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Why QCD?

A possible approach to a theory like QCD is just to state its definition, and then immediately
proceed deductively. However, this begs the question of why we should use this theory and
not some other. Moreover, the approach is quite abstract, and the initial connection to the
real physical world is missing.

Instead, I will take a quasi-historical approach, after first stating the theory. Such an
approach is suitable for newcomers since their background in QCD is like that of its
inventors/discoverers, i.e., little or none. There were several lines of development, all of
which powerfully converged on a unique theory from key aspects of experimental data. Of
course, we see this much more readily in retrospect than was apparent at the time of the
original work, and my account is selective in focusing on the issues now seen to be the
most significant. A historical approach also enables the introduction of ideas and methods
that do not specifically depend on QCD: e.g., deeply inelastic scattering and the parton
model.

I have tried to make the presentation self-contained, in summarizing the relevant exper-
imental phenomena and their consequences for theory. The reader is only assumed to have
a working knowledge of relativistic quantum field theory. Inevitably there are issues, ideas,
experiments, and historical developments which will be unfamiliar to many readers, and for
which a complete treatment needs much more space. I give references for many of these. In
addition, there are several references that are global to the whole chapter and that the reader
should refer to for more detail. A detailed historical account from the point of view of a
physicist is given in the excellent book by Pais (1986). A good account of the phenomena
is given by Perkins (2000). Standard books on quantum field theory also refer to them;
see, for example, Sterman (1993); Peskin and Schroeder (1995); Weinberg (1995, 1996);
Srednicki (2007). A comprehensive account of experimental results is given by the Particle
Data Group in Amsler et al. (2008); this includes up-to-date authoritative summaries of
measurements and their theoretical interpretation.

Naturally, QCD is not the whole story; there are known electromagnetic, weak and
gravitational interactions, and presumably if we examine phenomena at short enough dis-
tances, beyond the reach of current experimental probes, we are likely to need new theories.
But within the domain of the strong interaction at accessible scales, there is an amazing
uniqueness to the structure of QCD.
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2.1 QCD: statement of the theory 9

2.1 QCD: statement of the theory

An expert in quantum field theory could simply define QCD as a standard Yang-Mills
theory with a gauge group SU(3) and several multiplets of Dirac fields in the fundamental
(triplet) representation of SU(3).

In more detail, QCD is specified by its set of field variables and its Lagrangian density
L. The Dirac fields ψρaf are called quark fields, and the gauge fields Aα

μ are called gluon
fields. On the quark fields the indices ρ, a, and f are respectively a Dirac index, a “color”
index taking on three values, and a “flavor” index. The gauge group acts on the color index.
Currently the flavor index has six known values u, d, s, c, b, t (or “up”, “down”, “strange”,
“charm”, “bottom”, and “top”). On the gluon field, the color index α has eight values,
for the generators of SU(3), and μ is a Lorentz vector index. The important role played
by the color charge leads to the theory’s name, “quantum chromodynamics” or QCD. Of
course, the names “color” and “flavor”, and the names of the quark flavors, are whimsical
inventions unrelated to their everyday meanings.

To deal with the renormalization of the UV divergences of QCD (Sec. 3.2) we distinguish
between bare and renormalized quantities (fields, coupling and masses). We define QCD
by a Lagrangian written in terms of bare quantities, which are distinguished by a subscript
0 or (0). The gauge-invariant Lagrangian is the standard Yang-Mills one:

LGI = ψ̄0(i /D −m0)ψ0 − 1

4
(Gα

(0) μν)2. (2.1)

The full Lagrangian used for perturbation theory will add to this some terms to implement
gauge fixing by the Faddeev-Popov method; see Sec. 3.1. The covariant derivative is given
by

Dμψ0
def= (

∂μ + ig0t
αAα

(0) μ

)
ψ0, (2.2)

where tα are the standard generating matrices1 of the SU(3) group, acting on the color
indices of ψ . The gluon field strength tensor is

Gα
(0) μν

def= ∂μAα
(0) ν − ∂νA

α
(0) μ − g0fαβγ A

β
(0) μA

γ
(0) ν, (2.3)

where fαβγ are the (fully antisymmetric) structure constants of the gauge group, defined so
that [tα, tβ] = ifαβγ tγ . The Lagrangian is invariant under local (i.e., space-time-dependent)
SU(3) transformations:

ψ(0) ρaf (x) �→ [
e−ig0ωα(x)tα

]
ab

ψ(0) ρbf (x), (2.4a)

Aα
(0) μ(x)tα �→ −i

g0
e−ig0ωα(x)tαDμeig0ωα(x)tα . (2.4b)

The quark fields have been redefined, as is always possible (Weinberg, 1973a), so that
the mass matrix is diagonal:

ψ̄0m0ψ0 = m0 uū0u0 +m0 d d̄0d0 +m0 s s̄0s0 + . . . (2.5)

1 tα = 1
2 λα , where the standard λα are given in, e.g., Amsler et al. (2008, p. 338).
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10 Why QCD?

Here separate symbols are used for the fields for different flavors of quark: u0 ρa = ψ0 ρau,
etc.

The renormalized masses of the quarks are given in Table 2.2 below, along with the
masses of the other elementary particles of the Standard Model. Large fractional uncertain-
ties for the light quark masses arise because quarks are in fact confined inside color-singlet
hadrons, which gives considerable complications in relating the mass parameters to data.

For their electromagnetic interactions, we need the quark charges:

ed = es = eb = −1/3, eu = ec = et = 2/3, (2.6)

in units of the positron charge.
The only significant freedom in specifying QCD is in the set of matter fields, the quarks.

At the time of discovery of QCD, only the u, d and s quarks were known; the c quark came
slightly later. The discovery of the b and t quarks needed high enough collision energies
to produce them. There have been many conjectures about possible new heavy quarks,
both scalar and fermion, possibly in non-triplet color representations, but searches so far
have been unsuccessful (Amsler et al., 2008). The decoupling theorem (Appelquist and
Carazzone, 1975) for heavy fields ensures that we can ignore the heavy fields if experimental
energies are too low to make the corresponding particles.

A complete theory of strong, electromagnetic, and weak interactions is made by com-
bining QCD with the Weinberg-Salam theory to form the Standard Model of elementary
particle physics, summarized in Sec. 2.7.

2.2 Development of QCD

Why we should postulate the QCD Lagrangian and study QCD as the unique field theory
for the strong interaction? An answer to this question should be at a high level and broad,
since QCD is a high-level theory, intended to cover a broad range of phenomena, i.e., all of
the strong hadronic interaction.

Starting in the 1950s, as accelerator energies increased, elementary particle physics
gradually became a separate subject, distinct from nuclear physics. Several, not entirely
distinct, strands of research led to the discovery of QCD in 1972–1973:

1. The quark model of hadron states.
2. The (successful) search for a theory of the weak interactions of leptons, including the

weak interactions of hadrons.
3. Current algebra, i.e., the analysis of the currents for the (approximate) flavor symmetries

of the strong interaction, including their relationships to the electroweak interactions of
hadrons.

4. The theoretical development of non-abelian gauge theories.
5. Deeply inelastic lepton scattering and the measurement that the strong interaction is

quite weak at short distances.
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2.2 Development of QCD 11

It is almost paradoxical that many of the key issues involved the weak and electromagnetic
interactions; much of the research on pure strong-interaction phenomena was not critical
to the discovery of QCD.

2.2.1 Quantum fields

Always present was the notion of quantum field theory. Soon after the discovery of quantum
mechanics, it was apparent that quantum fields formed an appropriate candidate framework
in a search for an all-encompassing underlying theory of known interactions.

First, the basic dynamical variables are local in a field theory, so that there are separate
variables to discuss, for example, an experiment in Illinois yesterday and an experiment
in Switzerland tomorrow. This happens even in non-relativistic quantum theory. A theory
of interacting quantum Schrödinger fields is readily constructed; this theory can be shown
(Fetter and Walecka, 1980; Brown, 1992) to be equivalent to a collection of ordinary
quantum mechanical theories in terms of N -body wave functions, but now for any N and
with specified inter-particle interactions. In contrast, an ordinary Schrödinger equation
for a wave function concerns, for example, only one particular electron and proton. But
a quantized field theory can be formulated to describe all possible electrons and nuclei.
Thus it encompasses all of atomic and molecular physics, not to mention chemistry, etc.
Of course to take account of radiative phenomena, one also needs the electromagnetic
field.

