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SPECIAL A R T I C L E

Statistical methods applied in microbiology and epidemiology

Those who work in any area of public health are exposed to large amounts of
data and processed information. Some acquaintance with statistical methods can
make that exposure more profitable. The objectives of this paper are to describe
a suitable framework for governing scientific investigations which involve applied
statistics, and to set down guidelines for research workers preparing material for
publication. Final sections suggest further reading and give a brief description of
some of the statistical software available to assist analysis.

STATISTICS AXD STATISTICAL METHODS
Statistics in the form of gathered, numerical data are widely published and

provide much relevant information for medical and social studies and health
planning. The evolution of the gathering and publishing of these has been
described by Galbraith [1]. Current publications of tables and information are
listed in the Guide to Official Statistics [2].

The science known as ' statistics' deals not only with collecting data but with
their analysis and with making inferences from these analyses. Statistical methods
of data processing have grown from standard numerical procedures and statistical
theory has developed as a specialized branch of mathematics. Effective practical
application combines common sense with an objective approach to the
interpretation of data.

PLANNING INVESTIGATIONS
Research workers often say that they need help with their statistical work. A

study done in America, initially aimed at discovering computing requirements,
found that statistical help was a higher priority and that the greatest need was for
help with the planning of their research [3] so as to yield sound definitions and
methods of data collection, on which valid (statistical) inference could be based.

The foremost requirement of any study is the formulation of objectives. These
should include the specific objectives of the immediate project and the overall
objectives to which the present project is a stepping stone. For example, an initial
study of an outbreak of gastroenteritis may aim to find a common factor and
postulate the source of an outbreak, which might turn out to be a particular
restaurant. By the time this is achieved there may be further microbiological
evidence to help direct investigations. A second epidemiological study would then
be needed to detect which meals and food items were involved. Throughout, the
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common objective would be to find the source and terminate the outbreak and
prevent recurrence.

Second, consideration must be given to the type of study to be undertaken.
Broadly there are three possibilities: analysis of routine data, observational
studies and experiments.

Third, what data are to be collected and from whom; how are they to be
gathered, recorded and checked; what is to be done about non-responders, missing
data, inconsistencies and errors ? In what form must the data be recorded for
analysis ?

Fourth, what is the required size and cost of the study and are there any ethical
constraints ?

Pilot studies
Almost all investigations benefit from a pilot study to test thoroughly all

aspects of the study design and feasibility. This may be as big as 25% of the final
study, as suggested by Deming [4], and if successful these results can be
incorporated in the main study. This pilot phase must not be confused with
preliminary enquiries used to generate the hypothesis for a study. For example,
if a cluster of unusual cases requires an outbreak investigation then a few patients
may be interviewed in depth. If a possible common source of exposure emerges
from these interviews, then an objective study should be set up to investigate
whether this was the actual source of infection. However data from those early
patients should not be included as it could be argued that they bias the results.
Data from a true pilot study can be used to plan summaries (tabular and
graphical), and analyses of the main study. This may speed up the final
preparation of results. A study using routinely collected data may need no pilot
study.

Ideally much time and effort will be devoted to these planning stages, and this
should certainly be the case for studies of microbiological methodology and
epidemiological research other than urgent outbreak investigations. The latter
need speed in order to 'remove the handle from the pump' (see the work of John
Snow [5] and a finely judged balance must be struck between speed and reliability.

DATA AND ANALYSIS

Routinely collected data
Analysis of routine data has a long history going back to John Graunt who used

the London Bills of Mortality to show, in the seventeenth century, that mortality
was higher in infants than adults, and in rural than urban areas [6]. A recent
example is a study of deaths in England and Wales which showed a relative
increase in death rates among young, unmarried men which was attributed by the
author to the human immunodeficiency virus [7]. The data were from routine
death certifications and so the causes of death were those transcribed from the
death certificate to the death entry by the local Registrar. The observation of
excess mortality raised the hypothesis that AIDS or other manifestations of HIV
may be the cause, even though the numbers greatly exceeded the AIDS deaths
known to the voluntary surveillance scheme. AIDS or HIV were frequently not
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mentioned on the 'excess' death entries, either because the HIV infection was not
known or it was not thought to be relevant, or because it was wished to avoid
distress to the families.

