the simulation time step is ∆t = 0.1 years. Horizontal mesh size and vertical mesh size

are ∆x = 250 m and ∆y = 90 m respectively.

mization problem using the bisection method. Once all the data paris ((∆x∗)j , ∆t∗)j), j = 1, 2, ..., are

known, we approximate the exponent p in (37) by fitting a linear function to the transformed data pairs

((log10 ∆x∗)j , (log10 ∆t∗)j), j = 1, 2, ..., where p takes the value of the slope of the fitted linear function.

Note that this is a fairly computationally expensive procedure, which is the reason why we restrict ourselves

to two dimensions in this study.

Slab on a slope with perturbed surface

Configuration

First, we run experiments for a slab on a slope with a perturbed surface, as this is the setting of the von

Neumann analysis in (). The ice sheet is a two-dimensional slab, L = 80×103 m long, and H = 1×103 m

thick, inclined with α = 0.75 degrees measured in the clockwise direction, with the initial surface:

h(x, 0) = H + e−5×10−8(x− L
2 )2

.

For the free-surface equation (1) we impose periodic boundary conditions (2) as this is required for the

von Neumann analysis. We impose no-slip boundary conditions on Γb, stress-free boundary conditions on

Γs, and periodic boundary conditions on Γl.

The relation between the number of discretization points in the horizontal direction nx = m and ∆x that
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Slab on a slope surface case

Number of elements and the mesh size

nx 20 30 40 50 60 70 80 120 160 200

∆x 4000.0 2666.7 2000.0 1600.0 1333.3 1142.9 1000.0 666.7 500.0 400.0

nx 240 280 320 480 640 1000 1280 1560 1800

∆x 333.3 285.7 250.0 166.7 125.0 80.0 62.5 51.3 44.4

Table 2. Number of the discretization points in the horizontal direction nx and the corresponding horizontal mesh

size ∆x for the Slab on a slope surface case.

we use to perform the experiments is given in Table 2. Note that ny = 11 (corresponding to ∆y = 90 m)

is fixed for all experiments and the FSSA scaling parameter is fixed at θ = 1, unless stated otherwise.

Accuracy

In Figure 2 we show how the perturbed surface evolves in time, where the final simulation time is t = 100

years. Here the solution is computed using the nonlinear Stokes problem which we consider a reference,

with a small time step ∆t = 0.1 years, the horizontal mesh size ∆x = 250 m and the vertical mesh size

∆y = 90 m. In Figure 3 we plot the solutions of the different SIA problem formulations to the reference

solution, where all the solutions are evaluated at t = 6 years. We observe that all the solutions are close to

the reference solution. The solution to W-SIAStokes appears overall closest to the reference. The addition

of the FSSA stabilization term increases the error, but not significantly.

Time step restriction scaling

Now we compute ∆t∗ as a function of ∆x as described in Section . We run the simulations with and

without the FSSA terms defined in the scope of Section . The final simulation times are adjusted to the

magnitude of the largest time step sizes making the comparison more realistic. We use the final simulation

times: t = 100 years (W-SIAStokes-FSSA and W-SIA-FSSA), t = 12 years (W-SIAStokes and W-SIA),

t = 5 years (SIA). The results are shown in the first plot of Figure 4. We observe that the largest stable

time step ∆t∗ is allowed to be from 10 times (coarse resolution) to 100 times (fine resolution) larger when

using W-SIAStokes as compared to W-SIA. Furthermore, in W-SIAStokes, ∆t∗ has a constant relation

to ∆x over the whole range of the chosen ∆x except for the finest resolution where the relation becomes
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Slab on a slope surface case

Surface elevations at t = 6 years (SIA solutions)
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Fig. 3. Surface elevations at simulation time t = 6 years for different SIA problem formulations and the reference

formulation (nonlinear Stokes problem). Horizontal and vertical mesh sizes are ∆x = 250 m and ∆y = 90 m

respectively. The largest feasible time step ∆t∗ for the given ∆x and ∆y is chosen for each formulation: ∆t∗ = 6

years, ∆t∗ = 12 years, ∆t∗ = 1.8 years, ∆t∗ = 0.04 years, ∆t∗ = 0.008 years, ∆t = 0.1 years for (W-SIAStokes-FSSA),

(W-SIA-FSSA), (W-SIAStokes), (W-SIA), (SIA), (Reference) respectively.
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Slab on a slope surface case

∆t vs. ∆x Error vs. Runtime
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Fig. 4. (a) Scaling of the largest feasible time step ∆t∗ as a function of the horizontal mesh size ∆x when the

vertical mesh size ∆y = 90 m is fixed. (b) The model error as a function of the wall clock runtime when the

nonlinear Stokes solution is taken as a reference. In all cases, the final time is fixed at t = 20 years. Mesh sizes

∆x = 250 m and ∆y = 90 m are also fixed. The time step is refined starting at the formulation largest feasible time

step ∆t = ∆t∗, ∆t∗/2, ∆t∗/4, ... The time step for the reference solution is fixed at ∆t = 0.1 years.
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linear. The allowed time steps when using SIA and W-SIAStokes are small. The ∆∗t vs. ∆x scaling in the

latter two formulations is quadratic which is less desired.

