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0. Introduction. The concept of weak relative-injectivity of modules was intro-
duced originally in [10], where it is shown that a semiperfect ring R is such that every
cyclic right module is embeddable essentially in a projective right R-module if and only if
R is right artinian and every indecomposable projective right R-module is uniform and
weakly R-injective. We show that in the above characterization the requirement that
indecomposable projective right R-modules be uniform is superfluous (Theorem 1.11). In
this paper we further the study of weak relative-injectivity by considering the class of
rings for which every right module is weakly injective relative to every finitely generated
right module. We refer to such rings as right weakly-semisimple rings. The class of right
weakly-semisimple rings includes properly all semisimple rings and is a subclass of the
class of right QI-rings. A ring R is said to be a right QI-ring if every quasi-injective right
R-module is injective. QI-rings have been studied in (2], [3], [4], [6], [7], [8], [11], among
others.

In [4], Boyle characterizes right Ql-rings as being those right noetherian rings for
which every uniform cyclic right module is strongly prime. In contrast, we show that a
ring R is right weakly-semisimple if and only if R is right noetherian and every finitely
generated uniform right R-module is compressible (Theorem 2.5). While it is not clear at
this time if there exist any non-weakly-semisimple right Ql-rings, we show that a
two-sided noetherian and hereditary ring is right weakly-semisimple if and only if it is
right QI (Theorem 3.1). This implies that an example of a right QI-ring which is not
weakly-semisimple will necessarily be either a counter-example to Boyle’s conjecture or a
right QI-ring which is not left QI.

Since a weakly R%injective semiprime right Goldie ring must be left Goldie, we are
able to apply some results of Kosler [11] to get that a right weakly-semisimple ring with
restricted right minimum condition is left weakly-semisimple (Theorem 3.4).

Throughout this paper all rings have 1 and all modules are unital right unless
otherwise stated. The injective hull of the right R-module M is denoted by E(Mg) or
simply E(M) if there is no ambiguity.

1. Weak relative injectivity.

1.1. DerintTion. Given two right R-modules M and N, we say that M is weakly
N-injective (WNi) if for every homomorphism f : N— E(M) there exists a monomorphism
o:M— E(M) and a homomorphism f: N— M such that f = of. Notice that this concept
generalizes that of M being N-injective in which case we require o to be the inclusion
map.

1.2. LEMMA. Given two right modules M and N, the following statements are
equivalent:
(i) M is weakly N-injective;
(il) for every submodule K of N, M is weakly N/K-injective;
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(iii) for every submodule K of N, and for every monomorphism h:N/K— E(M),
there exists a monomorphism o:M— E(M) and a monomorphism h:N/K— M such that

P

h = oh.
Proof. Straightforward.

When we say that M is weakly N-injective, we are saying more than “every quotient
of N which is embeddable in E(M) is embeddable in M.” This is the subject of our next
lemma.

1.3. LemMMA. Given two right modules M and N, M is weakly N-injective if and only
if for every submodule Q of N and for every monomorphism o:N/Q— E(M):

(i) there exists @ monomorphism ¢':N/Q— M, and

(ii) for every complement K of o'(N/Q) in M there exists K' = E(M) such that
K'No(N/Q)=0and K'=K.

Proof. Let 0:N/Q— E(M) be a monomorphism. By Lemma 1.2(iii), there exist
monomorphisms «:M— E(M) and ¢’ :N/Q — M such that o0 = ao’. Thus (i) holds. Let
K be a complement of ¢'(N/Q) in M; then K'= a(K) is isomorphic to K and
independent from o(N/Q) proving that (ii) is also necessary. Conversely, let us assume
that (i) and (ii) hold and let 0:N/Q— E(M) be a monomorphism. By (i) there exists
o':N/Q—M. Let K be a complement of o'(N/Q) in M. Using (ii), we get a
monomorphism «:0'(N/Q)® K— E(M). Since ¢’'(N/Q)® K<’ M, we may extend a
to a monomorphism B:M— E(M). It is straightforward that fo’ = 0. Using Lemma
1.2(iii) gives us that M is weakly N-injective.

1.4. CoroLLARY. For a uniform module M, M is weakly N-injective if and only if
every quotient of N which is embeddable in E(M) is embeddable in M.
Proof. Obvious.

1.5. REMARK. Let neZ". A module M is weakly R"-injective if and only if for
every x,,Xy,...,X,€E(M) there exists a submodule X of E(M) such that X is
isomorphic to M and x,,x,,. .. ,x, € X.

Proof. Obvious.

A right module M is injective if and only if it is weakly N-injective for every right
module N. With this in mind, we make the following definition.