Since quantum field theories are intrinsically many-body theories, they are suitable for
the construction of quantum theories that obey Einstein’s special relativity. Once sufficient
energy is available in a collision, particles can be created, so that a framework where
particles are conserved is wrong. Fig. 2.3 below serves as an icon of this: it shows the
multiparticle outcome of one particular positron-proton collision.

Furthermore, it is natural in relativity that fields obey local field equations, written in
terms of fields and their derivatives. A non-local interaction would involve action at a
distance, and would require enormous conspiracies to avoid faster-than-light propagation,
etc.

To obtain a quantum field theory, it is sensible to start by postulating fields that correspond
to observed particles, and then asking what interactions, governed by non-linear terms
in the field equations, give observed phenomena. This approach was successful for the
electromagnetic interaction and gave us the theory called QED. With a long delay to allow
the full formulation of the needed non-abelian gauge theories, this approach was also
successful for the weak interaction. Considerable restrictions were applied to the candidate
theories, concerning self-consistency and renormalizability.

But for the strong interaction, there was a failure of this obvious approach, where one
searches for a theory written in terms of fields for observed hadrons, initially the nucleons
and pions. In retrospect, the reason is obvious: hadrons are composite, with the size of the
bound states (Hofstadter, Bumiller, and Yearian, 1958), around 1 fm = 1× 10−15 m, being
much less than the range of the strong nucleon-nucleon potential and the inter-nucleon
separation in atomic nuclei (Hofstadter, 1956).
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12 Why QCD?

During the 1960s it became conventional, instead, to suppose that something other than
a quantum field theory was needed for the strong interaction, an ultimately fruitless quest.2

See the later chapters of Pais (1986) for a historical account.

2.2.2 Quark model

In strong-interaction physics very many unstable particle-like states, or resonances, have
been discovered (Amsler et al., 2008). They are generically termed hadrons. No fundamental
distinction between the unstable and stable hadrons appeared to exist, stable hadrons simply
being those that have no available decay channels. One natural hypothesis is that these
states are bound states of more elementary particles, which turned out to be the actual
case. The establishment of this view, starting in the 1950s, was quite non-trivial, however.
Tightly coupled with these developments was the discovery that the strong interaction is
approximately invariant under an internal symmetry, called SU(3) flavor symmetry; see,
e.g., Gell-Mann (1962).

Within QCD, SU(3) flavor transformations are applied to the u, d and s quark fields,
and would give an exact symmetry if the masses of the u, d and s quarks were equal. We
get a useful approximate symmetry because the masses (and hence the mass differences) of
these lightest three quarks are substantially less than a “normal hadronic mass scale”, char-
acterized by the proton mass. The c, b and t quarks (not known until after the construction
of QCD) are singlets under SU(3) flavor transformations.

Flavor SU(3) symmetry is to be carefully distinguished from the later-discovered color
symmetry group, which is also mathematically SU(3).

Gell-Mann (1964) and Zweig (1964a, b) constructed the quark model, in which baryons
(like the proton and neutron) are bound states of three quarks, and mesons are bound states
of a quark and antiquark. For the hadrons known at the time, they used three spin- 1

2 quarks
(u, d and s), with the fractional charge assignments of (2.6).

Now the u, d and s quarks are in the triplet representation of flavor SU(3). It follows
(Gell-Mann, 1964) that baryons can be classified into multiplets that are singlet, octet and
decuplet under SU(3), while the mesons are singlets and octets. Prior to the discovery of
a satisfactory theory of the strong interaction, i.e., QCD, it was useful to investigate the
consequences of the flavor symmetry abstractly, independently of any assumptions about
a quark substructure or a Hamiltonian; see Sec. 2.2.4. Patterns of mass splitting within
hadron multiplets can be understood quantitatively by using perturbation theory applied to
symmetry-breaking terms in the strong-interaction Hamiltonian, with the hypothesis that
symmetry-breaking terms are in an SU(3) octet. These terms are now identified with quark
mass terms in QCD. See Amsler et al. (2008, Ch. 14) for a recent review and further
references.

Each flavor of quark appeared to need three varieties (called “colors”) in order
for the spin-statistics theorem to hold. This is seen most easily for the �++(1232)

2 Although the quest for a non-QFT theory of the strong interaction failed, it did lead to the invention of string theory,
which now leads a prominent life as a candidate fundamental theory of everything including gravity.
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baryon.3 It is a ground-state baryon of spin 3
2 consisting of three u quarks, so both the

space and spin wave functions are totally symmetric.4 But a side effect of the color hypoth-
esis is that each meson (e.g., π+) has an extra eight color states, which are not observed.
An extra assumption is needed to prohibit the extra states.

Furthermore, there is a complete failure to detect isolated quarks in high-energy col-
lisions, which requires the hypothesis that quarks are permanently confined in hadrons.
Quark confinement obviously makes it harder to deduce from data the correct bound-state
structure.

Thus there was a continued introduction of new hypotheses, which led to great scepticism
(Zweig, 1980). Nevertheless, the situation was the unusual one of a correct general idea
being forced by data into a unique implementation. In favor of the quark model, calculations
with phenomenological interquark potentials allowed calculations for the energies of excited
hadrons (non-ground-state hadrons), in essential agreement with data.

Around 1972, Fritzsch and Gell-Mann (1972) and Fritzsch, Gell-Mann, and Leutwyler
(1973) had the inspiration that a non-abelian gauge theory, with an SU(3) gauge symmetry
applied to the color degree of freedom, could not only give all these properties of the
quark model, but could also solve other puzzles involving current algebra and the weak
interactions of hadrons: Secs. 2.2.3 and 2.2.4.

Somewhat tentatively they proposed exactly the theory now known as QCD, missing only
the heavy quarks, which in any event decouple from lower-energy physics and therefore do
not affect the arguments. Understanding of the dynamics of the theory was still missing, in
particular for the observations in deeply inelastic scattering: Sec. 2.3.

As regards the quark model, the unifying hypothesis suggested by the structure of QCD
is that of “color confinement”, that all observed states are color singlet. It simultaneously
solves the quark confinement problem and the lack of extra meson states, and it is a
natural conjecture, since gluons couple to color charge. Already in lowest-order pertur-
bation theory it can be seen that the gluon exchange energy for a quark-antiquark pair is
attractive for the color singlet state and repulsive for the color octet state: problem 2.1.
Of course, perturbation theory for a generic strong-interaction quantity is at best a rough
approximation. Even so, although a real demonstration of color confinement from QCD
has still not been found, the hypothesis is consistent with all the evidence, theoretical and
experimental.

The terms in the QCD Lagrangian that correspond to differences of quark masses give
an operator in the Hamiltonian that transforms as an octet under flavor SU(3). This is
exactly what had previously been assumed to explain mass splittings in the hadronic flavor
multiplets.

3 In this notation, the number denotes the mass in MeV, i.e., 1232 MeV, while the �++ denotes the quark and isospin
content of the state (Amsler et al., 2008, Ch. 8), which in this case corresponds to a baryon of isospin 3/2 with charge
+2.

4 The possibility that there are other types of particle statistics than Bose or Fermi was considered under the names
of “para-statistics” or “quark statistics”. But it was shown by Doplicher, Haag, and Roberts (1974) that all these
possibilities are equivalent to ordinary Bose or Fermi statistics supplemented by selection rules on the allowed states.
See also Drühl, Haag, and Roberts (1970). So the color solution is generic.
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2.2.3 Weak interactions

By the early 1970s there was a leading candidate for electroweak interactions of leptons,
the Weinberg-Salam theory (Weinberg, 1967; Salam, 1968). This theory used spontaneous
symmetry breaking to give mass to the weak gauge-bosons. It became a genuine candidate
theory after it was shown how to successfully quantize and renormalize non-abelian gauge
theories, and has since become fully established. This work solved severe consistency
problems of theories with massive charged vector fields.