Run-time versus accuracy

Next, we perform an experiment measuring the ratio between the relative model error and the compu-

tational (wall clock) runtime for each of the SIA formulations. This is important as a small ∆t does

not necessarily imply a small computational time for the whole simulation. This depends on the com-

putational time required to evaluate the velocity functions in each time step. We set the final simula-

tion time to t = 20 years. For W-SIAStokes-FSSA we used ∆t = 6, 3, 1.5, 0.75. For W-SIA-FSSA we

used ∆t = 12, 6, 3, 1.5, 0.75, 0.4. For W-SIAStokes we used ∆t = 1.8, 0.9, 0.45, 0.2. For W-SIA we used

∆t = 0.04, 0.03, 0.02, 0.01, and for SIA we used ∆t = 0.008, 0.007, 0.006, 0.005. The error is computed with

the nonlinear Stokes solution as a reference with ∆t = 0.1 years. In all cases the mesh sizes ∆x = 250 m

and ∆y = 90 m are fixed. The result is given in the second plot of Figure 4. We observe that W-SIAStokes-

FSSA allows small computational runtimes with only a mild increase in the model error. W-SIA-FSSA

also allows for small computational runtimes, but the model error is larger than in the W-SIAStokes-FSSA

case. The unstabilized (weak nor strong) SIA formulations do not allow for small computational runtimes,

except in the case when we use the W-SIAStokes formulation.

Impact of the FSSA parameter θ on the time step restriction scaling

As we demonstrated in the previous paragraphs W-SIAStokes-FSSA allows for the largest time steps among

all the considered formulations. The FSSA parameter in those experiments was fixed at θ = 1. In Figure

5 we illustrate the effect of the choice of θ on the scaling of the largest feasible time step ∆t∗ as a function

of ∆x. We observe that choice of small θ leads to a non-robust ∆t∗ vs. ∆x scaling behaviour, where ∆t∗

has to be taken around 10-times smaller as θ → 0. As the FSSA parameter approaches θ = 0.2 then the

∆t∗ vs. ∆x scaling approaches the linear behaviour as also observed in Figure 4. Furthermore, the scaling

stays the same for θ > 0.2. This implies that, for the given test case, the choice of θ is not sensitive, and

can be left at θ = 1 without losing the length of the largest feasible time step.
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Slab on a slope surface case, varying θ (FSSA parameter), W-SIAStokes-FSSA

∆y = 83.3 m ∆y = 41.67 m
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Fig. 5. Largest feasible time step ∆t∗ as a function of the horizontal mesh size ∆x for the W-SIAStokes-FSSA

formulation, when the FSSA parameter θ varies. Vertical mesh size is fixed at ∆y = 83.3 m in (a), and at ∆y =

41.67 m in (b).

An idealized ice sheet surface case

Configuration

We now change the configuration to study the impact of ice sheet margins. The ice sheet configuration in

this test case takes horizontal values x ∈ [−L, L] and vertical values y ∈ [0, H], where the ice sheet half

half-length is L = 750×103 m and the ice sheet height is H = 3×103 m. To construct the ice sheet surface

for this test case we define the following auxiliary profile:

h1(x) =
(

3 −
(

x

L

)2
)0.58

,

and then use it in the initial surface definition:

h(x, 0) = H
h1(x) − h1(−L)

h1(0)
.

When solving the free-surface equation (1) we set Dirichlet boundary conditions h(−L, t) = h(−L, 0)

on the left boundary, and h(L, t) = h(L, 0) on the right boundary. When solving one of the momentum
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An idealized ice sheet surface case

Number of elements and the mesh size

nx 80 200 400 600 800 1000

∆x 18750 7500 3750 2500 1875 1500

Table 3. Number of the discretization points in the horizontal direction nx and the corresponding horizontal mesh

size ∆x for the idealized ice sheet surface case.

balances we impose no-slip boundary conditions on Γb and Γl, whereas on Γs we set stress-free boundary

conditions.

The relation between the number of horizontal mesh elements nx and horizontal mesh size ∆x that we

use to perform the experiments is given in Table 3 below.

Note that the number of vertical mesh elements is ny = 12 (corresponding to vertical mesh size ∆y =

250 m) and is fixed for all experiments unless stated otherwise. The FSSA scaling parameter is always

fixed at θ = 1.

Time step restriction scaling

In the left plot of Figure 6 we display the largest feasible time step ∆t∗ as a function of ∆x for the different

SIA formulations. Time step ∆t∗ scales linearly with respect to ∆x for W-SIAStokes and W-SIAStokes-

FSSA. For SIA and W-SIA we observe a quadratic scaling. The benefits when using the FSSA stabilization

terms together with W-SIA disappear as the ∆x is fine enough. Among all the formulations the largest

time steps can be taken when W-SIAStokes W-SIAStokes-FSSA are used. For W-SIAStokes-FSSA the time

steps increase approximately 100 times, across the whole range of the considered mesh sizes. In the W-

SIAStokes case the addition of the FSSA stabilization terms allows for a significantly smaller computational

time but gives rise to a (typically small) increase in the approximation error.