1.6. DeriniTiON. A right R-module M is weakly-injective if it is weakly R"-injective
forallneZ".

In view of Lemma 1.2, M is weakly-injective if and only if it is weakly N-injective for
every finitely generated right module N.

1.7. ProposITION. Let M, N and P be right modules.

(a) If M and N are weakly P-injective, then so is M © N.

(b) If M is weakly P-injective and M c' N, then N is weakly P-injective.

(c) It is possible for M@ N to be weakly P-injective while M is not weakly
P-injective.

(d) It is possible for M c' N, N weakly P-injective but M not weakly P-injective.

Proof. See [10].
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1.8. Lemma. Let U be M-injective with M weakly R-injective, then U is E(M)-
injective.

Proof. If U is not E(M)-injective, then by Zorn’s lemma there exists a submodule A
of E(M) and a homomorphism f : A— U which cannot be extended to any f’: B— U with
B a submodule of E(M) containing A properly. Let b € E(M)/A. Notice that A <’ E(M);
so C=bRNAF#0. Let f,: C— U be the restriction of fto C. As M is weakly R-injective,
bR embeds in M. Therefore, U is bR-injective and f; extends to g:bR— U. Define
f':A+bR— U by f'(a+br)=f(a) +g(br), whenever a € A, r € R. Since f' extends f,
this is a contradiction. Therefore, U is E(M)-injective.

1.9. LEMMA. A weakly R-injective quasi-injective right module M is injective.
Proof. Take U =M in Lemma 1.8.

1.10. ProrosITION. Let R be an artinian ring and P =eR be a projective indecom-
posable module which is weakly R-injective. Then P is uniform.

Proof. We aim to show that £ = E(P) is indecomposable. Let E=A® B, A+0,A
indecomposable. Let aq€ A, ao#0. By weak R-injectivity there exists a, + b, € E such
that r(a, +b\)=r(a,)Nr(b))=(1—-€)R =0 and ay € (a, + b;)R. So, actually a,R c a,R.
Inductively a)Rca,Rc...c(a,+b,)R =eR, where n is larger than or equal to the
composition length of eR. Thus, there exists i such that ;R =a;, R, i.e. there exists
x € r(b;4,) such that a; = a;, ,x, and there exists y € R such that a;y = a,,. It follows that
a;,\Xy = a;,,; hence 1 —xy € r(a;,,). Since xy € r(b,,,), we get that r(a;,,) + r(b;s,) =R.

Now r(a;1))=(1—e)R®eRNr(a;y,) and r(b,y)=(1—-e)RD®eRNr(b;,,). It
follows that (eRNr(a;y,))+ (eRNr(b;y))=eR. Since eR is local, this implies that
r(a,.;)=R or r(b;,;)=R. However, a;,,#0; hence r(b;.;)=R and consequently
b;+, =0. Thus eR =a;, R = A, proving that eR is uniform.

Proposition 1.10 yields the following theorem which sharpens the characterization of
right CEP-rings in [10].

1.11. THEOREM. A semiperfect ring R is right CEP if and only if R is right artinian
and every projective indecomposable right R-module is weakly R-injective.

1.12. LemMA. A cyclic right module M is weakly-injective if and only if it is weakly
R*injective.

Proof. One implication is trivial. Suppose that M is weakly R>-injective and let us
proceed by induction. Let M be weakly R" '-injective and let x,, x5, . .., x,_, € E(M).
By the inductive hypothesis, there exists xR ¢ E(M) such that x,,...,x,_; € xR. By the
weak RZ-injectivity of M, there exists X = M such that x, x, € X. Hence x,x,,...,x, €
X, concluding our proof.

1.13. ExampLEs. (i) A ring R is quasi-Frobenius if and only if it is right artinian and
right weakly-injective.

(ii) A domain R is right weakly R-injective if and only if it is right Ore and right
weakly-injective if and only if it is two-sided Ore.

(i) Every semiprime right and left noetherian ring is weakly-injective.
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(iv) A ring R is right self-injective if and only if it is right continuous and right
weakly-injective.
(v) A semiprime right weakly-injective right Goldie ring is left Goldie.

Proof. (i) One implication is trivial. Let R be right artinian and weakly-injective.
Let x € E(R). By weak-injectivity there exist X € E(R), X =R, such that 1, x € X. Then
Rc X and X is right artinian and isomorphic to R. We conclude that R =X and,
therefore, x € R. So R = E(R) is quasi-Frobenius.