How is the theory to be extended to include hadrons? We treat the situation perturbatively
in the electroweak interactions, using a decomposition of the complete Hamiltonian as

H = HSI +H0, lept +HI, EW +HSI-EW. (2.7)

Here HSI is the full strong-interaction Hamiltonian, not yet known around 1970, H0, lept

is the free Hamiltonian for non-hadronic fields, HI, EW is the interaction Hamiltonian for
electroweak interactions, and HSI-EW gives the coupling between hadronic fields and the
electroweak fields.

We now do time-dependent perturbation theory with the unperturbed Hamiltonian
including the full strong-interaction part, i.e., H0 = HSI +H0, lept. Useful information can
be extracted without either knowing or solving the full strong-interaction theory. The rea-
son is that the couplings between the strong-interaction fields and the electroweak gauge
fields were found from phenomenological evidence to involve currents for hadronic flavor
symmetries. We write these in the form

HSI-EW =
∫

d3x
∑
A

j
μ
AWA,μ + Higgs terms, (2.8)

where WA,μ are the electroweak gauge fields W±, Z and γ , while j
μ
A are the hadronic

currents to which they couple. For consistency of the electroweak theory, the hadronic
currents must be conserved, apart from the effects of their couplings to the electroweak
fields. In fact, the currents, within the strong-interaction sector, are not quite conserved,
which appears to be somewhat inconsistent. The inconsistency is solved retrospectively
by the full Standard Model, where the non-conservation is caused by quark mass terms in
QCD. Since quark masses arise from the vacuum expectation value of the Higgs field in
the Yukawa couplings for the quarks, the lack of conservation of the flavor currents within
QCD is essentially associated with weak interactions.

This form of perturbation theory, where the unperturbed Hamiltonian contains the full
strong-interaction Hamiltonian leads to normal Feynman perturbation theory only for the
electroweak fields (leptons, photon, etc.). In the strong-interaction part, the electroweak
gauge fields are coupled to matrix elements of currents. For example, the decay of the
neutron to p + e + ν̄e (Fig. 2.1) has an amplitude

〈
p, out j

μ
−(0) n, in

〉 −igμλ

q2 −m2
W

ūeγ
λ(1− γ5)vν × couplings, (2.9)
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n
p

e

Fig. 2.1. Lowest-order weak interaction for neutron decay.

where j
μ
− is the hadronic current to which the W+ couples, ue and vν are standard Dirac

spinors for the states of the leptons, q = pn − pp is the momentum transfer, and pn and
pp are the 4-momenta of the neutron and proton.

2.2.4 Current algebra

For further references and for a more detailed historical account of the issues treated in this
section, see Pais (1986, Ch. 21).

Initially, with no known theory of the strong interaction, and with no complete theory
of the weak interaction, it was measured that the weak interactions of hadrons involved
current matrix elements as in (2.9). This led to the subject of current algebra, i.e., the study
of hadronic current operators. The current coupled to the W boson appears as one of the
currents for an approximate symmetry group of the strong interactions. This group, a chiral
SU(3)⊗ SU(3) group, will be discussed further in the context of QCD in Sec. 3.8, together
with its more exact SU(2)⊗ SU(2) subgroup. Explicit breaking of the symmetry is caused
by the relatively small mass terms for the u, d and s quarks in QCD.

It was found that the symmetries are spontaneously broken to a “vector” SU(3) or
SU(2), with the pions being the Goldstone bosons for the SU(2)⊗ SU(2) case. The explicit
symmetry breaking by quark masses implies that the pion is not massless but simply much
lighter than other hadrons. The residual vector SU(3) symmetry is the one that is prominent
in the quark model: Sec. 2.2.2.

Many consequences of the Ward identities for these symmetries were derived, in particu-
lar soft pion theorems. See, e.g., Treiman, Jackiw, and Gross (1972). One dramatic example
is the Goldberger-Treiman relation that gives a relation between the matrix element in (2.9)
and the long-distance part of the pion exchange contribution to the nucleon-nucleon poten-
tial; it thus relates a measurement of a weak-interaction quantity to an apparently very
different quantity in pure strong-interaction physics.

Studies of symmetries require understanding of commutators of currents. This led to the
study of matrix elements of two currents, like 〈P jμ(x)jν(0) P 〉, which are investigated
experimentally in deeply inelastic scattering: Sec. 2.3.

A natural problem was now to find a theory that supports current algebra, i.e., a theory
in which the currents are ordinary Noether currents and have the commutation relations
postulated in current algebra. What excited Fritzsch and Gell-Mann (1972) and Fritzsch,
Gell-Mann, and Leutwyler (1973) was that their proposed QCD Lagrangian not only could
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explain the quark model but naturally gave current algebra. The symmetry properties of
the quark mass terms are exactly those used for the symmetry-breaking part of the strong-
interaction Hamiltonian in current algebra.

Around 1970 it was found that the derivation of certain Ward identities for products of
three currents fails in real field theories. It was found, moreover, that the resulting anomalies
are correctly calculated within lowest-order perturbation theory; higher-order corrections
are exactly zero according a theorem due to Adler and Bardeen. The methods of current
algebra then enabled the decay rate for π0 → γ γ to be calculated to the extent that the
masses of the u and d quarks are small. Agreement with the observed decay rate is obtained
if each flavor of quark has three color states. See Peskin and Schroeder (1995, Ch. 19).

Another line of argument related to current algebra was by Weinberg (1973a, b), who
considered weak-interaction corrections to strong-interaction phenomena. In a generic can-
didate theory for the strong interaction, loop graphs have unsuppressed contributions from
momenta around the W mass. The resulting violations of strong-interaction symmetries
(e.g., parity) would be electromagnetic in strength, contrary to observation. Weinberg
showed that this problem is avoided if the strong interaction is mediated by exchange of
bosons whose symmetries commute with those for the electroweak bosons. This is the case
for QCD, where color SU(3) commutes with the electroweak gauge group. The revolu-
tionary consequence is that flavor symmetries were demoted from fundamental properties
of the strong interaction to apparently accidental and approximate symmetries that occur
because of the small size of the Yukawa couplings of the Higgs field to the light quarks.

2.2.5 Non-abelian gauge theories

The discovery of QCD needed a parallel track of purely theoretical work to formulate non-
abelian gauge theories and establish their consistency. The initial formulation was by Yang
and Mills (1954), who beautifully generalized the concept of local gauge invariance from
the abelian symmetry of QED to a non-abelian group. Their attempt to apply their theory
to the actual strong interaction foundered on the prejudice that the fields in the Lagrangian
should correspond to observed particles, contrary to the now-known reality.

But the theoretical idea remained. With the discovery of the concept of spontaneous
symmetry breaking, Weinberg (1967) and Salam (1968) found what is in fact the correct
theory of electroweak interactions. At about the same time, Faddeev and Popov (1967)
showed how to quantize such theories consistently. After this, it was quickly found how
to derive Ward identities and thence to show that Yang-Mills theories, possibly including
spontaneous symmetry breaking, are renormalizable.

With this, non-abelian gauge theories became fully fledged consistent field theories,
setting the stage for the developments outlined in the preceding sections.

2.3 Deeply inelastic scattering

In parallel with work just described, the remaining developments that led to the
establishment of QCD as the theory of strong interactions concerned deeply inelastic
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scattering of leptons (DIS). Since this process remains an important subject of study in
QCD, we now examine those aspects that do not depend on knowing the strong-interaction
Lagrangian.

We consider scattering of a lepton of momentum lμ on a hadron N of momentum P μ to
an outgoing lepton of momentum l′μ plus anything:

l +N (P ) −→ l′ +X. (2.10)

The symbol X has a standard connotation, that we work with an inclusive cross section,
i.e., a cross section differential in lepton momentum l′, with a sum and integral over all
possible states for the X part of the final state. Effectively only the lepton is treated as being
detected.

There are a number of cases with different types of lepton for which there is experimental
data: e +N −→ e +X, e +N −→ ν +X, μ+N −→ μ+X, ν +N −→ ν +X, ν +
N −→ (e or μ)+X. When the momentum transfer at the lepton side is large, as we will
see, we effectively have a powerful microscope into the initial-state hadron N . In actual
data, N is either a proton or a heavier nucleus. Scattering on a nucleus is often approximated
as scattering on an incoherent mixture of protons and neutrons. For more accurate work,
“nuclear corrections” are applied to obtain cross sections relative to independent protons
and neutrons.