Run-time versus accuracy

In the next experiment, we compute the ratio between the computational runtime (wall clock) and the

modelling error. For all formulations, we fixed the horizontal mesh size to ∆x = 3750 m and ran the

simulation until t = 100 years. The error is computed using the nonlinear Stokes solution as a reference,

where the time step is ∆t = 0.1 years. The maximum time steps for testing each SIA formulation is taken
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[h!]

An idealized ice sheet surface case

∆t vs. ∆x Error vs. Runtime
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Fig. 6. (a) scaling of the largest feasible time step ∆t∗ as a function of the horizontal mesh size ∆x when the

vertical mesh size ∆y = 90 m is fixed. (b) the model error as a function of the wall clock runtime when the nonlinear

Stokes solution is taken as a reference. In all cases the final time is fixed at t = 20 years. Mesh sizes ∆x = 250 m

and ∆y = 90 m are also fixed.

in line with the largest feasible time step for ∆x = 3750 m from Figure 6. For both FSSA stabilized

weak SIA formulations we used ∆t = 50, 25, 12.5, 6, 1. For W-SIAStokes we used ∆t = 1.6, 0.8, 0.4, 0.2.

For W-SIA we used ∆t = 1, 0.8, 0.4, 0.2, and for SIA we used ∆t = 0.16, 0.1, 0.08, 0.04. The results are

presented in Figure 6, plot on the right. Runtime vs. error ratio of W-SIASTokes is favourable over all the

other formulations that we consider. This is, both, when the FSSA terms are present, and when the FSSA

terms are not present.

Long time simulations

We now compute the surface evolution over a long period: the final time is t = 104 years. We choose

a fine mesh size ∆x = 1500 m. The time step is chosen in line with Figure 6 (left plot) for the given

∆x, that is, ∆t = 58.2 years for W-SIAStokes, and ∆t = 7.5 years for W-SIA. In Figure 7 we show the

solutions obtained from the two formulations. The solution obtained using W-SIAStokes does not entail

any oscillations, whereas the solution in the W-SIA case entails oscillations close to the lateral boundaries.

We have not fully explored the behaviour. However, we speculate that this is due to the lack of control
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[h!]
Idealized ice sheet surface case

Surface elevations at t = 104 years

W-SIAStokes-FSSA W-SIA-FSSA

(a) (b)

Fig. 7. Two surface evolutions after t = 104 years. The horizontal mesh size is ∆x = 1500 m, whereas the vertical

mesh size is ∆y = 250 m. The time steps take the largest feasible values for the given mesh sizes: ∆t = 58.2 years

for W-SIAStokes in (a), and ∆t = 7.5 years for W-SIA in (b). Both formulations are stabilized using the FSSA

stabilization terms with the FSSA parameter set to θ = 1.

over all strain components in W-SIA (see 18) in contrast with W-SIAStokes (19), where all the strain

components are present. This implies that a bound ∥Du∥L2(Ω) ≤ ∥f∥L2(Ω), where f is the gravity field,

can be obtained by using Korn’s inequality. This provides control over the derivatives of the velocities u,

which prevents u from being too oscillatory.

A two-dimensional cross-section of Greenland

Configuration

In this test case, we still consider a two-dimensional ice sheet geometry, but with a more realistic initial

surface elevation as well as a more realistic bedrock elevation. We simplify the full three-dimensional

Greenland geometry obtained from BedMachine Morlighem and others (2017), and intersect it with a

horizontal line to get the boundary points over a cross section as displayed in Figure 8. Then we represent

the surface elevation and the bedrock elevation by using a cubic spline interpolation. This allows for

evaluating the surfaces at an arbitrary location, which we employ when considering horizontally varying

mesh sizes in our computational study.
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Greenland (2D) profile case

Number of elements and the mesh size

nx 80 200 400 600 800 1000

∆x 12362 4945 2472 1648 1236 989

Table 4. Number of the discretization points in the horizontal direction nx and the corresponding horizontal mesh

size ∆x for the Greenland (2D) profile case.

[h!]

Greenland The 2D Greenland geometry

(a) (b)

Fig. 8. Top view over a three-dimensional Greenland geometry Morlighem and others (2017) (a), where the inter-

secting red line gives the boundary of the Greenland cross-section (b) used as one of the computational domains in

this paper.

When solving the free-surface equation (1) we set Dirichlet boundary conditions h(−L, t) = h(−L, 0)

on the left boundary, and h(L, t) = h(L, 0) on the right boundary. When solving one of the momentum

balances we impose no-slip boundary conditions on Γb and Γl, whereas on Γs we set stress-free boundary

conditions.

The relation between the number of horizontal mesh elements nx and horizontal mesh size ∆x that we

use to perform the experiments is given in Table 4.
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Greenland (2D) surface case

∆t vs. ∆x ∆t vs. ∆x

(no upwind viscosity) (with upwind viscosity)
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Fig. 9. (a) Scaling of the largest feasible time step ∆t∗ as a function of the horizontal mesh size ∆x when the

vertical mesh size is fixed. (b) The model error as a function of the wall clock runtime when the nonlinear Stokes

solution is taken as a reference. In all cases, the final time is fixed at t = 400 years. The horizontal mesh size is fixed

at ∆x = 2472 m.

