THE VELOCITY CHARACTERISTICS OF WR STELLAR WINDS

Allan J. Willis Department of Physics & Astronomy, University College London

The stellar winds of hot early-type stars are characterised spectroscopically by the presence of P-Cygni profiles, which are most marked for resonance transitions of common ions and generally occur in the UV, and typical resonance lines of SiIV, CIV, NV and OVI are well known P-Cygni signatures of stellar winds in luminous OB stars. Analyses of these profiles can lead to important information concerning the velocity, density and temperature structure of such winds. The WR stars have more developed stellar winds than OB stars, supporting higher particle densities at larger distances from the stellar "photosphere". Recently Barlow, Smith & Willis, hereinafter BSW, (1980), have derived reliable mass loss rates for 21 WR stars. The mean value is $4 \times 10^{-5} M_{\odot}/y$ and the rates are considerably larger than can be accomodated by soley radiative models. The, as yet unidentified, mechanism initiating the WR mass loss may also be important for Of stars (Lamers 1980). A determination of the properties of the WR stellar winds will provide diagnostics which might aid in identifying the mass loss mechanism, and P-Cygni profiles form one important data source for this purpose. With the advent of IUE many WR stars have become accessible to high resolution UV spectroscopy for the first time, and this paper briefly reports a first analysis of the UV (and visible) P-Cygni profiles observed in 10 WR stars. A more extensive treatment covering the full results for each star will appear in Monthly Notices. The UV spectroscopy was obtained using the high resolution IVE mode ($\Delta\lambda \simeq 0.1-0.2$ Å) in the wavelength range $\lambda\lambda$ 1150-3250. Details of the programme stars are given in Table 1. All the IUE spectra were extracted and reduced using programmes developed at UCL (Giddings 1980) which provide good echelleinterorder background subtraction, accurate tracking of the often distorted individual order spectra, and improved echelle-blaze correction..

1. P-CYGNI PROFILES: VELOCITY MEASUREMENTS

The following transitions, denoted Group I, encompassed in the IUE wavelength range are expected to show well-developed P-Cygni profiles: NV $\lambda 1238.2, \lambda 1242.8$ (WN); CIII $\lambda 1247.4$ (WC); CII $\lambda 1334.5, \lambda 1335.7$ (WC) SIIV $\lambda 1393.8, \lambda 1402.8$ (WN,WC); CIV $\lambda 1548.2, \lambda 1550.7$ (WN,WC),

27

C. Chiosi and R. Stalio (eds.), Effects of Mass Loss on Stellar Evolution, 27–33. Copyright © 1981 by D. Reidel Publishing Company.

HeII λ 1640.4 (WN,WC); NIV λ 1718.5 (WN); CIII λ 1908.7, λ 2296.7 (WC). For each profile the following velocity data have been derived: V corresponding to the violet-shifted edge velocity; V_{o} - corresponding to the eye-estimated centre of the violet shifted absorption component. In the case of doublets which are unresolved in terms of the breadths of WR spectral features, V $_{
m O}$ is measured from the mean doublet wavelength, and V_a from the shorter wavelength component. In addition to Group I lines, the WR stellar winds are sufficiently well developed that higher excitation lines at visible wavelengths often show P-Cygni profiles, denoted Group II lines, and combining these data gives a broad base of E.P. transitions. Velocity data for visible P-Cygni lines have been taken from Bappu (1973) and Seggewiss (1974), and these invariably refer to the central value of the absorption component, corresponding to V_{O} above. This is often the most accurate, and in many cases the only accurate datum available for features which are often weak and poorly defined. Published values of V_{O} have been supplemented by data measured from visible spectral tracings of WR stars available at UCL (Smith & Kuhi 1980, Willis & Smith 1980), including stars in common with Bappu and Seggewiss which allows confirmation that their tabulated velocities refer to V_{Ω} measurements.

2. CORRELATIONS OF Vo with E.P.

Correlations of the measured values of V_O with E.P. of the transition low level for groups I and II have been inspected for each star and some examples are shown in Fig 1. In each case a well defined correlation of $V_{\rm O}$ vs. E.P. is found with higher E.P. lines showing the lower velocities reflecting a lowering of excitation conditions in the WR winds with increasing velocity and, assuming an accelerating velocity field with stellar distance. The correlations V_0/E .P. are in some way a measure of the gradient of spectral excitation with velocity (distance) in the winds. A linear least squares fit to these data: $V_{0} = k + g_{0}(E.P.)$ has been determined for each star and the constants k and g (km/s/eV) in each case are given in Table 1. These fits have then been used to identify further, weaker, features observed in the UV spectra with P-Cygni absorption, producing a further set of $V_{\rm O}$ data for each star - Group III, which are also marked in Fig 1. Incorporating these new lines in the Vo/E.P. fits did not change the k and g constants significantly. The complete velocity measurements are given by Willis (1981).

