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VECTOR QUASI-EQUILIBRIUM PROBLEMS

ABDUL KHALIQ AND SONAM KRISHAN

In this paper we establish existence theorems for vector quasi-equilibrium problems
in Hausdorff topological vector spaces both under compactness and noncompact-
ness assumptions.

1. INTRODUCTION

Quasi-equilibria constitute an extension of Nash equilibria, which are of fundamen-
tal importance in the theory of noncooperative games. By scalar equilibrium problem,
Blum and Oettli [3] mean the problem of finding

(1) x* € K such that f(x*,y) ^ 0 for all y e K,

where K is a given set and f : K Y. K -t R Ss & given bifunction. This problem in-
clude as special cases, variational inequality problems, fixed point problems, optimisa-
tion problems and complementarity problems, and has many applications in economics,
mathematical physics, game theory and operations research. Recently, Ansari [1], Tan
and Tinh [23], Kazmi [12], Konnov and Yao [17], Khaliq [13], Oettli and Sehlager [21],
Ansari, Schaible and Yao [2] and Giannessi [10] generalised problem (1) to vector val-
ued bifunctions. Also Noor and Oettli [20], Cubiotti [5] and Ding [6, 7], have studied
quasi-equilibrium problems. Such types of problems include many optimisation prob-
lems, Nash equilibrium problems, quasi-variational inequalities, quasi-complementarity
problems and others as special cases.

In this note we introduce and establish the existence of solutions of vector quasi-
equilibrium problems which unifies and generalises the corresponding results mentioned
above.
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2. PRELIMINARIES

Let X be a Hausdorff topological vector space and K be a non-empty convex
subset of X. We shall denote by 2K the family of all subsets of K, intx K the interior
of K in X, clx K the closure of K in X, and co (K) the convex hull of K. Let Y be
an ordered Hausdorff topological vector space and C : K —* 2Y be a multifunction such
that for each x € K,C(x) is a closed convex cone with intC(x) ^ </>, where intC(x)
denotes the interior of C(x). It is clear that for each x € K the cone C(x) can define
on Y a partial order <cx by y <cx z if and only if z — y € C(x). We shall write
y "t'Cx z if z — y € int C(x) in the case int C(x) ^ 0. Given a continuous multifunction
A : K -* 2K and a bifunction / : K x K -* Y, then we consider the following vector
quasi-equilibrium problem.

Find x* e K such that

(2) x' G cl* >l(x*) and f{x*,y) $ - inty C(x*) for all y € 4(x*).

When A{x) — K for each x E K, problem (2) was considered by Ansari [1]. When
A{x) = K and C(x) = P for each x € K, where P is a convex cone in Y, then
problem (2) was considered by Tan and Tinh [22] and Kazmi [12]. When C(x) = R+

for each x € K and Y = R, problem (2) was studied by Lin and Park [19]. When
A(x) = K, C(x) = R+ for each x € K and Y = R, problem (2) was studied by Blum
and Oettli [3], Konnove and Schaible [16] and Kalmoun [11].

We shall use the following definitions. Let S, T : K —¥ 2Y be multifunctions, then
the multifunctions clS,coS,5nT : K -+ 2X are denned as (clS)(x) = clS(x), (coS)(x)
= coS (x) and (5 D T)(x) = S(x) n T(x), for each x € K.

Let if be a closed and convex subset of X and C : K -¥ 2Y be a multifunction
such that for each x € K,C(x) is closed, convex, solid and pointed cone in Y. A
multifunction g : K —> 2Y is said to be Cx — convex if for each x,y € K and A € [0,1],

g(Xy + (1 - A)x) XCx \g(y) + (1 - A)5(x).

Let T : X -> 2 y be a multifunction. Then T is said to be upper semicontinuous
on A" if for each x € X and each open set U in Y containing T(x), there exists an
open neighbourhood V of x in X such that T(y) C {/, for each y 6 V.

The graph of T, denoted by G(T), is

G(T) = {(x,y) eXxY:x€X,y<= T(x)}.

The inverse of T, denoted by T~l is a multifunction from R{T), the range of T,
to X defined by

x e T~l{y) if and only if y £ T(x).
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Let X be a topological space and K a subset of X such that K = ( I Kn, where
n=l

{•Kn}j?Li ^ a n increasing sequence of nonempty compact sets in the sense that Kn

C Kn+i for all n £ N. A sequence {a;n}^Li m K is said to be escaping sequence ([4])
from K (relative to {ifn}£Li) if for each n there is an M such that k ^ M, xk £ Kn.

The following result is a special case of [8, Theorem 2].