Time step restriction scaling

In Figure 9 (left plot) we investigate the scaling of ∆t as a function of ∆x. We observe that in the case

of W-SIAStokes, the order of scaling is approximately 0.75, whereas in the W-SIAStokes-FSSA case, the

order of scaling is close to 0.5. The scaling in the W-SIA case is approximately of order 2, which is similar

as in all previous test cases. When W-SIA-FSSA is used the scaling behaves unpredictably, similar as in

Section . Among all the formulations, the time steps are the largest in the W-SIAStokes-FSSA.

Upwinding

After visualizing the computed solutions using all the considered SIA formulations we observed spurious

oscillations over the western part of the two-dimensional Greenland geometry (see Figure 10). For that

reason we in addition combined the SIA formulations with the first-order viscosity (also upwind viscosity)

operator added to the free-surface equation. The role of that operator is dampening of the spurious

oscillations. In Figure 9 (right plot) we compute the scaling of ∆t as a function of ∆x when the first-order
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viscosity operator is added to the free-surface equation, for each of the considered SIA formulations. We

observe that the scaling does not change when no FSSA terms are added W-SIAStokes or W-SIA. However,

the scaling, when the FSSA terms are employed, changes from linear (no first-order viscosity) to constant

(with first-order viscosity). The latter is favourable.

Long time simulations

In Figure 10 we, for each of the considered SIA formulations, plot the surface elevations after t = 400 years

of simulation time, at ∆x = 2472 m, and make a comparison towards the surface elevations computed using

the nonlinear Stokes problem (reference). We observe that all the SIA formulation solutions are overall a

good approximation to the reference solution. As stated in the previous paragraph, all solutions in the first

three rows of Figure 10 involve spurious oscillation at the western part of the two-dimensional Greenland

geometry. The plots in the last row of Figure 10 display the viscous solutions, and we observe that the

oscillations have disappeared. Similar behavior is observed for the numerical solutions when t = 10000

years in Figure 12

Run-time versus accuracy

In Figure 11 compute the ratio between the computational runtime (wall clock) and the modelling error.

For all formulations, we fixed the horizontal mesh size to ∆x = 2472 meters, and ran the simulation

until t = 400 years. The error is computed using the nonlinear Stokes solution as a reference, where

the time step is ∆t = 0.4 years. The maximum time steps for testing each SIA formulation is taken

in line with the largest feasible time step for ∆x = 2472 m from Figure 9. For W-SIAStokes-FSSA we

used ∆t = 249, 125, 60, 30, 10, 1, 0.5 years. For W-SIA-FSSA we used ∆t = 5, 2.5, 1, 0.5, 0.4 years. For

W-SIAStokes, we used ∆t = 1.37, 0.9, 0.65, 0.4 years. For W-SIA we used ∆t = 0.76, 0.6, 0.5, 0.4. When

W-SIAStokes-FSSA and W-SIA-FSSA are further augmented with the with upwind viscosity in the free-

surface equation we used ∆t = 800, 400, 200, 100, 50, 25, 12.5 years. We observe that the FSSA stabilized

weak formulations augmented with the upwind viscosity term have by far the best error vs. runtime ratio.
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Greenland (2D) surface case

Surface elevation comparison against the reference at t = 400 years

W-SIAStokes-FSSA W-SIA-FSSA

W-SIAStokes W-SIA

W-SIAStokes-FSSA-UV W-SIA-FSSA-UV

Fig. 10. Surface evolutions computed using different SIA formulations, after t = 400 years. The horizontal mesh

size is ∆x = 2472 m. The time steps take the largest feasible values for the given mesh sizes (see Figure 9).
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Greenland (2D) surface case

Error vs. Runtime
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Fig. 11. Approximate model error as a function of the wall clock runtime when the nonlinear Stokes solution is

taken as a reference. In all cases, the final time is fixed at t = 400 years. The horizontal mesh size is ∆x = 2472.

Computational cost estimates with the parameters inferred from the numerical

experiments

In the subsections above we gathered experimental data on the slope of the scaling of the time step

restriction as a function of the horizontal mesh size. In this subsection we use those slopes in place of the

parameter γ in , to speculate on the relation between computational work and the number of horizontal

mesh nodes m for the different momentum models. Across the experiments, we observe that W-SIA-FSSA,

W-SIAStokes, and W-SIAStokes-FSSA have a linear time-step constraint γ = 1. On Greenland with

upwind viscosity, we saw that γ can also be smaller than 1, but we here chose the worst-case scenario value

(γ = 1) for W-SIA-FSSA and W-SIAStokes. In the W-SIA model case, the worst case is γ = 2. The same

holds for the standard SIA model case. We gather these results in Table 5. In the W-Stokes-FSSA case,

we get γ = 1, whereas in the W-Stokes case, we have γ = 1 when the horizontal mesh size is small, and

γ = 0 for larger horizontal mesh sizes – the worst case is then γ = 1.