In this section we will only treat the electron-to-electron case, for which the current
state of the art for high energy is at the recently shut-down HERA accelerator at the DESY
laboratory. There an electron (or positron) beam of energy 27.5 GeV was collided against
a proton beam of energy 920 GeV, with a center-of-mass energy of

√
s = 318 GeV.

2.3.1 General considerations

Consider a wide-angle scattering of the electron in the center-of-mass frame, Fig. 2.2. The
large space-like momentum transfer, qμ = lμ − l′μ, for the (essentially point-like) electron
suggests that a short-distance scattering is necessary, which would naturally occur off a
small constituent of the hadron. If we let the invariant momentum transfer be Q =

√
−q2,

then a natural distance scale is 1/Q (in units with h̄ = c = 1). At HERA there is data to
above Q = 100 GeV, with a corresponding distance of less than 10−2 fm.

An enormous simplification occurs because, at high energy, the hadron is Lorentz-
contracted and time-dilated5 by a large factor, which is about 150 in the center-of-mass
at HERA. A hadron like a proton has a size (Hofstadter, Bumiller, and Yearian, 1958)
of around 1 fm, so it is reasonable to say that in the hadron’s rest frame the constituents
interact with each other on a time scale of order 1 fm/c. In the boosted hadron, as seen in
the center-of-mass frame of the scattering, time dilation implies that the last interaction of
the constituents typically occurred a long distance upstream. In the HERA center-of-mass
frame, this is of order 100 fm, which is much larger than the scale of the electron scattering.

5 These concepts are non-trivial (Gribov, 1973, p. 12) for microscopic particles in a quantum field theory, but that does
not affect the motivational issues for this section.
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Fig. 2.2. Deeply inelastic scattering of an electron on a proton. The electron comes from
the left and the proton from the right. In the diagram, the electron (solid line) is depicted as
point-like and the hadron as a Lorentz-contracted extended object. The three dots inside the
proton symbolize the three quarks that are its constituents in the quark model. The struck
parton is indicated by a dashed line. Drawing a realistic Lorentz contraction would result
in a much thinner proton than shown here.

This suggests (Feynman, 1972) that in the short-distance electron-constituent collisions
it is a useful approximation to neglect the interactions that bind the constituents into a
hadron. Quantitative development of this idea leads first to the “parton model”, to be
explained in Sec. 2.4, and then to the factorization theorems of QCD, which give a precise
and correct mathematical formulation of the intuitive ideas.

In the original DIS experiments at SLAC, in the early 1970s, only the outgoing electron
was detected; there was no sensitivity to the rest of the final state. Moreover the electron
beam energy was at most 21 GeV on a fixed target. Modern experiments, like the ZEUS
and H1 detectors at HERA, can see the hadronic final state. An example event with
Q = 158 GeV is shown in Fig. 2.3. It supports the intuitive picture: an isolated wide-angle
electron recoils against a narrow group of particles, called a jet, which is reminiscent of the
scattered constituent. The scattered constituent (the “parton” in Feynman’s terminology)
does not retain its identity as a single particle except at sufficiently microscopic distances;
this is of course compatible with the idea that quarks are permanently confined in hadrons
and never appear as isolated single particles. The standard view (Andersson, 1998) is that
many quark-antiquark pairs are created by the intense gluon field between an outgoing
struck quark and the proton remnant. These form into color-singlet hadrons, mostly pions,
that go in roughly the direction of the outgoing quark. The remnants of the proton continue
in motion, with excitation and only a small deflection: these cause hits in the detector
segments around the beam pipe, at the left of Fig. 2.3(a). Much of the remnant energy is
too close to the beam direction to be detected.

2.3.2 Kinematics; structure functions

We work to lowest order in electromagnetism and in this section we will ignore weak
interactions.6 Then the amplitude for a contributing process is represented diagrammatically

6 Unless Q is at least of order the masses of the W and Z bosons, weak-interaction effects are suppressed, by a factor
of Q2/m2

W . Higher-order electromagnetic corrections are smaller by a factor of roughly α/π , except for infra-red
dominated terms associated with the masslessness of the photon. It is conventional to present data “with the effects
of radiative corrections removed”, so that higher-order electromagnetic corrections are effectively absent in published
data. The formalism is readily extended, with only notational complications, to deal with exchange of weak-interaction
bosons. See Sec. 7.1.
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(a)

(b)

Fig. 2.3. Scattering event in an positron-proton collision in the H1 detector (H1 website,
2010) at a center-of-mass energy of about 320 GeV. The detector is approximately cylin-
drically symmetric about the center line which contains the beam pipes. Both a side view
(a) and an end view (b) are shown. In (a), electrons come from the left, and protons from
the right. One isolated track was identified as an electron, and there is a recoiling jet,
approximately back-to-back in azimuth. The kinematic variables are Q2 = 25 030 GeV2

and y = 0.56 (see Sec. 2.3.2).

in Fig. 2.4(a), and is a product of a lowest-order leptonic vertex, a photon propagator,
and a hadronic matrix element of the electromagnetic current, 〈X, out jμ P 〉. The two

independent Lorentz invariants for the hadron system are Q2 def= −q2 ≥ 0 and P · q, both
of which can be computed from the measured momenta l, l′ and P , with the momentum
of the exchanged photon being qμ = lμ − l′μ. The mass of the hadronic final state is
then

m2
X = (P + q)2 = M2 + 2P · q −Q2, (2.11)

where M is the mass of the initial-state hadron. A convenient combination of variables is
Q and the Bjorken variable

x
def= Q2

2P · q . (2.12)
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q

(b)(a)

Fig. 2.4. (a) DIS amplitude to lowest order in electromagnetism. (b) Hadronic part squared
and summed over final states. For the meaning of the vertical “final-state cut”, see the
discussion below (2.19).

Kinematically x is restricted to the range Q2/(s +Q2) ≤ x ≤ 1 (with fractional corrections
of order M2/Q2 being neglected). In the parton model we will find that x gives an estimate
of the fraction of the initial hadron’s momentum that is carried by the struck parton. That
the term “momentum fraction” has a useful meaning depends on the relativistic kinematics
of the process: Sec. 2.4.

The term “deeply inelastic scattering” (DIS) applies to the region where both Q and mX

are large, so that there is a large momentum transfer and the hadron target is very much
excited, inelastically.

Another commonly used variable is

y
def= q · P

l · P . (2.13)

It lies between 0 and 1. In the rest frame of the hadron, this is the fractional energy loss of
the lepton: (E − E′)/E, so that it is simple to measure in a fixed target experiment. But it
is not an independent variable, since

Q2 = xy(s −M2 −m2
e). (2.14)

The Lorentz-invariant inclusive cross section is then

E′
dσ

d3l′
� πe4

2s

∑
X

δ(4)(pX − P − q)

∣∣∣∣〈l′|j lept
λ |l〉

1

q2
〈X, out|jλ|P 〉

∣∣∣∣
2

= 2α2

sQ4
LμνW

μν. (2.15)

In the prefactor, we have neglected the electron mass me and the hadron mass M compared
with
√

s, while the fine-structure constant is α = e2/(4π ). The sum over X denotes the
usual Lorentz-invariant sum and integral over all hadronic final states. The currents j

lept
λ

and jλ are respectively the electromagnetic currents for the leptons and for the hadronic
fields. In QCD the electromagnetic current involves a sum over quark flavors:

jλ =
∑
f

ef ψ̄f γ λψf = 2
3 (ūγ λu+ . . .)− 1

3 (d̄γ λd + . . .). (2.16)

https://doi.org/10.1017/9781009401845.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.002


2.3 Deeply inelastic scattering 21

In the second line of (2.15), we have separated out factors for the leptonic and hadronic
parts. The leptonic tensor is obtained from lowest-order Feynman graphs, and in the unpol-
arized case is

Lμν = 1
2 Tr γν/lγμ/l

′ = 2(lμl′ν + l′μlν − gμνl · l′). (2.17)

The hadronic tensor is defined as a complete matrix element,

Wμν(q, P )
def= 4π3

∑
X

δ(4)(pX − P − q) 〈P, S jμ(0) X〉 〈X jν(0) P, S〉

= 1

4π

∫
d4z eiq·z 〈P, S jμ(z) jν(0) P, S〉 (2.18)

in the full strong-interaction theory. The normalization is a standard convention, and the
variable S labels the spin state of the target. In general, this may be a mixed state, and the
notation 〈P, S . . . P , S〉 is a shorthand for a trace with a spin density matrix: see App.
A.7, and especially (A.8) and (A.13), for details. For the usual case of a spin- 1

2 target,
the spin state is determined by its (space-like) spin vector Sμ, which obeys S · P = 0. We
normalize Sμ as in Amsler et al. (2008), so that S2 = −M2 for a pure state.