To undertake studies of routine data it is essential to have a thorough
knowledge of the data, how they are collected and the errors or biases that can
affect them. The results may not be conclusive in themselves and a further study
may be required to explore the hypotheses thrown up by the initial study. This is
no reason to discourage researchers from publishing work which only raises
questions. Such papers can spur others to ask similar questions in other data sets
and to seek explanations.

Observational studies and experiments
The essential contrast between an observational study and an experiment lies

in the way 'experimental units' are allocated to the 'treatment groups'. In an
observational study we use the naturally occurring allocation process and observe
the outcome. Thus the health and mortality of men with a history of coal mining
may be compared with those of men living in the same area who never go into
mines. If adverse observations among the mining group were to be ascribed to
occupation then it would have to be assumed that the young men choosing a
career in the mines were as strong and healthy as the others. A prospective study
of school leavers showed this not to be correct and that, on average, physiologically
weaker boys went into mining. Thus in an observational study there is always the
possibility that observed differences may be due to some unknown or unsuspected
'confounding' factor.

In contrast, in an experiment the different treatment units (e.g. blood samples,
patients, herds of cattle) are randomly allocated to the different treatments (e.g.
serological methods applied to blood samples, vaccines given to patients,
antibiotics fed to herds). Randomization should ensure that any observed
differences between groups are due to the treatments. This does not mean that no
effort should be made to ensure that treatment groups are as similar as possible
in the light of common sense. Thus, in a clinical trial, patients with similar severity
of disease or of similar age group should be equally distributed to the treatment
groups. However, at the final stage of allocation randomness must be applied
using a mechanical random process, such as tossing a coin or using a computer
generated random number, or random identification which cannot be influenced
by a human agent. ' Randomly allocated' should not be used as a euphemism for
arbitrarily allocated.

For a more detailed description of the differences between, and design of,
experimental and observational studies see the work of Galbraith and Palmer [8].

Despite the inherent drawbacks of observational studies, they can be important
for preliminary investigations and essential for problems in which experiments are
impossible. The latter will include situations such as outbreak investigations and
studies of patterns of infection among farm animals. The potential problems of
interpreting differences between groups (the ' confounding' factors) can sometimes
be anticipated or prevented by the study design and the data collected.
Observational studies divide broadly into two groups - retrospective and
prospective.
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In a retrospective study one starts with the outcome (e.g. infected or not
infected) and compares the histories of the two groups to identify causal factors.
If one outcome is more readily identified (e.g. the infected) then a case-control
study design can be designed by finding uninfected control subjects which are
matched for possible confounding factors. If a whole population is being studied
(e.g. a retrospective cohort study of a school population) then the histories should
include data on potential confounding factors so that they can be accounted for
in the analysis. Retrospective studies have the advantage of being fairly simple,
easy, inexpensive and fast. But problems may arise if retrospective information is
unobtainable and responses to questionnaires may be biased by knowledge of
subsequent events (or mistaken impressions from the media!)

Prospective cohort studies (but not retrospective cohort studies) observe a
group of subjects and follow them up to see the outcome. They avoid the
disadvantages of collecting data retrospectively but subjects may be lost to
follow-up, the studies are often lengthy, costly, and may be overtaken by events.
They are more often used in chronic than in communicable disease epidemiology.

Data
The quality of any study depends on the data. In most investigations interest

centres not so much on the observations themselves as on the group they
represent. Thus the observations are viewed as a sample (ideally random) from
some population. For example, in a study comparing test methods for detecting
HIV antibody the samples should represent the infected population. From this
point of view non-representation of large parts of the population (or, in another
example, non-response in a survey) can result in serious lack of information. In
surveys of the prevalence of tuberculosis it was well known that the disease was
much more prevalent among people who were unwilling to be X-rayed. Recent
surveys of HIV have shown that seroprevalence is often higher among patients
who do not consent to be tested than among those who do [9]. Such potentials for
bias must be acknowledged in any conclusions.