We observe that the SIA model has the lowest asymptotic cost scaling m2. The next best is W-SIAStokes-

FSSA with m2.5 when α = 1 (sparse direct solver). We argue that the computational cost is in the two

cases comparable when it comes to the asymptotic scaling as m → ∞. However, knowing that the SIA

model is a crude simplification of the Stokes model (4), and that the W-SIAStokes model only carries minor
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Greenland (2D) surface case

Surface elevations at t = 10000 years

W-SIAStokes-FSSA W-SIA-FSSA

W-SIAStokes-FSSA-UV W-SIA-FSSA-UV

Fig. 12. Surface elevations computed using the FSSA stabilized SIA formulations, with and without the first-order

(upwind) viscosity added to the free-surface equation. The surface elevations are evaluated at t = 10000 years. The

horizontal mesh size is ∆x = 2472 m. The time steps take the largest feasible values for the given mesh sizes (see

Figure 9).
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Model γ Computational cost estimate Evaluated with γ and d = 3

W-Stokes 1 CS m1+γ/(d−1)+α CS m1.5+α

W-Stokes-FSSA 1 CS m1+γ/(d−1)+α CS m1.5+α

W-SIAStokes 1 1
Niter

CS m1+γ/(d−1)+α 1
Niter

CS m1.5+α

W-SIAStokes-FSSA 1 1
Niter

CS m1+γ/(d−1)+α 1
Niter

CS m1.5+α

W-SIA 2ă d+1
(d+1)1+α

1
Niter

CS m1+γ/(d−1)+α 4
41+α

1
Niter

CS m2+α

W-SIA-FSSA 1 1
Niter

CS m1+γ/(d−1)+α 1
Niter

CS m1.5+α

SIA 2 CSIA m1+γ/(d−1) CSIA m2

Table 5. Computational cost estimate comparison across the different formulations of the shallow ice approximation

(SIA) model, when using the solution (the velocity) to advance the ice sheet surface in time. Here, m is the number

of mesh vertices in the horizontal direction, d is the number of dimensions, α denotes the choice of a linear solver, γ

is the time-step vs. mesh size scaling exponent, CS is a constant, related to the choice of the nonlinear solver, that

scales the number of nonlinear iterations used to solve the reference nonlinear Stokes problem (W-Stokes), and Niter

is the number of iterations to solve W-Stokes.

simplified elements (the viscosity) as compared to W-Stokes, the W-SIAStokes model is more accurate as

we could also observe from the runtime vs. error experiments figures. The computational cost in the W-

SIA model also scales as m1.5+α, but this does not hold for all the horizontal mesh size choices as observed

from the experiments. We note that Nnlin is large for large ∆t. This is due to that the nonlinear iteration

initial guess to compute the solution at time tk+1 is the solution from time tk, and the two solutions when

∆t = tk+1 − tk is large, are typically very different, implying that the nonlinear iteration count is large.

The time step sizes can also be restricted by some other components of an ice sheet model, such as the

temperature evolution or climate data. However, when these time step sizes are small, it is still not certain

that the velocity solution has to be updated at the same small time step as e.g. the temperature. This

study is out of the scope of this paper.

FINAL REMARKS

In this paper, we investigated the benefits when using the SIA momentum balance model (41) written

on different weak formulations. We referred to the weak SIA model (18) as W-SIA, the modified weak

SIA model alias weak form linear Stokes equations employing the SIA viscosity function as W-SIAStokes,

the weak full nonlinear Stokes problem as W-SIA, and to the standard (strong form) SIA model as SIA.
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When the different SIA forms were additionally stabilized by mean of the FSSA terms (23) we appended

an abbreviation FSSA to each of the form abbreviations.

The key outcomes of the present study are that in the considered test cases:

W-SIA-FSSA allows for large time steps with linear scaling, but limited to coarse ∆x.

W-SIAStokes and W-SIAStokes-FSSA have linear time step restriction scaling for all ∆x,

W-SIAStokes is numerically more robust and accurate compared to W-SIA for a small cost increase.

We expand on the list above in the paragraphs written below.

The first weak formulation is W-SIA (18). An immediate benefit when using W-SIA is that we were

able to add the FSSA stabilization terms (23) (W-SIA-FSSA). This improved the time step restriction from

quadratic (W-SIA) to linear (W-SIA-FSSA) scaling in terms of the horizontal mesh size ∆x when using

the W-SIA velocities for solving the free surface equation. Overall, the time step sizes in all the considered

test cases were increased by at least approximately 100-times as compared to the standard SIA formulation

time step sizes. However, we observed that when ∆x is small enough, the largest time step size behaviour

became unpredictable and started taking values similar to the standard SIA time step sizes. We have not

experimentally assessed the largest feasible time steps in 3D. However, according to our computational

cost estimates, the differences across SIA and W-SIA-FSSA are smaller in 3D.

As a remedy, we modified W-SIA to W-SIAStokes (19) by adding the originally neglected stress terms

back to W-SIA, but kept the SIA viscosity (13) intact so that W-SIAStokes remained a linear problem.

We observed predictable largest time step size behaviour. The time step scaled linearly in terms of ∆x

without even adding the FSSA stabilization terms to the weak formulation. After we added the FSSA

stabilization terms to W-SIAStokes (W-SIAStokes-FSSA) the scaling remained linear, but the largest time

step sizes have in general significantly increased, whereas the approximation error increased only slightly.

In one of the tests we compared W-SIAStokes to W-Stokes and found that the time step sizes, including

the scaling in terms of ∆x, were comparable.