To obtain the last line of (2.18), we used a standard result for the transformation of fields
under space-time translations:

〈P, S jμ(z) X, out〉 = 〈P, S jμ(0) X, out〉 ei(P−pX)·z. (2.19)

This allows the conversion of the momentum-conservation delta function to an integral
over position. Then we used the completeness relation:

∑
X |X, out〉 〈X, out| = I .

Diagrammatically, we use the cut-diagram notation of Fig. 2.4(b) to represent Wμν . There
the vertical line is called a “final-state cut”. It represents the final state |X, out〉, and implies
a sum and integral over all possible out-states |X, out〉. The part of the diagram to the left of
the final-state cut is an ordinary amplitude 〈X, out|jν(0)|P, S〉; in perturbation theory it is
a sum over ordinary Feynman graphs with the appropriate on-shell conditions. The part to
the right of the cut is a complex-conjugated amplitude, in this case 〈P, S jμ(0) X, out〉 =
〈X, out|jμ(0)|P, S〉∗.

The Particle Data Group’s definition (Amsler et al., 2008) of Wμν differs in replacing
jμ(z) jν(0) by the commutator [jμ(z), j ν(0)], but I find it better to use the more obvious
definition with the simple product. The other definition is a relic from the period when
the commutator was a dominant topic of research. The second term in their commutator
−jν(0) jμ(z) gives a contribution equal to −Wνμ(−q, P ), so the commutator version can
be reconstructed from knowledge of Wμν . In fact, for a given value of q, only one of
the two terms in the commutator contributes, since, when P is the momentum of a stable
single-particle state, only one of P + q and P − q is the momentum of a physical state that
can be used for |X, out〉.

We now decompose Wμν into fixed tensors times scalar functions. For this we observe
that:

• The electromagnetic current is conserved, ∂ · j = 0, so that qμWμν = Wνμqμ = 0.
• Wμν is linear in the spin vector, which is an axial vector.
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• The strong interactions are parity invariant.
• Wμν is a hermitian matrix, i.e., (Wμν)∗ = Wνμ.

Then the most general form of the tensor is

Wμν =
(
−gμν + qμqν

q2

)
F1(x,Q2)+ (P μ − qμP · q/q2)(P ν − qνP · q/q2)

P · q F2(x,Q2)

+ iεμναβ qαSβ

P · q g1(x,Q2) + iεμναβ
qα

(
Sβ − Pβ

S·q
P ·q

)
P · q g2(x,Q2). (2.20)

The scalar coefficients F1, F2, g1, and g2 are called structure functions. The invariant
antisymmetric tensor εκλμν obeys ε0123 = +1, i.e., ε0123 = −1, a convention that is not
universal.

2.3.3 Breit/brick-wall frame; helicity analysis

For much of our work, it will be convenient to use the so-called Breit frame, where
the incoming proton is in the +z direction, and the photon’s momentum is all in the −z

direction: q = (0, 0, 0,−Q). In the parton-model approximation, we will see that the struck
quark gets its 3-momentum exactly reversed in this frame, which is therefore also called
the brick-wall frame.

In the Breit frame we define structure functions with simple transformation proper-
ties under rotations about the z axis. These are the longitudinal and transverse structure
functions:

FL
def= F2 − 2xF1; FT

def= F1. (2.21)

Then FL corresponds to the components of Wμν in the energy direction, while FT corre-
sponds to the components transverse to q and P .

2.3.4 Cross sections and measurements of structure functions

In the case of unpolarized scattering, which is the most usual situation, we set Sμ = 0.
Then (2.15) and (2.20) give

d2σ unpol

dx dy
� 4πα2

xyQ2

[(
1− y − x2y2M2

Q2

)
F2(x,Q2)+ y2xF1(x,Q2)

]

= 4πα2s

Q4

[(
1− Q2

xs
− Q2M2

s2

)
F2(x,Q2)+ Q4

xs2
F1(x,Q2)

]
. (2.22)

The errors in this formula are due only to the neglect of the electron and hadron masses with
respect to

√
s, of the electron mass with respect to Q, and to the use of lowest-order pertur-

bation theory for the electromagnetic interaction. The form of the kinematic dependence
multiplying the structure functions is due to the established form of the electromagnetic
interaction. Thus measurements of the structure functions are equivalent to measurements
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of the cross section. Without further knowledge of the strong interaction, a measurement at
a single energy

√
s only determines the x and Q dependence of a combination of structure

functions, as is made clear on the second line. Measurements at a minimum of two different
energies are needed to separate the structure functions. After that the cross section for all
other energies is predicted for values of x and Q that are within the kinematic limits of the
first measurements.

The remaining structure functions g1 and g2 can be measured with polarized electron
beams on a polarized target; see Leader and Predazzi (1982, p. 256).

This finishes the summary of those results and definitions that apply independently of
the theory of the strong interactions.

2.4 Parton model

The parton model was formulated by Feynman (1972) and formalized by Bjorken and
Paschos (1969) as an idea for understanding DIS in the absence of knowledge of an
underlying microscopic theory of the strong interaction. It relies on an intuition stated in
Sec. 2.3.1 and symbolized in Fig. 2.2.

Feynman proposed that the photon vertex couples to a single constituent of the target
hadron, and that it is useful to neglect the strong interactions of the constituents during the
collision with the lepton. The word “parton” is a generic term for one of the constituents
under the conditions in which it participates in the short-distance part of a collision. In QCD
it is therefore often treated as a collective name for quarks and gluons (and antiquarks).

A quantitative formulation is greatly helped by the relativistic kinematics of the process.
Consider a parton of momentum k inside its parent hadron of momentum P . To get from
the rest frame of the hadron to the frame of Fig. 2.2, we apply a large boost. We use
light-front coordinates (App. B) with the positive z axis in the direction of the hadron; we
therefore write kμ = (k+, k−, kT), P μ = (P+,M2/(2P+), 0T), where k± = (k0 ± kz)/

√
2.

We assume that in the rest frame of the hadron, the components of k are appropriate for
a constituent of a bound state whose typical scale is M , i.e., that all components of k are
of order M (or smaller) in the hadron rest frame. Then after the large boost, k+ is by far
the biggest: it is of order Q, while k− and kT are of order M2/Q and M . The ratio of the
plus momenta is boost invariant, so we define the fractional momentum of the parton by
ξ = k+/P+.

Based on the space-time structure of the reaction, the parton model asserts that we
should approximate the inclusive DIS cross section as incoherent scattering of electrons
on quasi-free partons. The partons have a probability distribution in fractional momentum
ξ and in parton flavor, and the shape of the distribution is determined by the proton’s
bound state wave function. For the electron-parton interaction, the momentum transfer Q

is large, so we approximate the incoming and outgoing partons as massless free particles,
and neglect the transverse momentum of the incoming parton. The outgoing parton also
has high energy, so the interactions converting it to a hadron final state are also time-
dilated, thereby justifying its approximation as a free particle. Most importantly, the strong
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interaction is neglected, and only the lowest-order electromagnetic scattering interaction is
used.

Contrary to the impression that might be gained from the literature, the parton model does
not require that partons are genuinely free massless particles. They are only approximately
free, and only for the purposes of estimating a short-distance cross section.

It is by no means obvious, a priori, that the parton model is actually valid. In Ch. 6
and later chapters, we will formulate the parton model in real quantum field theories, and
show that modifications are generally needed, because of singularities in the short-distance
interactions. Moreover, the concept of a wave function and how to apply Lorentz boosts to
it are quite unobvious in relativistic quantum field theories. Nevertheless the parton model
has intuitive appeal, so it provides an excellent framework for motivating and organizing a
proper treatment. In fact, we will even justify the parton model, in a certain sense, because
QCD is asymptotically free; a dimensionless measure of its interactions decreases with
distance. The true results are a distorted parton model.