THEOREM A. Let K be a nonempty compact convex subset of a Hausdorff topo-
logical vector space X. Suppose that A,clx A, P : K -¥ 2K are multifunctions such
that for each x £ K,A(x) is nonempty convex set, for each y £ K,A~1(y) is open
set in K, c\x A is upper semicontinuous, for each x £ K, x $. coP (x) and for each
y £ K,P~1(y) is open in K. Then there exists x* £ K such that x* £ CIK A(X*) and
A(x*)nP(x*) = <f>.

The following result is a special case of [9, Theorem 2].

THEOREM B. Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X, and D be a nonempty compact subset of K. Suppose that
A, P : K -* 2D and c\x A : K —> 2K are multifunctions such that for each x £ K, A(x)
is a nonempty convex set, for each y £ D, A~x(y) is an open set in K, c\x A is upper
semicontinuous, for each x £ K x £ coP (x), and for each y £ D, P~l(y) is open in K.
Then there exists x* £ K such that x* £ c\K A(x") and A(x*) D P{x*) = <j>.

3. EXISTENCE RESULTS IN COMPACT SETS

In this section, we prove an equilibrium existence theorem in a compact setting.

THEOREM 1. Let K be a nonempty compact convex subset of a Hausdorff topo-
logical vector space X and Y be an ordered Hausdorff topological vector space. Let
f : K xK ->Y be a bifunction. Let C : K -> 2Y and A : K -> 2K be multifunctions.
Assume that

1° for each x£K, f(x, x) = Q,
2° f is Cx — convex and continuous in the second argument,
3° the mapping W : K -> 2Y defined by W(x) = Y\ ( - inty C{x)) for each

x £ K, has a closed graph in K xY,
4° for each x £ K, C{x) is closed, convex and pointed cone in Y such that

inty C(x) is nonempty.
5° for each x £ K, A(x) is nonempty convex and for each y £ K, A~l(y)

is open in K. Also CIK A : K -> 2K is upper semicontinuous.

Then there exists x* £ K such that

x* £ cl/c A(x*) and f(x*,y) $ - inty C(x') for all y £ A{x*).
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PROOF: We define the multifunction P : K -» 2K by

P(x) = {y&K : f(x, y) G - inty C(x)}, for each x € K.

We show first that x ^ coP (x), for each x £ K. Suppose that x € coP (x), for some
x e K. Then there exists xo € K such that xo € coP (xo). This implies that xo can
be expressed as

xo - ^2Aij/i, with Aj > 0, ^ A j = 1, i = 1 , . . . ,n,

where {j/i : i € N} be a finite subset of K, I C N be arbitrary nonempty subset where
N denotes the set of natural numbers. This follows

f(xo, Vi) S - inty C(x0) for all i = 1,... , n.

Hence

(3)

By assumptions 1° and 2° we have

0 = f(xo,xo) <Cxo

Hence

(4) 5>i/(*oW) 6 C(*o).

Combining (3) and (4) yeilds

(5) J2 Xif(x°> Vi) e {- tor °(x°)} n

which is a contradiction. It remains to show that P*1^) is open in K, which is
equivalent to showing that [P~1(y)]° = K\P~1(y) is closed. Indeed we have

P-^y) = {x€K:ye P(x)} = {x € K : f(y,x) € - intyC(x)},

={x€K: f(y,x) $ - intyC(x)}.

Let u £ [ P - 1 ^ ) ] 6 . t h e closure of [P-^y)]" in K. We claim that u 6 [P
Indeed, let {XA}A€A be a net in [P- 1(j/)] such that {x^} converges to u. Then we
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have f(y,xx) <£ - i n t y C(x\) for each y G K, that is, f{y,x\) G W(xx) for all A € A.
Since W has a closed graph in K x y and / is continuous in the second argument,
we have f(y,u) £ W(u), that is, / ( y , u ) £ - i n t y C ( u ) . Hence u € [P 'Hl / ) ] 6 - Prom
assumption 5°, it follows that all the hypothesis of Theorem A are satisfied. Hence
there exists x* G K such that

x* G c\K A(x") and A(x*) n P(x*) = 0.

This implies that there exists x* G K such that

x* 6 c\KA(x*) and f(x*,y) $. - inty C(x')

for all yeA(x"). D

As an application of Theorem 1, we have the following results.

COROLLARY 1. If for each x,y e K, f(x, y) = $(y) - $(x), for some function
$ : K -+Y, then we can show that there exists x* £ K such that

(6) x* e c\K A(x') and $ ( x ' ) <Cx Hv) for all y € A{x*).