When compared to the standard SIA model, W-SIA and W-SIAStokes models had a smaller error,

taking the W-Stokes solution as a reference. This held also when the FSSA stabilization terms were added

to the two weak formulations and very long time steps were used. The error vs. runtime ratio was also

favourable in the case of both weak formulations (with and without the FSSA stabilization) over the

standard SIA solution. Among the two, W-SIAStokes had a better error vs. runtime ratio, (with and
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without the FSSA stabilization). We note that the runtime measurements could differ depending on the

code implementation of the different SIA formulations.

To view the observed runtime measurements from another angle, we performed a theoretical computa-

tional cost estimation in Section . Based on that we conclude that the computational cost of W-SIA and

W-SIAStokes is comparable to that of the standard SIA model, in terms of the asymptotic behaviour, that

is, when the number of the horizontal mesh vertices is increased.

Throughout the paper we used no-slip boundary conditions for simplicity. The FSSA stabilization

terms are effective also when using the moderate slip boundary conditions Löfgren and others (2023).

We anticipate that glaciologists interested in the ice spin-up simulations of which the simulation length

is on the order of hundreds of thousands of years could benefit from using the W-SIA-FSSA model or the W-

SIAStokes-FSSA model over the standard SIA model. Note that our results are for isothermal simulations.

More studies are needed to investigate the time step restrictions related to temperature evolution and other

physical processes. However, we believe resolving the restriction due to the velocity-surface coupling is the

most difficult problem.

We speculate that the W-SIAStokes model is a good choice to replace the standard SIA model within

the scope of coupled models. One of them is the ISCAL (Ice Sheet Coupled Approximation Level) model

Ahlkrona and others (2016) where the standard SIA model and the W-Stokes model are used dynamically

over an ice sheet geometry, depending on the desired modelling accuracy. When both models are coupled

together, the time step restriction is bound to that of the SIA model (quadratic scaling in terms of ∆x),

whereas the W-SIAStokes model allows for linear scaling.
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VON NEUMANN STABILITY ANALYSIS

Without FSSA

Coupling

The solution to the strong form shallow-ice approximation (SIA)

− ∂p

∂x
+ ∂

∂y

(
µ

∂ux

∂y

)
= 0 (41)

−∂p

∂y
= ρg (42)

is in the isothermal case

p = ρg(h − y)

u1 = −1
2
A(ρg)3

(
∂h

∂x

)3 (
(h − b)4 − (h − y)4

)
,

u2 =
∫ y

b

∂ux

∂x
dy = 1

2
A(ρg)3

(
3
(

∂h

∂x

)2 ∂2h

∂x2

(
(h − b)4(y − b) + (h − y)5

5
− (h − b)5

5

)

+ 4
(

∂h

∂x

)3
(

(h − b)3
(

∂h

∂x
− ∂b

∂x

)
(y − b) + (h − y)4

4
∂h

∂x
− (h − b)4

4
∂h

∂x

))

defining H = (h − b) and cosindering only the surface y = h we get:

u1 = −1
2
A(ρg)3

(
∂h

∂x

)3
H4

u2 = 1
2
A(ρg)3

(
3
(

∂h

∂x

)2 ∂2h

∂x2

(
H5 − H5

5

)
+ 4

(
∂h

∂x

)3
(

H4 ∂H

∂x
− H4

4
∂h

∂x

))

Inserting the closed-form expressions for into the time discretization of the free-surface equation (34) reveals

the full coupled system

hk+1 − hk

∆t
+
(

−1
2

A(ρg)3
(

∂h

∂x

)3
(h − b)4

)
∂hk+γ

∂x
(43)

= 1
2
A(ρg)3

(
3
(

∂h

∂x

)2 ∂2h

∂x2

(
H5 − H5

5

)
+ 4

(
∂h

∂x

)3
(

H4 ∂H

∂x
− H4

4
∂h

∂x

))
+ as (44)

This is a highly non-linear equation and needs to be linearized before Fourier analysis can be used.
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Wihtout FSSA all h and H-terms which do not have a superscript (·)k+γ are approximated explicitely,

i.e. they all will have a superscipt (·)k.

Linearization

Following (Cheng and others, 2017) (where the ice thickness equation was analyzed) we consider a slab on

a slope with a small surface perturbation δ around an average state h̄ which is just an inclined plane. We

write:

h = h̄ + δ (for h related to velocity), H = H̄ + δ (45)

h = h̄ + δ̂ (for h explicitely in the free surface equation), H = h̄ + δ̂. (46)

Inserting in (44) yields

∂(h̄ + δ̂)
∂t

+

−1
2

A(ρg)3
(

∂(h̄ + δ)
∂x

)3

((H̄ + δ))4

 ∂(h̄ + δ̂)
∂x

= 1
2
A(ρg)3

3
(

∂h̄ + δ

∂x

)2
∂2h̄ + δ

∂x2

(
(H̄ + δ)5 − (H̄ + δ)5

5

)

+4
(

∂h̄ + δ

∂x

)3(
(H̄ + δ)4 ∂(H̄ + δ)