The use of microcomputers to enter and check data as they become available
can greatly enhance the quality of a study. Missing data, errors and inconsistencies
can be identified rapidly so that there is the best possible chance of making
corrections, which might not be the case if data processing does not commence
until all results are assembled.

Tabulations and graphs
The first analytical step is to prepare simple tabulations of each variable, or, in

an outbreak investigation, comparing cases and non-cases variable by variable.
Such tabulations have two great virtues. They may reveal discrepancies in the
data which must be corrected and they usually reveal the essential messages which
the data contain. While formal inference proceeds from hypotheses via observation
and experiment to new hypotheses, it is important to stand aside, as it were, to
look and listen to what the data have to say. Graphical displays, which can readily
be constructed with modern software, can assist in this. This first stage should
never be omitted.
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Analysis
In some situations the simplest tabulations may be all that is necessary, but

frequently more analysis is required to bring out or confirm the essential features
of the data. Analysis is both theoretically and practically analogous to filtering
radio waves to obtain clear messages concealed by a jumble of irrelevant noise in
the raw signal or data. Calculating an average corresponds to passing the data
through a simple filter after which the population mean emerges plus some minor
residual error - the scale of which is measured by the appropriate standard error.
More sophisticated analysis may enhance the signal.

Informed assessment can be made only if the data have been analysed critically,
often from the position of 'devil's advocate'. For example, analysis of food
consumption histories in a community where there has been an outbreak of food
poisoning can throw up spurious associations. If the illness is predominantly
among the young then all foods favoured by this age group can appear to be
candidates for the guilty vehicle of infection. It is therefore essential that analysis
first takes into account age. Critical assessment of correlations must always seek
to separate direct from indirect associations, and acknowledge doubt if this is not
possible. Any disease with a seasonal pattern in its epidemic curve will show
significant correlation with meteorological variables, but this is not to say that it
is cause and effect, with weather influencing spread. This will be suspected only if
the correlation remains after the seasonal pattern has been taken into account, as
is illustrated with total mortality in England and Wales which has been closely
studied to estimate the effects of influenza epidemics and weather. Deaths have a
strong seasonal pattern, with peaks in the winter period, but if the temperatures
fall lower than the average for that time of year then deaths have been shown to
increase correspondingly, and thereby demonstrating the direct influence of
temperature on mortality [10].

It may be easy to measure a large number of variables in observational studies
and experiments. One is therefore tempted to embark on multivariate analysis to
explore how all the various factors interact. Twenty years ago the computations
involved were usually prohibitive, but now they can be done on a desk top
microcomputer. However, there are serious problems which must be faced when
attempting multivariate analysis, and which are seldom discussed in users' guides
to statistical computer packages.

The first is the size of multidimensional space. For example, suppose you have
a cohort study of 100 people of whom 30, say, had the infection and there appeared
to be age and sex effects which needed to be taken into account when looking for
potential risk factors. Even if the subjects are divided into two age groups, split
at the median, and exactly half are males then there are only about 25 people to
study in each age/sex group. In effect each 25 then have to be sub-divided
according to exposure or non-exposure to the risk factor, and the two attack rates
compared. The statistical method will in fact combine the evidence within each
age/sex group, but clearly the data are being stretched quite thinly over just three
variables even with a sample size of 100.

A multivariate analysis aiming to explore the effects of many variables is
essentially a large numbers game and should use as large a data set as possible.
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There may inevitably be areas in the multivariate ' space' which are empty of
observations and the researcher should be aware of this and what effect it has on
the conclusions. In taxonomy this may be a positive help - for example, the
observation that certain sub-species never react to a certain test. In other
situations it can restrict decisions. For example, in a study of levels of antibody
in populations of mixed vaccinated, partially vaccinated, and unvaccinated people,
the effects of vaccine batch and time interval from last dose can be thoroughly
evaluated only if there is a good spread of observations.

Inference
For the present purpose we wish to separate two areas of statistical techniques.

The first is the calculating and displaying of associations found from the data. The
second is interpreting, or making inferences, from the calculations. In practice the
two areas are intimately entwined.