2.4.1 Elementary formulation of parton model; parton densities

We now make a quantitative formulation of the parton model. The logic, as presented here
following the original work, involves certain intuitively motivated jumps, the quality of
which we can best assess after the more strictly deductive treatment in later chapters.

The hard scattering, i.e., the short-distance scattering of the electron and parton, occurs
at a particular time. The proton is in a state consisting of some number of partons, whose
fractional plus momenta are ξ1, ξ2, . . . , which sum to unity:

∑
ξi = 1. There is a probability

distribution over states and the hard scattering samples any one particular parton. So
we postulate that there is a number distribution of partons fj (ξ ). Thus fj (ξ ) dξ is the
expectation of the number of partons of flavor j with fractional momentum ξ to ξ + dξ .
Standard terminology is to call fj (ξ ) a “parton density” or a “parton distribution function”.
In QCD, the flavor index takes on values for up-quark, anti-up-quark, gluon, etc. If the two
u quarks and the d quark in a proton shared its energy roughly equally, we would expect the
quark densities to be peaked at around ξ ∼ 1/3 and the u quark density to be approximately
twice the d quark density. We would expect the other quark and antiquark densities to be
smaller. In a real QFT, these other densities are in fact non-zero, because of the presence
of quark-antiquark pairs from the interaction terms of the Hamiltonian, as can be seen later
from the formal operator definitions of parton densities.

We can interpret the initial insight for the parton model in Feynman-graph notation with
the aid of Fig. 2.5(a). A parton of momentum k scatters off the virtual photon; it then goes
into the final state, undergoing “hadronization” interactions that convert it to observable
hadrons. Topologically this diagram is in fact the most general one possible. The parton
model consists of an assertion of the typical momenta involved and that the final-state
hadronization interactions cancel. In the parton model, the struck quark momentum k has a
large plus component, and relatively small minus and transverse components (in the Breit
frame), while the outgoing parton k + q has low invariant mass. The final-state interactions
rearrange the content of the final state, but time dilation of the outgoing parton suggests that

https://doi.org/10.1017/9781009401845.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.002


2.4 Parton model 25

q

k

P P

q

k

(a) (b)

j

dξ fj(ξ) ×
q

ξP
(c)

Fig. 2.5. Parton scattering in DIS. (a) Including hadronization and final-state interactions
of struck parton. (b) Handbag diagram obtained after cancellation of hadronization and
final-state interactions in graph (a). (c) Parton model with parton density and lowest-order
DIS on partonic target.

these happen on a long time-scale, and therefore do not greatly affect the probability that a
scattering has occurred. That is, the final-state interactions cancel to a first approximation
in the inclusive cross section. Thus we can approximate graph (a) by the “handbag” graph
(b), where the final-state interactions of the quark are ignored.

An analysis can be made from the handbag diagram itself, but that is postponed to Ch. 6.
Here we just work with the parton-model assertion of incoherent lowest-order electromag-
netic scattering on partons governed by parton densities, as embodied in Fig. 2.5(c).

2.4.2 Quark-parton model calculation

It is convenient to use the Breit frame, and to write the light-front coordinates of q and P

as

qμ =
(
−xNP+,

Q2

2xNP+
, 0T

)
, P μ =

(
P+,

M2

2P+
, 0T

)
. (2.23)

In this equation, xN is the Nachtmann variable (Nachtmann, 1973)

xN = 2xBj

1+
√

1+ 4M2x2
Bj/Q

2
, (2.24)

which differs from the Bjorken variable xBj = Q2/2P · q by a power-suppressed correction.
In the partonic scattering we replace k by its plus component: k �→ (ξP+, 0, 0T), in

accordance with our discussion of the sizes of the components of k. We also approximate
the outgoing parton as massless and on-shell. We let dσ

partonic
lj be the differential cross

section for lepton-parton scattering with the following kinematics:

l + (ξP+, 0, 0T)→ l′ + k′, (2.25)
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where the outgoing parton momentum k′ is massless and on-shell. Within the parton model,
the partonic cross section is computed at lowest order. Then the parton model asserts that
the inclusive DIS cross section is

dσ =
∑

j

∫
dξ fj (ξ ) dσ

partonic
lj , (2.26)

where the sum is over parton flavors. This formula relates a cross section with a hadron
target to a cross section with a calculable partonic cross section. Naturally, these two kinds
of cross section should be chosen to be differential in the same variables.

There now follow corresponding formulae for the structure tensor and for the structure
functions. Now, in (2.15), we see a factor 1/s in converting the hadronic structure tensor
to a cross section. But at the partonic level, there is instead a factor 1/ξs, because the
lepton-parton scattering has a squared center-of-mass energy (ξP + q)2 � 2ξP · q, up to
power-law corrections. Then the parton model approximation for Wμν is

W
μν
PM =

∑
j

∫
dξ

ξ
fj (ξ ) C

μν
j, partonic, (2.27)

with a factor 1/ξ compared with (2.26). Here C
μν
j, partonic is like Wμν but computed on a

free massless parton of type j and momentum k̂μ = (ξP+, 0, 0T), and with neglect of all
interactions.

When the partons are quarks of spin 1
2 , we have

C
μν
j,partonic = e2

j

1

4π

1

2
Tr /̂kγ μ(/q + /̂k)γ ν 2πδ((q + k̂)2)

= e2
j

(
2k̂μk̂ν + qμk̂ν + k̂μqν − gμνq · k̂) x

Q2
δ(ξ − x), (2.28)

where ej is the electric charge of quark j (in units of the positron charge). It immediately
follows that

F
QPM
2 =

∑
j

e2
j x fj (x), F

QPM
1 = 1

2x
F

QPM
2 , (2.29)

where “QPM” means “quark-parton model” (to distinguish these formulae from the correct
factorization formulae in QCD). In this calculation, the incoming and outgoing quarks are
approximated as massless and on-shell. The on-shell condition for the outgoing parton
results in the parton momentum fraction ξ being set to the measurable Bjorken variable x

(up to ignored power-law corrections). The measured variable y, defined in (2.13), equals
(1− cos θ )/2 in the parton model, where θ is the scattering angle of the lepton-parton
collision. Thus, a measurement of x and Q in an event immediately gives an estimate of
the parton kinematics, Fig. 2.3 providing an illustration of a typical event.

2.4.3 Bjorken scaling

A prediction of the parton model embodied in (2.29) is that at fixed x the structure functions
are independent of Q (at large Q of course). This is called “Bjorken scaling”, and, as we
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Fig. 2.6. Compilation by the Particle Data Group of data on F2 on a proton target. For the
purpose of separating the different sets of data the values of F2 have been multiplied by
2ix , where ix is the number of the x bin, ranging from ix = 1 for x = 0.85 to ix = 28 for
x = 0.000 063. Reprinted from Amsler et al. (2008), with permission from Elsevier.

will see in Chs. 8 and 11, it is violated after allowing for QCD interactions. We will see
that measurements of scaling violation allow a deduction of the strength of the strong
interaction. Current data are shown in Fig. 2.6. It can be seen that Bjorken scaling is
approximately true at moderate x, for example between 0.1 and 0.5. This region is relevant
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AfterBefore

Fig. 2.7. Initial state and final state for QPM, with conserved right-handed helicity for the
quark. The small arrows indicate the spin.

to a model where a substantial amount of the momentum of the proton is carried by three
similar quarks, with a typical x of around 1/3. One might expect the intuitive picture to be
less reliable at extreme values of x, so the greater scaling violations as x gets close to 1 or
0 are not in violation of the spirit of the parton model.

2.4.4 Callan-Gross relation and parton spin

Observe that the longitudinal structure function is F
QPM
L = 0 in the QPM, a result first

obtained by Callan and Gross (1969). It is a simple consequence of conservation of angular
momentum about the z axis in the brick-wall frame, as in Fig. 2.7. The electromagnetic
interaction preserves the helicity of the massless quark (Sterman, 1993, p. 215), i.e., its spin
relative to its direction of motion. The quark’s 3-momentum is reversed in the collision,
so relative to a fixed axis its spin is reversed. There are no transverse momenta in this
calculation, so there is no orbital angular momentum about the z axis. So one unit of spin is
transferred from the virtual photon, which must therefore be transverse, not longitudinal.