∂x
− (H̄ + δ)4

4
∂h̄ + δ

∂x

)+ as

Using that the second derivative of the steady state surface h̄ is zero we get

∂(δ̂)
∂t

+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

(H̄)4

 ∂δ̂

∂x
+

−1
2

A(ρg)3
(

∂(h̄ + δ)
∂x

)3

(H̄)4

 ∂h̄

∂x

+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

((H̄ + δ))4

 ∂h̄

∂x

= 1
2
A(ρg)3

3
(

∂h̄

∂x

)2
∂2δ

∂x2
4
5

H̄5 + 4
(

∂h̄ + δ

∂x

)3(
(H̄)4 ∂(H̄)

∂x
− (H̄)4

4
∂h̄

∂x

)
+4
(

∂h̄

∂x

)3(
(H̄ + δ)4 ∂(H̄)

∂x
+ (H̄)4 ∂(H̄ + δ)

∂x
− (H̄ + δ)4

4
∂h̄

∂x
− (H̄)4

4
∂h̄ + δ

∂x

)+ as

Ignoring higher order terms in δ furthermore yields
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∂(δ̂)
∂t

+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

(H̄)4

 ∂δ̂

∂x
+

−1
2

A(ρg)33
(

∂(h̄)
∂x

)2 (
∂(δ)
∂x

)
(H̄)4

 ∂h̄

∂x
+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

4H̄3δ

 ∂h̄

∂x

= 1
2
A(ρg)3

3
(

∂h̄

∂x

)2
∂2δ

∂x2
4
5

H̄5 + 12
(

∂h̄

∂x

)2
∂δ

∂x

(
(H̄)4 ∂(H̄)

∂x
− (H̄)4

4
∂h̄

∂x

)

+4
(

∂h̄

∂x

)3(
4H̄3δ

∂(H̄)
∂x

+ (H̄)4 ∂(δ)
∂x

− H̄3δ
∂h̄

∂x
− (H̄)4

4
∂δ

∂x

)+ as

Considering that the steady state thickness is zero further simplifies the expression into

∂δ̂

∂t
+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

H̄4

 ∂δ̂

∂x
+

−1
2

A(ρg)33
(

∂h̄

∂x

)2 (
∂(δ)
∂x

)
H̄4

 ∂h̄

∂x
+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

4H̄3δ

 ∂h̄

∂x

= 1
2
A(ρg)3

3
(

∂h̄

∂x

)2
∂2δ

∂x2
4
5

H̄5 − 3
(

∂h̄

∂x

)2
∂δ

∂x
H̄4 ∂h̄

∂x
+ 4

(
∂h̄

∂x

)3(3
4

H̄4 ∂δ

∂x
− H̄3δ

∂h̄

∂x

)+ as

rearranging and defining ∂h̄
∂x = Cα we get:

∂δ̂

∂t
− 1

2
A(ρg)3C3

αH̄4 ∂δ̂

∂x
− 3

2
A(ρg)3C3

αH̄4 ∂δ

∂x
= 6

5
A(ρg)3C2

αH̄5 ∂2δ

∂x2 + as

which we will write on the form

∂δ̂

∂t
− C1

∂δ̂

∂x
− C2

∂δ

∂x
= C3

∂2δ

∂x2 + as

with C1 = 1
2A(ρg)3C3

αH̄4, C2 = 3
2A(ρg)3C3

αH̄4 and C3 = 6
5A(ρg)3C2

αH̄5. OBS! C1 and C2 are negative!

We can discretize δ̂ using k or k+1 (the latter is better of course), while δ must be taken from time-step

k as it originates from the velocity.
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Fourier analysis

We will now consider the SIA solution in Fourier space. We will thus apply a Fourier transform, and

consider one frequency at a time

δk
j → δ̃keinxj = δ̃einj∆x

δk
j+1 → δ̃keinxj+1 = δ̃keinj∆xein∆x

The factor einj∆x will appear in every term of every equation, and we will hence divide by that and not

write it out from here on. We will also consider the finite difference discretization which best corresponds

to a P1 FEM discretization, meaning that second derivatives will be represented as central differences so

that ∂δ
∂x and ∂2δ

∂x2 are discretized and transformed as:

∂δ

∂x
≈ δj+1 − δj−1

2∆x
→ δ̃

ein∆x − e−in∆x

2∆x
= δ̃

2isin(n∆x)
2∆x

∂2δ

∂x2 ≈ δj+1 − 2δj + δj−1
(∆x)2 → δ̃

ein∆x − 2 + e−in∆x

(∆x)2 = −δ̃
4 sin2(n∆x/2)

(∆x)2

Inserting this into the linearized equation , assuming implicit handling of the free surface equation α = 1

itself and explicit handling of velocities, and setting as = 0 gives

δ̃k+1 − δ̃k

∆t
− C1δ̃k+1 2isin(n∆x)

2∆x
− C2δ̃k 2isin(n∆x)

2∆x
= −C3δ̃k

4 sin2(n∆x/2)
(∆x)2 .

Using Euler’s formulas and rearranging gives:

δ̃k+1
(

1 − ∆tC1
2isin(n∆x)

2∆x

)
= δ̃k

(
1 − ∆tC3

4 sin2(n∆x/2)
(∆x)2 + ∆tC2

2isin(n∆x)
2∆x

)
.