'Posterior' belief depends on the combination of 'prior' belief plus the data, as
Bayes proved over a hundred years ago. The problem is that people's prior beliefs
vary and are often ill-formed and consequently different people will draw different
conclusions from the same data. Fisher's scheme of 'fiducial' inference and the
more widely used scheme of Neyman-Pearson hypothesis testing are designed to
circumvent this problem. The researcher can report on whether the 'null
hypothesis' that factor A has no effect on outcome B is or is not rejected by the
data at a specified level of probability. Such statements are perceived as objective,
although both the choice of data (or its method of collection) and the conviction
produced by the statistical test result do depend on one's prior beliefs more often
than we care to admit. Furthermore, the correct use of Neyman-Pearson theory
requires that a specific hypothesis (usually referred to as Ho) is formulated before
the data are collected and studied, and is then compared with a specific alternative
hypothesis (Hj). Thus the scheme of inference starts with prior beliefs that either
Ho or Hj is true.

After the analysis one may come to the correct conclusion but, because we are
dealing with a probability model, two sorts of error are possible. First we can
mistakenly reject Ho and adopt H1 when the former is true - this is known as an
error ' of the first kind' and the P value of the test indicates the probability of this
error and is usually desired to be ^ O05. Second, we can accept Ho when H1 is true
- this is called an error 'of the second kind'. The tendency for research workers
and statisticians not to specify the alternative hypothesis precisely means that
second type errors are all too common. Studies are set up which could be certain
of detecting only the grossest risks or associations and trials are done with so few
subjects that only a miracle would produce a significant result. The danger is that,
after a few such studies, a null hypothesis can enter the corpus of 'scientific
knowledge' on the basis of no positive evidence whatever. For example, a
laboratory method may be changed because it seems as good as the old one when
comparability has not really been assessed.

To avoid errors of the second kind the studies must be large enough to ensure
that Ho will almost certainly be rejected if the alternative hypothesis is true, even
when the results of the study are, by chance, more favourable to Ho. The
probability of correctly rejecting Ho in favour of Hj is called the power of the
significance test. Power should be considered at the planning stage of a study,
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when thought may also be given to practical significance. Very large studies may
detect small but statistically significant differences which are of little or no
practical importance.

The formal setting up of hypotheses can be stultifying because there are
situations where neither hypothesis is true. This has led to the increasing use of
confidence intervals in the presentation of such results. These show a range of
parameter values with which the data are almost certainly compatible. If the
confidence interval includes the null hypothesis, then Ho is not rejected by the
data. But the width of the confidence interval immediately shows whether the
study has any chance of detecting a realistic alternative to Ho. Thus if Ho and any
reasonable Hj are both included in the confidence interval, then this study is too
small to be useful.

An example might be an experiment to compare the detection rate of a new
diagnostic technique with the current method. The null hypothesis would be that
d (the difference between the two rates) is zero and it might be desirable to know
whether the new test was capable of detecting ^ 5 % more cases among the
experimental population. If the study produced confidence interval for d of — 3 %
to + 9 % then the null hypothesis could not be rejected, but neither could you
exclude the possibility that the test method was slightly worse or appreciably
better.

The use of multiple significance tests to test the many associations that may
emerge when data are analysed is not strictly included within the formal theory
so far described. Such tests can serve as an informal guide to associations that
should be investigated in subsequent studies. In particular, if 20 independent 5%
significance tests are applied then at least one may be significant by chance.
Similarly, 20 independently calculated confidence intervals are likely to exclude
Ho at least once by chance. Statistical theory does provide for multiple significance
tests in the general context of multivariate analysis. However, tests of general
hypotheses are much weaker than tests of specific hypotheses. So if a specific
hypothesis can be formulated a priori then this should be done at the planning
stage.

When decisions are being made about the conclusions of a study, then power,
error and multiple testing should all be considered within the assessment of the
statistical part of the evidence.