(ii) Let R be a domain. The injective hull of R is its Utumi ring of quotients Q.
Assume that R is right Ore then Q is the classical right ring of quotients of R, a division
ring. The result is obvious. On the other hand, if R is right weakly R-injective, for every
q € Q there exists ¢’ € Q with r(q') =0 and r € R such that g = q'r. This implies that Q is
again a domain and, therefore, being self-injective, a division ring. Thus, R is right Ore.
If R is two-sided Ore, then Q is both a right and a left ring of quotients for R. Let
41,4, € Q; then there exists r,,r,,s € R such that ¢,=s5"'r;,g,=s""r,. Since r(s™")=
0,9,,9,€s5™ 'R, using Lemma 1.12 we conclude that R is right weakly-injective. The
converse follows from (v).

(iii) Let R be a right and left noetherian semiprime ring. Then E(Rg)= E(xR) =
r.Qu(R)=1.Q4(R) where r. Q4(R) and /. Q,(R), respectively, denote right and left
classical ring of quotients of R. Let q,, g, € Q; then there exists r,, 7, € R, s € R/{0} such
that g, =s~'r,, g, = s 'r,. We conclude that R is weakly-injective by using Lemma 1.12.

(iv) While one implication is trivial, the converse requires only a weak version of
condition C, in the definition of continuity [13], namely “a submodule which is
isomorphic to a summand must be closed”. Let R be weakly-injective satisfying the above
condition. Let x € E(R). There exists X < E(R) which is isomorphic to R and contains 1
and x. Since the submodule R of X is isomorphic to X and, therefore, X also satisfies the
above hypothesis, R is closed in X. On the other hand, R + xR c E(R) hence R + xR is
an essential extension of R in X. We conclude that xeR, and so R=E(R) is
self-injective.

(v) Let R be a semiprime right Goldie ring. Then the injective hull of R is its
complete ring of right quotients Q. Assume R is weakly-injective and let g € Q. There
exists g’ € Q such that r(q’) =0 with 1,q € ¢'R. It follows that ¢’ =r~"' for some r € R
and there exists s € R such that g = r~'s. Therefore, Q is a left ring of quotients for R and
hence R is left Goldie.

2. Rings all of whose modules are weakly-injective. We recall that a right module
M is weakly-injective if it is weakly R"-injective for all n € Z* (Definition 1.6). Remark
1.2 implies that M is weakly-injective if and only if it is weakly N-injective for every
finitely generated right R-module N.

2.1. DeFINITION. A ring R is said to be right weakly-semisimple if every right module
M is weakly-injective.

2.2. LEMMA. A right weakly-semisimple ring is right Q1.
Proof. Obvious from Lemma 1.19.

Before introducing our next lemma, remember that a right module M is said to be
compressible if for all nonzero N ¢ M there exists a monomorphism from M into N [9].
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2.3. Lemma. Given an indecomposable injective right module E, the following
statements are equivalent:
(i) every submodule of E is weakly-injective;
(ii) every cyclic submodule of E is weakly-injective;
(iii) every finitely generated submodule of E is compressible.

Proof. Clearly (i) implies (ii). Assume (ii) and let M be a finitely generated
submodule of £ and N a non-zero submodule of M. Let x e N,x#0. Since xR is
weakly-injective, M is embeddable in xR and hence in N. Let us now assume (iii). Let N
be an arbitrary non-zero submodule of E. Suppose xe N, x #0. If x,,x,,...,x,€

E(N) = E by the compressibility of M, where M = f] x;R, there exists an embedding o of
i=1
M into xR = N. Using Corollary 1.4, we conclude that N is weakly-injective.

2.4. LEMMA. A right noetherian ring R over which euery finitely generated R-module
is weakly-injective must be weakly-semisimple.

Proof. Let M be a right R-module and x,,x,,...,x,€ E(M). Let K= f] xR It
i=1

follows that E(M)= E(K)® L for some submodule L of E(M), and E(K) has finite
Goldie dimension. Therefore, M N E(K), being essential in E(K), also has finite Goldie
dimension. Let N be a finite direct sum of uniform cyclics which is essential in M N E(K).
By hypothesis N is weakly-injective. Thus there exists an automorphism o: E(K)— E(K)
with K ¢ 6(N) ¢ o(M N E(K)). Clearly ¢ extends to an automorphism 7 of E(M) which
is the identity on L. This automorphism satisfies that K ¢ (M), concluding our proof.

2.5. THEOREM. The following conditions on a ring R are equivalent:

(i) R is right weakly-semisimple;

(i) every finitely generated right R-module is weakly-injective and R is right
noetherian;

(iii) every cyclic right R-module is weakly R*-injective and R is right noetherian;

(iv) every uniform cyclic right R-module is weakly R*-injective and R is right
noetherian; .

(v) every finitely generated uniform right R-module is compressible and R is right
noetherian.