In order for each Fourier mode to stay bounded as the simulation runs, i.e. that |δ̃k+1| ≤ |δ̃k|, we require

that ∣∣∣1 − ∆tC3
4 sin2(n∆x/2)

(∆x)2 + ∆tC2
2isin(n∆x)

2∆x

∣∣∣∣∣∣1 − ∆tC1
2isin(n∆x)

2∆x

∣∣∣ ≤ 1. (47)
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The denominator value of the parenthesis of the left-hand side is always larger than one (which is due to

that α = 1). We thus only need to bound the nominator. The complex part of the nominator is bounded

as long as

|C2|∆t

2∆t
≤ 1,

while the real part needs to fulfil

∣∣∣∣∣1 − ∆tC3
4 sin2(n∆x/2)

(∆x)2

∣∣∣∣∣ < 1 ⇒ C3∆t

(∆x)2 < 0.5.

So depending on the balance between C2 and C3 we get a linear or parabolic time-step constraint. C3

is big for thick ice with flat slopes, i.e. for the dynamics typical of the interior of an ice sheet, we get a

parabolic constraint.

With FSSA

Coupling

As observed from (32), the addition of the FSSA terms makes the discretization of the pressure implicit:

p(x, y, t) ≈ ρg(hk+1 − y). (48)

The pressure yields u1 and u1 gives u2, so this implicit discretization will propagate to the velocity solution

in the following way

u1 = −1
2
A(ρg)3

(
∂hk+1

∂x

)3 (
(hk − b)4 − (hk − y)4

)
,

u2 =
∫ y

b

∂ux

∂x
dy = 3

(
∂hk+1

∂x

)2
∂2hk+1

∂x2

(
(hk − b)4(y − b) + (hk − y)5

5
− (hk − b)5

5

)

+ 4
(

∂hk+1

∂x

)3(
(hk − b)3

(
∂hk

∂x
− ∂b

∂x

)
(y − b) + (hk − y)4

4
∂hk

∂x
− (hk − b)4

4
∂hk

∂x

)

Then the final expressions at y = h are :
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u1 = −1
2
A(ρg)3

(
∂hk+1

∂x

)3

(Hk)4

u2 = 1
2
A(ρg)3

3
(

∂hk+1

∂x

)2
∂2hk+1

∂x2

(
(Hk)5 − (Hk)5

5

)
+ 4

(
∂hk+1

∂x

)3(
(Hk)4 ∂Hk

∂x
− (Hk)4

4
∂hk

∂x

)
and the fully coupled system is then

hk+1 − hk

∆t
+

−1
2

A(ρg)3
(

∂hk+1

∂x

)3

(Hk)4

 ∂hk+γ

∂x
(49)

= 1
2
A(ρg)3

3
(

∂hk+1

∂x

)2
∂2hk+1

∂x2

(
(Hk)5 − H5

5

)
+ 4

(
∂hk+1

∂x

)3(
(Hk)4 ∂Hk

∂x
− (Hk)4

4
∂hk

∂x

)+ as

(50)

Linearization

With the same approach as before we get

∂δ̂

∂t
+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

H̄4

 ∂δ̂

∂x

+

−1
2

A(ρg)33
(

∂h̄

∂x

)2(
∂δk+1

∂x

)
H̄4

 ∂h̄

∂x

+

−1
2

A(ρg)3
(

∂h̄

∂x

)3

4H̄3δk

 ∂h̄

∂x

= 1
2
A(ρg)3

3
(

∂h̄

∂x

)2
∂2δk+1

∂x2
4
5

H̄5 − 3
(

∂h̄

∂x

)2
∂δk+1

∂x
H̄4 ∂h̄

∂x
+ 4

(
∂h̄

∂x

)3(3
4

H̄4 ∂δk

∂x
− H̄3δk ∂h̄

∂x

)+ as

rearranging and setting ∂h̄
∂x = ∂h̄

∂x = Cα yields

∂δ̂

∂t
− 1

2
A(ρg)3C3

αH̄4 ∂δ̂

∂x
− 3

2
A(ρg)3C3

αH̄4 ∂δk

∂x
= 6

5
A(ρg)3C2

αH̄5 ∂2δk+1

∂x2 + as

which we will write on the form

∂δ̂

∂t
− C1

∂ ˆδk+1

∂x
− C2

∂δ

∂x
= C3

∂2δk+1

∂x2 + as
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So the difference in the linearized equation is that the second derivative is treated implicitly.

Fourier analysis

We get the same expression as without FSSA, only that the second derivative is now treated implicitly

δ̃k+1 − δ̃k

∆t
− C1δ̃k+1 2isin(n∆x)

2∆x
− C2δ̃k 2isin(n∆x)

2∆x
= −C3δ̃k

4 sin2(n∆x/2)
(∆x)2 .

Rearranging gives

δ̃k+1
(

1 − ∆tC1
2isin(n∆x)

2∆x
+ ∆tC3

4 sin2(n∆x/2)
(∆x)2

)
= δ̃k

(
1 + ∆tC2

2isin(n∆x)
2∆x

)

The absolute value of the parenthesis to the left is negative, and the one on the right-hand side has an

absolute value smaller than one if ∆t
∆xC2 ≤ 1 ⇒ ∆t ≤ ∆x

3
2A(ρg)3C3

αH̄4 , i.e. we get a linear time-step constraint.
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