In WC spectra Group III lines have been identified in the resonance lines of SiII,III; high excitation lines of CIII,IV and HeII (3-n). Violet-shifted absorption is observed in NV λ 1240 in HD 192103 (WC8). In WN spectra Group III features include the resonance lines of SiII,III in WN7,WN8 stars; the HeII (3-n) series and, in WN5,WN6 stars, the NIV λ 1486 intercombination line. CIII λ 1175 is observed in WN7,WN8 stars and in the WN8 star the resonance lines of AlIII and MgII exhibit P-Cygni profiles. In the case of WN stars (but not in WC) the HeII λ 1640 (Bal- α) line shows values of V₀ invariably higher than expected. This may be a reflection of the likely dominance of He in WR stars, with this line acting like a pseudo-resonance line. As noted by Seggewiss (1974) the visible

Fig 1: Correlations of V_O with E.P.: key: x are UV Group I lines, Δ are UV group III lines and \bullet are visible Group II lines

Table	1:	WR	wind	Vc	/E.P.	parameters:	k	(km/	s)	and	g	(km/	s/e	1)
-------	----	----	------	----	-------	-------------	---	------	----	-----	---	------	-----	----

S	STAR	SP	k	g	STAR	SP	k	g	
HD	50896	WN 5	1740	-14.8	HD 151932	WN7	1281	-20.2	
HD	191765	WN6	1748	-11.9	HD 96548	WN8	908	-10.8	
HD	192163	WN6	1541	-9.5	HD 165763	WC5	2106	-14.0	
HD	92740	WN7+0	1434	-24.4	HD 156385	WC7	1911	-12.2	
HD	93131	WN7	1747	-31.2	HD 192103	WC8	1302	-8.3	

Fig 2: Correlations of UV resonance line edge velocity, V_a, with I.P. in 3 WC stars. Similar trends are seen in WN7, WN8 stars.

CIV λ 5800 lines lie at higher values of V_o than expected, although in our data their behaviour is normal in WN5,WN6 and WC stars.

Only one star in the present sample, HD 92740, is a known binary (Niemela 1980a), and there is no indication in our data that its WR wind has been modified by binary membership: values of k and g for this star are bounded by those for the apparently single WN7 stars HD 93131 and HD 151932. The V_0/E .P. and V_a data for γ -2 Velorum (WC8+09I) (Willis 1981, Niemela 1980b) show an almost identical behaviour with HD 192103 (WC8) again indicating no binary effects in this case.

3. P-CYGNI ABSORPTION IN HI $\lambda1215$ or HeII $\lambda1215$: THE H/He RATIO

All the WR stars in the sample exhibit an absorption feature superimposed on the violet wing of the interstellar Ly- α profile, which can be attributed to wind absorption in either stellar HI (Ly- α) or HeII (Bal- β), either possibility giving essentially the same velocity shift. Since the former line arises from a 0.0 eV level but the latter from a 40.1 eV level, the correlations of $V_0/E.P.$ can be used to distinguish the origin. Detailed discussions for individual stars are given by Willis (1981): here we summarise the conclusions. Stars known to have some H from observations of the visible HeII Pickering decrement (HD 92740, HD 93131 HD 151932 and HD 96548) have clear evidence for HI Ly- α absorption. There is also some evidence for this in the WN6 stars. IN HD 50896 WN5 no HI wind column density is observed, but in this case low ionisation species are generally absent and a atmospheric HI content cannot be ruled out, with a similar situation holding for WC5,WC7 stars. IN HD 192103 WC8 HI absorption is absent but low ionisation SiII wind absorption is clearly seen. Since there is no spread in V with I.P. this points to a gross H underabundance in this star, which by implication may also be the case in less unambiguous cases with no apparent HI feature.

Fig 3: (a) Wind gradients,g, in 10 WR stars, (b) mean values of g for WN7, other WR classes and ζPup (04f). The possible location of intermediate Of-WN7 stars is marked ?

Table 2: WR terminal velocities, V_{a} ; \overline{V}_{a} and deduced masses

	STAR	V _∞	v	Vesc	R <mark>*(</mark> 8 ⁰)	M _* (M ₀)
HD HD HD HD HD HD HD	50896 192163 191765 92740 93131 151932 96548	2700 2400 2700 2600 2900 2400 1800	1812±82 1510±65 1800±75 1480±27 1760±110 1240±61 795±124	900 800 900 866 966 800 600	8.5 10.7 9.5 36.0 36.0 36.0 27.0	18 18 20 71 88 60 25
HD HD HD	165763 156385 192103	3700 3000 2000	2070±48 1900±43 1260±41	1233 1000 670	13.2	15

4. STELLAR WIND TERMINAL VELOCITIES

Terminal velocities, V_{∞} , can be estimated from the edge values, V_a , for the UV resonance lines, taking into account variations of V_a with I.P. For WC stars (Fig 2) (Conti and Van der Hucht 1979) and WN7,WN8 stars there is a marked trend for higher values of V_a with increasing I.P.. Thus edge velocities for CIV and NV have been adopted as V_{∞} for WC and WN stars respectively and these data are given in Table 2. A clear correlation of increasing V_{∞} with excitation subclass is apparent in WC stars, with a less marked trend in WN stars for which both the stellar sample and variations within a given subclass is greater.