2.4.5 Field theory implementation of parton model

In Ch. 6 we will show how to convert the parton-model idea into formal statements in QFT,
with definitions of parton densities as expectation values of certain operators. We will find
that the parton model is exactly correct only in certain simple field theories. In more general
cases, notably QCD, modifications are needed: Chs. 8 and 11.

Particularly in retrospect the parton model was a natural conjecture, but when first
formulated, in the absence of an underlying microscopic theory, it was controversial. The
need for modifying it in real QCD underscores the basis for the initial scepticism.

Some of the first parts of this development were obtained before the discovery of QCD,
and provided important hints that pointed uniquely to the structure of QCD.

2.5 Asymptotic freedom

A powerful argument by Callan and Gross (1973) used the operator product expansion
and the renormalization group to show that exact Bjorken scaling in DIS requires there to
be an ultra-violet fixed point of the strong-interaction theory at zero coupling. Hence the
observed approximate Bjorken scaling implies that the strong interaction is relatively weak
at short distances.

Since the strong interaction is strong at large distances, this led to a search for theories
that are asymptotically free, i.e., for which the effective coupling goes to zero at zero
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distance. One result was the demonstration by Coleman and Gross (1973) that no field
theory constructed using only scalar, Dirac, and abelian gauge fields can be asymptotically
free. This left only non-abelian gauge theories, which just slightly earlier had been quantized
and proved renormalizable. If these theories also failed to give asymptotic freedom, then it
would be strong evidence that no quantum field theory could describe strong interactions,
a view that was quite popular at the time: there were indeed absolute arguments by Landau
and Pomeranchuk based on apparently universally fundamental principles that the effective
coupling always had to increase at short distances; see ’t Hooft (1999).

Then Gross and Wilczek (1973a, b) and Politzer (1973) calculated the lowest-order
renormalization-group β function for the Yang-Mills theory, and demonstrated its asymp-
totic freedom, even with quark fields present.7 The previously formulated QCD Lagrangian
is therefore able to explain (approximate) Bjorken scaling. The rising coupling in the infra-
red, even if it does not by itself imply color confinement, is compatible with it and is a
precondition that the standard connection between fields and particles can be completely
destroyed for quarks and gluons.

The result then is that for the first time there was a unique viable and complete theory of
the strong interaction, QCD. Previously mysterious phenomena were direct consequences
of the Lagrangian (2.1). From now on we can proceed deductively.

2.6 Justification of QCD

I now summarize the powerful arguments that pick out QCD as the unique field theory of
the strong interaction. The following list involves a rearrangement and even a reversal of
the historical logic.

1. We can treat any theory of currently known physics as a low-energy effective theory
(Weinberg, 1995, p. 499) obtained from some more exact theory. In the normal quantum
field theory framework it is a theorem that the low-energy theory is renormalizable.
This applies to leading power in the ratio of a large mass scale for the exact theory to
currently available energies. To agree with observations, the theory is Poincaré invariant
to a very good approximation (Liberati and Maccione, 2009).

2. Bjorken scaling implies either actual asymptotic freedom, or at least a decreasing cou-
pling at currently accessible energies. Hence the theory must be a non-abelian gauge
theory with not too many matter fields. See Fig. 3.6 below for a recent plot of measured
values of the strong coupling.

3. It must be possible to combine the theory with the known Weinberg-Salam theory of
electroweak interactions. Since the couplings are very different, we cannot have anything
except a direct product of the SI gauge group and the EW gauge group. Let us call the
SI gauge fields “gluon” fields and the SI matter fields “quark” fields (which could be
Dirac and/or scalar).

7 In fact, the calculation of this coefficient had already been made slightly earlier by ’t Hooft (see ’t Hooft, 1999) and
in 1969 by Khriplovich (1970). Even earlier, Vanyashin and Terentyev (1965) computed a negative beta function in
Yang-Mills theory, but their calculation did not include the not-yet-known ghost contribution. But these authors did
not immediately recognize the significance of their results for a theory of strong-interaction physics.
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4. Because the electroweak and strong-interaction gauge groups commute, there are no
direct gluon couplings to W , Z, and Higgs fields.

5. Thus the strong-interaction theory is the QCD Lagrangian, possibly supplemented only
by extra quark fields. It is the original Yang-Mills Lagrangian, but with a different gauge
group and with extra fermion fields. No further terms are permitted in the gauge-invariant
Lagrangian without violating renormalizability.

6. We now identify the gauge group and the matter fields:
(a) Asymptotic freedom together with the masslessness of the gluons implies that the

effective coupling increases out of the perturbative range for low mass scales or
large distances. This allows the connection between fields and directly observable
particles to be lost.

(b) It also indicates that under suitable conditions, quarks and gluons have approxi-
mately free-particle behavior for short distances.

(c) Colored states tend to be unbound or of higher energy.
(d) The approximation of the quark model indicates that an SU(3) color group together

with three light flavors of Dirac quark is needed to explain the observed spectrum
of hadrons.

(e) Extra quarks, in whatever representation of the color group, are a matter for dis-
covery at higher energy, and of obtaining a suitably consistent structure for the
electroweak theory. Consistency requirements concern the lack of anomalies in the
electroweak theory.

(f) Certain measurements are key ones in confirming the determination of the color
group, and in the measurement of the number of flavors, during and after the
discovery of QCD:
i. the π0 → γ γ decay rate, which is obtained from an anomaly in the vacuum

matrix element of three currents;
ii. the total cross section for e+e− annihilation to hadrons at high energy gives

a measure of the sum of the charges squared of the accessible quarks – see
Ch. 4;

iii. More detailed jet cross sections in e+e− give quite direct measurements of the
color-group theory coefficients CA and CF , etc. – again, see Ch. 4.

These arguments are primarily structural. They do not depend, for the most part, on detailed
numerical predictions of the theory. Such predictions are used mainly in determining which
gauge group is needed.

Once we have confidence that the theory is a good approximation to reality, we (i.e.,
people working on the strong interaction) change our attitude. The mathematics is hard, and
when useful, we appeal to the real world as a realization of QCD to help us to determine
what results are true. A failure of agreement between theory and experiment is expected to
indicate that there is an error either in the theoretical methods or their application, or in the
experiments, but it does not normally indicate an error in the theory itself. (An extension
of the theory, to add another quark, for example, is not regarded as a breakdown in the
theory.)
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2.7 QCD in the full Standard Model

Many applications of perturbative QCD concern the interaction of hadrons with non-QCD
particles, e.g., DIS, and all kinds of production processes for leptons, the Higgs boson, and
many hypothesized particles. To put these in context, I now review the definition of the
Standard Model (SM). For details, see any standard textbook, such as Halzen and Martin
(1984); Peskin and Schroeder (1995); Quigg (1997).

The SM Lagrangian is

LSM = −1

4

∑
α

(
Gα μν

)2 + i
∑
f

ψ̄f /Dψf +Dφ† ·Dφ +M2φ†φ

− λ

4
(φ†φ)2 −

∑
ij

hij ψ̄i Rφψj,L + gauge-fixing terms, etc., (2.30)

with the usual modifications for renormalization. Structurally this is like QCD, except for
the addition of a scalar “Higgs” field φ, with its self-interaction and its Yukawa couplings
to the fermion fields. The main features are as follows.

• In the first line, the sum over α is over the 12 generators of the gauge group SU(3)⊗
SU(2)⊗ U(1). We let the gauge fields for the three commuting components of the
gauge group be Aα

μ(x), Wj
μ and Bμ. The renormalized couplings of the three commuting

component groups are gs , g and g′ respectively, and the SU(3) subgroup is the QCD group.
• When we are working with pure QCD, without any mention of electroweak interactions,

we will often replace the notation gs by g.
• The fermion fields ψρaf carry different representations of the gauge group, unlike the

case of simple QCD.
• The covariant derivative is

Dμ = ∂μ + igs

8∑
α=1

T α
colA

α
μ + ig

3∑
j=1

Wj
μT

j
W + ig′Bμ

Y

2
, (2.31)

where for any given multiplet of fields Tcol and TW are the generating matrices for the
color SU(3) and the SU(2) groups, while Y is the weak hypercharge of the multiplet.