COROLLARY 2 . Let L(X, Y) be the space of all linear continuous operators from
X to Y. If for each x,y G K,f{x,y) = (T{x),y - x), where T : K -• L(X,Y) is a
function and (T(x),y) denotes the evaluation of the linear operator T(x) at y, then
we can show that there exists x* G K such that

(7) x* G clK A{X*) and (T(x*),y - x*) $ - inty C(x*)

for all y£A{x*).

REMARK 1. Theorem 1 improves and generalises [16, Theorem 3.1], [18, Lemma 2.1],
[19, Theorem 4], [15, Theorem 1], [14, Theorem 2.1] and many other results in the
literature.

4. EXISTENCE RESULTS IN NONCOMPACT SETS

In this section, we prove an equilibrium existence theorem in a noncompact setting.

THEOREM 2 . Let K be a nonempty subset of a Hausdorff topological vector
oo

space X, and Y be an ordered Hausdorff topological vector space. Let K = \^_j Kn
n=l

where {Kn}^=l is an increasing sequence of nonempty, compact and convex subsets of

K. Let f : K x K ^Y be a bifunction. Let C : K -> 2Y and A : K -> 2K be the

multifunction. Assume that

1° for each x€K, f(x, x) = 0,
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2° / is Cx — convex and continuous in the second argument,
3° the mapping W : K -> 2Y defined by W(x) = Y\ ( - inty C{x)) for each

x e K, has a closed graph in K x Y,
4° for each x € K, C(x) is closed, convex and pointed cone in Y such that

inty C(x) is nonempty,
5° for each x G K, A(x) is nonempty convex and for each y G K, A~1(y)

is open in K. Also cl/f A : K —* 2K is upper semicontinuous,
6° for each sequence {£„}£?_! in K with xn 6 Kn, n € N which is escaping

from K relative to {Kn)^L^, there exists m € N and ym € Km ("I A(xm)
such that for each xm S cljf A(xm),

f{xm, ym) 6 - inty C(xm).

Then there exists x* € K such that

x* e CIK A{X") and f(x*,y) $ - inty C(x') for all y € A(x*).

PROOF: Since for each n € N, Kn is compact and convex set in X, Theorem 1
shows for all n e N, there exists xn e Kn such that

(8) xn G CIK A(xn) and f(xn, z) £ - inty C(xn)

for all z € A(xn). Suppose that the sequence {xn)'^L1 is escaping from K relative to
{Kn}^L1. By assumption 6°, there exists m € N and zm € KmC\A(xm) such that for
each xm € clj<-j4(a:m),

/(a:m, •Zm) € - inty C(im) ,

which contradicts (8). Hence {xn}^L1 is not an escaping sequence from K relative
to {Kn}%L1. Thus using arguments similar to those used by Qun [22] in proving [22,
Theorem 2] there exists r € N and x* € Kr such that xn -¥ x* and f(x*,y) G W(x*).
Since cl/f A :—» 2K is upper semicontinuous with compact values, there exists x* £ K
such that

x* € clj<- J4(X*) and f(x*,y)i- inty C(z')

for all ye A(x*). D

THEOREM 3 . Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X, and D be a nonempty compact subset of K. Let Y be an
ordered Hausdorff topological vector space. Let f : K x K -> Y be a bifunction. Let
C : K —> 2 y and A : K -> 2D be the multifunctions. Assume that

1° for each x G K, f(x,x) = 0,
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2° / is Cx — convex and continuous in the second argument,
3° the mapping W : K -> 2Y defined by W(x) = Y\ ( - inty C(x)) for each

x G K, has a closed graph in K xY,
4° for each x G K, C(x) is closed, convex and pointed cone in Y such that

inty C(x) is nonempty.
5° for each x G K, A(x) is nonempty convex and for each y G K, A~l(y)

is open in K. Also cl/c A : K —> 2D is upper semicontinuous.

Then there exists x* G K such that

x* G cl*- A(x*) and f(x*,y) $. - inty C(x*) for allye A(x*).

PROOF: We define the multifunction P : K -+ 2K by

P(x) = {yeD: /(x, y) G - inty C{x)} for all x 6 K.

Then by using the same argument which we have used in proving Theorem 1, we have
x ^ coP (x) for each x G K and P~l{y) is open for each y G D. Thus all the conditions
of Theorem B are satisfied. Hence there exists x* G K such that

x* G clK A{x*) and A(x*) fl P ( x ' ) = <j>.

Which implies that there exists x* G K such that

x* G c\KA(x*) and /(x' ,y) g - in tyC(x ' )

for all yeA(x"). D
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