Proof. From Lemma 2.2 and the fact that every right QI-ring is right noetherian, it
follows that (i) implies (ii). Clearly (ii) implies (iii) and (iii) implies (iv). The implication
(ii)) > (i) is Lemma 2.4. Since every finitely generated module over a right noetherian ring
contains essentially a finite direct sum of cyclics, using Proposition 1.7(a) and (b) and
Lemma 2.3, we obtain that (iv) implies (ii). The equivalence of (iv) and (v) follows from
Lemma 2.3.

2.6. REMARK. Theorem 2.5 is specially interesting when compared to a result by
Boyle which characterizes right QI-rings as being those right noetherian rings for which
every uniform cyclic is strongly prime [4] in the following sense. A module M is strongly
prime [1] if it satisfies one of the equivalent conditions:

(i) M is contained in every quasi-injective submodule of its injective hull, or
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(i) for all x,yeM, there exists r,r,...,r,eéR such that r(x)=

r(yrl’yrZ’ e :yrn)'
It can be shown easily that every compressible module is strongly prime.

In relation to Theorem 2.5 and Remark 2.6, it would be interesting to characterize
right noetherian rings in which every cyclic right R-module is weakly R-injective and right
noetherian rings in which every cyclic uniform right R-module is compressible. Also,
could the condition of R being right noetherian be removed from any of the equivalent
statements (ii) through (v) in Theorem 2.5? While it does not seem likely, we do not have
a counter-example.

3. The noetherian hereditary case. Every right Ql-ring is a right noetherian right
V-ring. Also, it is well known [3] that for a (two-sided) noetherian hereditary ring R, the
following conditions are equivalent:

(i) R is a right V-ring;

(i) R is a left V-ring;

(iii) R is a right Ql-ring;

(iv) R is a left QI-ring.

Our next theorem extends this list of equivalent statements to include right and left
weakly-semisimple.

3.1. TueoreM. Let R be a hereditary noetherian ring. Then the following are
equivalent:
(i) R is a right Ql-ring;
(ii) R is a right weakly-semisimple ring;
(iii) R is a left weakly-semisimple ring.

Proof. It suffices to show that (i) implies (ii). Without losing generality, we may
assume that R is simple [12]. Reasoning as in (2, Theorem 5], we may also assume that R
is a right (and left) Ore domain. Let M be a finitely generated uniform right R-module.
Since every finitely generated right module over a hereditary noetherian prime ring is a
direct sum of a projective and a torsion module [S, Theorem 2.1], M is either projective
or torsion. If M is projective, then, being uniform, M must be embeddable in R. It
follows, because R is a domain, that M must contain (essentially, since M is uniform) a
submodule isomorphic to R. Also, R is weakly-injective (Example 1.13(ii)); therefore, by
Proposition 1.7, M is weakly-injective. If M is torsion, then M is artinian [5, Theorem
1.3]). Hence, since simple modules are injective, M =Soc M is injective. Our result
follows from Theorem 2.5.

3.2. CoroLLARY. For a hereditary noetherian ring R, the following conditions are
equivalent:
(i) R is (right) weakly-semisimple;
(i) every (right) R-module is weakly R-injective;
(iii) domains of injectivity in Mod-R are closed under injective hulls;
(iv) R is (right) OL.

Proof. (i) implies (ii) is trivial. Lemma 1.8 yields that (ii) implies (iii), and Lemma
1.11 gives (iii) implies (iv). By Theorem 3.1, (iv) is equivalent to (i).
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3.3. REMARK. While we do not know if the classes of right QI-rings and right
weakly-semisimple rings coincide, Theorem 3.1 yields that a right QI-ring which is not
right weakly-semisimple would necessarily be either a counter-example to Boyle’s
conjecture or not left QI. Boyle’s conjecture that every right QI-ring is right hereditary
and the question of whether a right QI-ring must be left QI are two of the most important
open problems dealing with QI-rings.

Theorem 3.1 enables us to use some criteria developed originally by Faith [§] and
extended by Kosler [11] to the question of right-left symmetry of the condition of
weak-semisimplicity. Kosler’s criterion says that a simple right noetherian right V-ring R
which satisfies the restricted right minimum condition is a left V-ring if and only if R is left
Goldie. A ring satisfies the restricted right minimum condition if R/K is artinian whenever
K is an essential right ideal of R.

3.4. THEOREM. If a ring R satisfies the restricted right minimum condition and is right
weakly-semisimple, then R is also left-weakly-semisimple.

Proof. The proof in [11, Theorem 4.2] basically shows that under restricted right
minimum conditions a left Goldie right noetherian right V-ring is two-sided noetherian
and hereditary. Our result follows from Example 1.13(v) and Theorem 3.1.
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