Non-parametric methods

The theory of inference generally requires that the data can be viewed as a
sample from a known distribution - e.g. Normal (bell shaped). Bacterial counts
seldom are, but may be so on a logarithmic scale. The essential, initial data
summaries should show whether data appear Normal on the appropriate scale.
Some bacterial counts, such as total coliform organisms in water samples, often
turn out to be skewed right on the original scale but skewed left on a logarithmic
scale. In such a situation it may be best to employ statistical methods which do
not assume anything about the shape of the distribution - the so-called 'non-
parametric' or 'distribution-free' methods which include special tests for
correlation and the x2 tests on contingency tables. An objection to such methods
has been that they provide only tests of null hypotheses. More recently methods
have been developed for constructing confidence intervals corresponding to non-
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parametric tests, but the computer programs for such work are only just becoming
available.

Small numbers (particularly in the context of outbreak investigations)
In an outbreak investigation speed is important if there is to be a chance of

halting the outbreak or preventing another. Case-control or cohort studies of the
ill and the well need to be thoughtfully planned but implemented quickly. They
must be of sufficient size to stand a chance of detecting the cause without being
so large that results are delayed. Very often the size is governed by the size of the
outbreak which, if small, will necessitate interviewing multiple controls per
patient to give a worthwhile sample size (although there is little to be gained by
having more than four or five controls per case). It is important to remember that,
in the investigation of an outbreak, we are usually seeking one cause and one
source. The size of the risk may be irrelevant. Chronic disease epidemiology
generally involves multiple causative factors and the researcher will be seeking to
identify each risk factor and to measure their relative importance. Text-book
equations for estimating relative risk and giving confidence intervals for the
estimates are often approximate and rely on large sample sizes, such as are studied
in chronic disease epidemiology. Researchers should use more accurate methods
when there are less than 20 cases. Some appropriate methodology has been
developed over recent years [11,12]. Large sample methods and most small
sample methods can be applied using the statistical computer software listed in
the final section of this paper.

Worked examples of methods described by Breslow and Day and applied to
outbreak investigations have been published by one of the authors [13]. Small
numbers and multiple, variable numbers of matched controls are not uncommon
in the work of the Communicable Disease Surveillance Centre. Outbreak
investigations can be demanding and are sometimes done under extreme pressure
and many hypotheses will be tested during the statistical epidemiological studies.
The theoretical weakness of such multiple testing is usually counterbalanced by
complementary, independent evidence such as microbiology. Nevertheless, there
are occasions when a decision has to be made to issue a health warning or
withdraw a foodstuff from sale based on statistical evidence alone. In such a
situation it is very important to avoid errors of the first kind. Close attention will
be paid to the probability of Ho. One example involved a telephone survey over
a weekend. Statistical analysis was done on the Sunday night and the implicated
product was voluntarily and effectively withdrawn from sale on the Monday [14].
The subsequent isolation of salmonella from the product confirmed that the
correct decisions had been made.

Practical issues in outbreak investigations
In an outbreak investigation there will often be microbiological and other

scientific evidence to be weighed as well, which will play a part in the final decision
making. The drawing of conclusions, therefore, will not usually be confined to the
statistical analysis. Indeed there may be occasions when microbiology demon-
strates the source of an outbreak when statistical analysis does not. The dread of
any epidemiologist who is investigating a food poisoning outbreak is to trace it
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back to a single function and find that there was a set menu. Thus almost everyone
present will have eaten every item. The tabulated columns of numbers ill and not
ill who did not eat such food will be so small that 'no statistical association' will
be found between illness and exposure to any particular food. This is a situation
where the report of the investigation should make it clear that the power of
statistical tools was so small that nothing conclusive could have been expected. It
should not be reported to imply that there was 'no risk' associated with eating
each item, rather that it was not a suitable area for analytical statistics. The hope
is that the microbiologists will find the relevant organism in left-over food.

An example of how statistical analysis, in a more complicated outbreak
investigation, tied in with microbiological and engineering results is the outbreak
investigation of Legionnaires' disease associated with Stafford District General
Hospital in 1985 [15]. The epidemiological surveys revealed two different patterns.
The cases of Legionnaires' disease appeared to have been exposed especially to one
part (the Out Patient Department) of the hospital. The large numbers of staff who
had not had Legionnaires' disease, but who had acquired legionella antibody, had
spent much of their work time in one wing of the hospital. This was the wing which
included the OPD but extended to the two floors above. Multivariate analysis was
used to demonstrate independent associations with each floor. Engineering and
microbiology studies identified two possible routes by which an aerosol
contaminated with legionella could have entered the hospital. One route would
have contaminated the entire wing but the other was concentrated into the OPD.
Evidence from individual disciplines would have been inconclusive, but put
together it was possible to hypothesize the history of the epidemic, because results
could be pieced together like a successful jigsaw puzzle.

