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The interaction between the dynamics of a flame front and the acoustic field within a
combustion chamber represents an aerothermochemical problem with the potential to
generate hazardous instabilities, which limit burner performance by constraining design
and operational parameters. The experimental configuration described here involves a
laminar premixed flame burning in an open–closed slender tube, which can also be studied
through simplified modelling. The constructive coupling of the chamber acoustic modes
with the flame front can be affected via strategic placement of porous plugs, which
serve to dissipate thermoacoustic instabilities. These plugs are lattice-based, 3-D-printed
using low-force stereolithography, allowing for complex geometries and optimal material
properties. A series of porous plugs was tested, with variations in their porous density
and location, in order to assess the effects of these variables on viscous dissipation and
acoustic eigenmode variation. Pressure transducers and high-speed cameras are used to
measure oscillations of a stoichiometric methane–air flame ignited at the tube’s open end.
The findings indicate that the porous medium is effective in dissipating both pressure
amplitude and flame-front oscillations, contingent on the position of the plug. Specifically,
the theoretical fluid mechanics model is developed to calculate frequency shifts and energy
dissipation as a function of plug properties and positioning. The theoretical predictions
show a high degree of agreement with the experimental results, thereby indicating the
potential of the model for the design of dissipators of this nature and highlighting
the first-order interactions of acoustics, viscous flow in porous media and heat transfer
processes.
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1. Introduction
The study of thermoacoustic instabilities has attracted considerable interest in the past
(Rayleigh 1878; Markstein 1951; Veiga-López et al. 2020), with a vast range of approaches
and efforts to provide a better understanding of the phenomenon (Pelcé & Rochwerger
1992; Assier & Wu 2014). Besides the physical interest, its thermochemical character is
tightly linked to the acoustics and flow dynamics, resulting in a very complex process.
Furthermore, engineers engaged in the development of thermal power technologies
are keenly interested in this phenomenon, as it has the potential to cause significant
deterioration in performance and severe structural damage to combustion chambers.
Thermoacoustic instability issues frequently arise in industrial combustion systems,
including burners (Morgans, Goh & Dahan 2013), boilers, combustion furnaces (Altay
et al. 2009) and in aerospace propulsion systems (Xia et al. 2019; Hashimoto et al. 2019).

Continuous efforts are typically oriented towards the effects of chamber configuration
(Srikanth et al. 2022), new visualisation techniques (Choudhury, Syam & Joarder
2023), material properties such as heat-transfer (Mejia et al. 2015) or elastic dissipation
mechanisms (Rubio-Rubio et al. 2023) and mixture properties (Ananthakrishnan et al.
2024). In fact, a wide variety of control mechanisms are available for the dissipation of
thermoacoustic waves, which are typically classified into passive and active categories.
Passive control mechanisms entail the introduction of additional acoustic losses or
damping into combustion chambers with the objective of mitigating the effects of acoustic
disturbances. Typical examples of such dissipators include Helmholtz resonators (Yang,
Wang & Zhu 2014; Zhang et al. 2015; Cai & Mak 2018) and expansion chambers or
cavities (Jo, Choi & Kim 2019). The primary limitation of these passive control methods
is that they are designed to mitigate a specific set of frequencies, which restricts the
method’s range of applicability and efficiency when a wide range of frequencies is
present. Conversely, active control mechanisms employ pressure monitoring systems and
sequential dynamic actuators, such as valves and loudspeakers, to interrupt the coupling
phenomena associated with thermoacoustic waves (Li et al. 2016). One of the primary
limitations of active controllers is the requirement for rapid response, especially in high-
frequency regimes. Furthermore, these control mechanisms depend on electronic devices
to prevent instabilities, which can introduce further complexity and potential points of
failure.

In this paper, we explore the fundamental effects of enhanced viscous dissipation on
a thermoacoustically unstable flow via porous structures. The placement of these plugs
inside the combustion chamber produces variations in the natural acoustic modes and
additional energy dissipation, which are here characterised in the presence of simple and
well-controlled experimental set-ups. To this end, different types of porous structures
are designed and selected to tune their properties and help explain the variations of
such mitigation behaviours for the flame propagating in thin channels. A key safety
concern motivating this work is the propagation of flames in combustion set-ups where
the excitation of instabilities can lead to hazardous conditions. Furthermore, from a
fundamental perspective, the acoustic response of a propagating flame is thought to
influence the formation of complex flame structures, such as tulip flames (Xiao, Houim
& Oran 2015). In our experiments, the flame front undergoes a rapid evolution driven
by changes in the flame surface area and cellular structures (Pelcé & Rochwerger 1992).
Although a simpler configuration, such as a Rijke tube, with a fixed heat-release location
could be used, it would not capture these intricate interactions between flame dynamics
and acoustics, and would be subject to a specific acoustic frequency prescribed by the
tube length and the heat-release position. Therefore, a propagating flame tube is used
here to serve as a dynamic benchmark of acoustic-mitigation testing in a wide range
1013 A25-2
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of frequencies and provides, as a side product, further valuable information for their
application in combustion chambers and accidental reactive events.