Although we see a strong variation in V_a with I.P. there is not in V_o , implying that the former may not be due to ionisation stratification.

If it is assumed that the higher I.P. species are dominant throughout the wind then the $V_a/I.P.$ variations might be explained in terms of optical depth effects related to changing particle densities alone. In Table 2 we list the mean and r.m.s. values of V_0 for the UV resonance lines. Underhill (1980a,b) has estimated angular diameters and continuum radii for several WR stars in common with our sample. Using the approximate relation: $V_{\rm esc} \simeq 618~(M_{\star}/R_{\star})^2$ and the possibility that WR winds follow the law $V_{\infty} \simeq 3~V_{\rm esc}$ (Abbott 1978) one can deduce values of M_{\star} and these data are also given in Table 2. These assumptions can be checked by comparing the deduced masses with those determined independently. Niemela (1980a) finds $M(WN7) > 64M_0$ and $M(WC8) > 17M_0$ for HD 92740 and γ -2 Velorum respectively. These values are close to those derived above for HD 92740 and the single WC8 star HD 192103 and suggest that the relation $V_{\infty} \simeq 3V_{\rm esc}$ holds, implying that the acceleration of WR winds may be governed by the same mechanism (radiation pressure) as in hot luminous OB stars.

5. THE VELOCITY/E.P. GRADIENT IN WR AND O STARS

The correlations of V /E.P. shown in Fig 1 indicate a significant gradient in spectral excitation conditions in WR winds; higher values of g implying a more rapid fall with velocity. Values of g for each WR star are plotted vs. subclass in Fig 3a, which shows that for all WR subclasses except WN7, a similar value of g is apparent: the mean being -11.6 ± 2.3 km/s/eV. Values for the WN7 stars are higher and also show a large variation: the mean value being $g(WN7) = -25\pm5$ km/s/eV. This result shows a different wind excitation character between WN7 and other WR classes, of probable signifance in view of the proposal that WN7 stars may form an evolutionary link between the Of and WR stars (Conti 1976, Willis 1980). The WR mass loss rates derived by BSW show that in any such evolution the mass loss rate would have to increase and such a change could be expected to be accompanied by a change in the structure and development of the wind. Using published UV Copernicus spectra of

 ζ Pup (Morton 1976) we have derived the values k = 1900 km/s and g = -82 km/s/eV for this star. Values of g can now be plotted for an 04f star, the WN7 stars and other WR subclasses in Fig 3b. These data show a trend running from Of-WN7-WR, in line with that that might be expected in the proposed evolutionary scenario.

IUE observations of HD 15570 (04f) (Willis & Stickland 1980) and SK-65-22 (06If) (Nandy et al. 1980) show UV spectral characteristics between those of normal Of and WN7 stars and it is postulated that these stars are intermediately evolved objects. Clearly it is of interest to derive values of k and g for their winds to test whether they follow the suggested trend in Fig 3 (their possible location is marked "?" under the heading "O-W"). If such a trend were established it would greatly enhance the hypothesis that these various stellar classes are evolutionary linked.

REFERENCES

Abbott, D., 1978, Astrophys. J., 225, 893 Bappu, M.K.V., 1973, in IAU Symp. No. 49, p 59, D.Reidel, Holland Barlow, M.J., Smith, L.J., Willis, A.J., 1980, Mon.Not.R.Ast.Soc., in press Conti, P.S., 1976, Mem. Soc. R. Sci. Liege, Ser 6, 9, 193 Conti, P.S., Van der Hucht, K.A., 1979, in Symp: The First Year of IUE, ed A.J.Willis, UCL, London, p 280 Giddings, J.R., 1980, private communication Lamers, H.J.G.L.M., 1980, in Symp: The Universe in the UV, ed R.D.Chapman GSFC, USA Morton, D.C., 1976, Astrophys.J., 203, 388 Nandy,K., Morgan,D.H., Willis,A.J., Gondhalekar,P.M., 1980, Mon.Not.R. Ast.Soc., in press Niemela, V., 1980a, in IAU Symp. No. 83, p 291, D.Deidel, Holland Niemela, V., 1980b, in IAU Symp. No. 83, p 287, D.Reidel, Holland Seggewiss, W., 1974, Pub.Astron.Soc.Pac., 86, 670 Smith, L.F., Kuhi, L.V., 1980, unpublished Atlas of WR Line Profiles Willis, A.J., 1980, in Symp: The 2nd European IUE Conference, ed J.Mort & B.Battrick, ESA Sp. Pub., 157, p il Willis, A.J., 1981, submitted to Mon.Not.R.Ast.Soc. Willis, A.J., Stickland, D.J., 1980, Mon.Not.R.Ast.Soc., 190, 27p Willis, A.J., Smith, L.J., 1980, unpublished Coude Spectral Atlas of Southern WR stars Underhill, A.B., 1980a, Astrophys.J., 239, 230 ø Underhill, A.B., 1980b, private communication.