PREPARATION FOR PUBLICATION
Statistical analysis is an essential part of many epidemiological and micro-

biological studies. If the analysis is planned according to the aims of the study and
kept as simple as is sensible, then it should be possible to convey the results to a
wide audience. The following points should be considered:

(a) If possible special data should be collected in line with the aims of the study
and the statistical analysis should be planned ahead. Even if routine data have to
be used, the direction in which the analysis will go should be thought through in
advance to ensure objective assessment.

(b) A thorough scrutiny of the data must be made. Tables or graphs should be
used to present the actual data or, at the very least, informative summaries. These
will set the scene and show whether subsequent analyses are justified. They will
also indicate whether the quantity of data will be powerful enough for the
investigations required. They should give some indication of the quality of the
data - whether there are too many ' not knowns' or under representation in some
groups. If any of the sample sizes is very small then it is unrealistic to expect much
or any evidence from statistical analysis.

(c) Statistical results should be qualified to illustrate their accuracy. Thus
confidence intervals should be quoted for all parameters estimated (using a
sensible and not excessive number of digits or decimal places). If it is appropriate
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to quote a probability then this should be presented numerically and not grouped
into 'significant' or 'not significant'.

(d) The statistical analysis is an aid to decision making. Critical assessment of
the data and complementary evidence from other disciplines should be presented
to show how the authors reached the final conclusions.

FURTHER READING
The application of statistical methods to medical research was pioneered by

Bradford Hill at the London School of Hygiene and Tropical Medicine. His classic
text book 'Principles of Medical Statistics' is still worth careful reading [16]. More
recent publications include Armitage and Berry [17], Bailey [18], Kirkwood [19]
and Breslow and Day [11].

STATISTICAL SOFTWARE
All but the simplest statistical analysis is facilitated by using a microcomputer.

Extensive software is available for use with PC machines (e.g. IBM or similar)
which use the MS DOS operating system. The ST ATX ACT [20] package is very
easy to use and provides exact analyses of contingency tables, confidence intervals
for odds ratios and combined analyses of stratified contingency tables. MIXITAB
[21] handles data tabulated in columns as on a work sheet; calculations generate
new columns or summary statistics which can be printed or stored for further
calculations. Most standard statistical analyses are included, e.g. t test to compare
columns of data, a non-parametric equivalent, simple and multiple regression. It
is particularly suitable for relatively small data sets involving less than a thousand
rows of up to ten column variables.

EPI-IXFO [22] developed at the United States Centers for Disease Control,
Atlanta, with WHO support, is distributed free and is an attractive proposition
and will handle larger studies. It is used widely in outbreak investigations. It
includes three components - handling data entry, statistical calculations and
report writing. Data entry can be arranged to correspond to a form or
questionnaire so that data can be entered directly from the documents. Data may
be verified bjr double entry (as was done with punch cards), and cross-checked for
validity. Large data sets using several forms with complex relationships can be
handled. The package includes facilities for the statistical analyses most
appropriate to epidemiological studies as well as a word processor for designing
forms and creating reports which can incorporate the results of analyses.

HARVARD GRAPHICS [23] provides publication quality figures, when
printed on a laser printer. These can be incorporated into text produced by a word
processing package such as WORD PERFECT [24].

Many larger studies are analysed with the statistical package for the social
sciences, SPSS [25], or the more advanced general package SAS [26]. both of which
are now available in versions for microcomputers. SPSS includes a data entry
section. Alternatively a standard data base or a word processor can be used to
create files of data which can then be read into packages already mentioned, or
other advanced programmes. However facilities for checking and validating data
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vary and may be limited with some data bases. Among the advanced statistical
packages the most important are GLIM [27] which constructs regression and
logistic regression models for qualitative and quantitative data, and EGRET [28],
which implements the analytical methods developed by Breslow and Day [11].
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