• The fermion fields are arranged in multiplets of left-handed fields and right-handed
fields. “Left-handed” fields are 1

2 (1− γ5) times the Dirac field, and “right-handed”
fields have a 1

2 (1+ γ5) factor.
• All known left-handed fields are doublets under SU(2), and all known right-handed

fields are singlets under SU(2).
• There are three generations of fermion, and the assignments of quantum numbers to

fields are specified in Table 2.1. Here we have extended the Standard Model slightly
beyond its original definition to include right-handed neutrino fields, as needed to
accommodate the measured neutrino mixing.

• The vacuum expectation value of the Higgs field is given by 〈0 φ 0〉 = (0, v/
√

2)T,
with v = 246 GeV. This breaks three of the electroweak symmetries, with the Z and
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Table 2.1 Quantum numbers of field multiplets in the Standard Model. The
symbols for the fields correspond to the particle names.

First generation:

Color singlet Y Color triplet Y(
νe L
eL

)
−1

(
uL
dL

)
1
3(

eR
) −2

(
uR
)

4
3(

νe R
)

0
(
dR
) − 2

3

The next two generations (νμ, μ, s, c) and (ντ , τ , b, t) are exactly similar.

Higgs field:

Color singlet Y(
φ+
φ0

)
1

photon fields being

Zμ = cos θW W 3
μ − sin θW Bμ, Aμ = sin θW W 3

μ + cos θW Bμ, (2.32)

where the measured Weinberg angle obeys sin2 θW = 0.22± 0.02.
• The electroweak couplings are given in terms of the QED coupling and θW by

g = e

sin θW
, g′ = e

cos θW
.

• The fermion masses are then obtained from the Yukawa couplings. From global fits to
data (Amsler et al., 2008) estimates of the masses of the elementary fields are found
(Table 2.2).

• All the formulae for masses, etc., are subject to higher-order electroweak corrections.
• The flavor and mass eigenstates of the two components of the fermion doublets are not

aligned, but have mixing given by the CKM and MNS matrices; see, e.g., Amsler et al.
(2008).

2.8 Beyond the Standard Model

All theories of physics are ultimately approximate, and many possibilities for theories that
are better than the SM are under active discussion. To keep agreement with known results,
the QFTs considered are generally extensions of the SM, except for the Higgs sector on
which there is as yet little direct data. Extensions include both the simple addition of field
multiplets and the embedding of the symmetry groups in bigger symmetries, as in Grand
Unified Theories and in supersymmetry.

Once gravity enters the picture, space-time becomes dynamical, and so any QFT, includ-
ing QCD, becomes only an effective low-energy approximation to a radically different kind
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Table 2.2 Standard Model masses for elementary fields, from Amsler et al. (2008).

Leptons and quarks (spin 1/2):

ν ∼ 0 d 3.5 to 6 MeV
e 0.511 MeV u 1.5 to 3.3 MeV

s ∼ 104 +26
−34 MeV

μ 106 MeV c ∼ 1.27 +0.07
−0.11 GeV

b ∼ 4.20 +0.17
−0.07 GeV

τ 1.78 GeV t 171.2± 2.1 GeV

Gauge bosons:

W± 80.398± 0.025 GeV Z 91.1876± 0.0021 GeV

Higgs:

100 to 300 GeV (indirect)

of theory (e.g., string theory), with a very different understanding of space-time. Factor-
ization in QCD remains a vital tool in phenomenological discussions of such theories,
because it separates treatment of the ultra-microscopic physics of the new theories from
the longer-distance physics which is an integral part of a full scattering process.

For current work in this area, see the proceedings of recent conferences and workshops,
e.g., Allanach et al. (2006).

2.9 Relation between fields and particles

In a free QFT, there is a direct correspondence between the types of single particle and
the fields, and in fact with the normal modes of the corresponding classical field theory. In
simple interacting QFTs, this correspondence continues to hold, but it is clear from both
QCD and the full Standard Model, that the particle-field correspondence is not general:

• With interactions some of these particles can be become unstable, as exemplified by the
muon, with its decay to eνμν̄e.

• There may be bound states, e.g., atoms. These are not related in a simple way to normal
modes of the elementary fields.

• It is also possible that there is no particle, stable or unstable, that corresponds to a
particular elementary field of a theory. QCD is an excellent example with its quark and
gluon fields. Any corresponding particles are permanently confined, and only behave
approximately like particles on short enough distance scales inside collisions. Before the
advent of QCD, this possibility was hardly recognized, if at all.

• Moreover, low-energy effective theories approximating a more exact microscopic theory
may use fields corresponding to bound states. This is the case for a Schrödinger QFT for
atomic physics, which might have fields for atomic nuclei.
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Moreover, one must be careful about what is meant by a particle. One standard definition
is from the single-particle states that are used to build up the asymptotic in- and out-states
of scattering theory. For this purpose completely stable bound states, like the ground state
of a hydrogen atom or even of a large macroscopic object like a planet, are particles. But
unstable particles, even relatively long-lived ones like the muon and the neutron, are not
particles under this definition.

It is clear that the connection between particles and interacting fields is somewhat
impressionistic. Even the usage of the word “particle” is quite fuzzy in the real world.
Which objects are called particles, which bound states, and which resonances is essentially
a linguistic matter: a matter of convention, and usage, and even of context.

Some confusions in the recent literature should be noted. For example, Weinberg in
his excellent textbooks on quantum field theory (Weinberg, 1995, p. 110) bases his logic
on the concept of a particle in the strict sense of scattering theory. Then his derivation of
perturbation theory requires that the set of one-particle states be unchanged after turning
on the interaction in a theory. If this were really necessary, it would immediately rule out
conventional Feynman perturbation theory for all known interactions.

Weinberg’s derivation of perturbation theory is for the S-matrix. Instead, if one bases the
logic on perturbation theory for (off-shell) Green functions, one no longer has to assume
that the particle spectrum is unchanged under perturbations. The particle spectrum and
the S-matrix are derived objects involving examination of poles in the Green functions.
Thus, for example, the stability or instability of a particular particle can be an accidental
consequence of the particular values of parameters of the theory.

It is evidently important to dispose of this issue at the outset, for otherwise most of
our work in perturbative QCD would be without a foundation. An account of the logic
for perturbation theory that is suitable from our perspective is given in Sterman’s textbook
(Sterman, 1993).

Exercises

2.1 (a) Show how to compute a particle-particle potential from the non-relativistic limit
of a first-order 2 −→ 2 scattering amplitude. You might do this by comparing
the Born approximation in QED with the Born approximation in non-relativistic
potential scattering. Consider both the case of spin- 1

2 and spin-0 particles.
(b) Apply this method to QCD to find the lowest-order approximation to the quark-

antiquark potential with massive quarks. Separately consider the case that the
system is a color singlet and a color octet. You should find that the potential is
only attractive for a color-singlet bound state.

2.2 Review problem: Define the concept of a structure function. Why is it a useful concept?

2.3 In the parton model approximation, compute the electromagnetic structure functions
for a scalar quark (i.e., for a spin-0 quark).
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2.4 Formulation of the structure function method for scalar field exchange instead of
vector field: Suppose you wanted to investigate the consequences of a hypothetical
theory with an extra neutral scalar field φ that has Yukawa couplings to quarks and to
leptons:

Lint = φ ×
(

heēe +
∑

i

hi q̄iqi

)
, (2.33)

where he and hi are the couplings to electrons and to quarks of flavor i. (a) What would
be an appropriate definition of structure function(s) in this problem? (b) What would
be the parton model formula?

Review and revise your answer to problem 2.2 in the light of your answer this
problem.

2.5 How do you extend the analysis of problem 2.4 in the presence of interference between
scalar and vector exchange?

2.6 Examine the state of the knowledge about current algebra just before the discovery
of QCD, e.g., in Treiman, Jackiw, and Gross (1972). How does this compare with the
description in this chapter?

The rest of this problem is best done after finishing learning about QCD. During
your studies of QCD, determine the extent to which the work in Treiman et al. (1972)
is (a) true in QCD, (b) needs modification, or (c) still needs proof. How much remains
relevant to current research and/or to understanding QCD and the strong interaction?
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