In recent years, advancements in additive manufacturing techniques have enabled the
design and fabrication of components that would be unfeasible using traditional methods
(Braun & Iváñez 2020; Braun, Iváñez & Aranda-Ruiz 2020). One such example is the
fabrication of metamaterials based on lattice structures (Liao et al. 2021; Gao et al. 2022).
In this study, we have employed the advantages of this technique to design porous plugs
that have been manufactured using low-force stereolithography. The efficacy of these
devices has been evaluated in relation to different pore sizes and their positions within
the tube. Furthermore, experimental tests were conducted to determine the characteristic
permeability of the porous structures and provide a theoretical representation of the effect
at hand.

The advantage of incorporating porous pieces in burners, in comparison with alternative
methods of instability control, is their wide robustness and simplicity, as they are not
limited to dissipating waves within a specific frequency range, nor do they require the use
of additional electronic devices. In addition, 3-D printing technology allows their easy
adaptation to applications with different geometries. The experimental results show the
effectiveness of this passive control mechanism for thermoacoustic instabilities in such
tubes and the optimal design parameters and placement that enhance their performance.
They warn, as well, about the alteration produced in the system’s eigenfrequencies upon
the introduction of porous plugs.

Moreover, a one-dimensional theoretical model, based on the formulation presented by
Flores-Montoya et al. (2022), is proposed to estimate the energy dissipation capacity of
these porous media and their effect on the natural frequencies of the tube. The strong
correlation between the proposed model and the experimental results serves to validate
the theoretical model’s capacity to optimise the design of porous media as a mechanism
for controlling thermoacoustic instabilities. Furthermore, it provides a more profound
understanding of the underlying physical processes relevant to the current problem.

2. Experimental set-up and procedure
The objective of this study is to investigate the ability of a porous structure to
mitigate thermoacoustic waves, discerning between acoustic mode alteration and viscous
dissipation effects. A schematic of the experimental set-up and the combustion chamber
is shown in figure 1. It consists of a polymethyl methacrylate (PMMA) slender tube with
an inner diameter D = 1.55 cm and length L = 160 cm. At first, the tube is filled with a
premixed methane and air mixture at a stoichiometric equivalence ratio prepared with two
Bronkhorst EL-Flow mass flow controllers. After allowing for the gases to reach thermal
equilibrium with the room and a state free from any inertial effects (60 s at 25 ◦C), the
ignition is produced at the open end with a low-energy piezoelectric spark plug, resulting
in the propagation of a premixed flame towards the closed end of the tube. As the flame
advances, the oscillations appear and spontaneously change in intensity and frequency
along the combustion tube.

2.1. Pressure and flame-velocity measurements
The flame propagation is recorded using a Phantom VEO 710L high-speed camera with
a resolution of 1280 × 150 pixels and a frame rate of 2000 frames per second. Owing
to the slenderness of the combustion chamber, where L � D, and the need for spatial
resolution across the flame front, only partial longitudinal visualisation of the set-up is
possible during each run of the experiment. The position of the camera was fixed for all

1013 A25-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10257


P. Gatón-Pérez, M. Braun, S. Prasad Choudhury, V. Muntean and D. Martínez-Ruiz

Mixed gas

injection

Pressure
sensor

Flame

Ignition

Closed

end

x
Lp

Ls
L

S 2R

Open

end

Camera

Porous

plug

Figure 1. Diagram of the experimental set-up showing the ignition point, the porous plug, the high-speed
camera and the pressure sensor. The flame propagates from the open end towards the closed end of the tube.
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Figure 2. Raw image of the flame (a), filtered image (b), detection of the flame front as a function of the radial
distance to the axis of the tube, x f (r), and centroid’s position, (xc, rc) (c), flame and centroid velocity, u f (r)
and uc respectively (d).

the experiments, capturing a field of view of the tube between 30 and 60 cm from the open
end. Moreover, pressure oscillations inside the tube, above and below ambient pressure
values, are measured with a couple of integrated silicon pressure transducers MPX5050
that are placed at a fixed position Ls = 2L/3, i.e. at a distance of 106.6 cm from the closed
end. The sensors’ response time is 1 ms and pressure was sampled at 10 kHz.

Each frame of the recorded video registers the instantaneous luminosity of the flame
providing its position. The images are preprocessed using the denoising algorithm
proposed by Rudin, Osher & Fatemi (1992). This filter comprises an optimisation
algorithm that solves a numerically derived Euler–Lagrange equation, using a priori
information on noise statistics. The objective is to reduce the standard deviation of
the image caused by the noise, while conserving flame-shape features. Subsequently, a
detection algorithm is employed to extract the flame front from each image, as shown in
figure 2. This is achieved by delineating a border between the light and dark pixels of the
binarised image and retaining only the advancing-front side of the contour. The in-house
algorithm is written in Python using the OpenCV library. The detected flame fronts are
fitted by an eighth-degree polynomial which is enough to capture the flame’s deformation
while removing the detection noise and improving subpixel resolution (Flores-Montoya
et al. 2022).
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Figure 3. Characteristic flame-front oscillation as observed from (a) high-speed images, (b) front tracking,
(c) centroid propagation velocity uc and (d) pressure measurements p.

Once all the frames are filtered, the velocity of the flame along the axial direction
can be computed by tracking its displacement between consecutive frames, separated by
a time t = 1/2000 s. Therefore, the axial component of the velocity at each point u f
in the flame front is available, as well as the velocity of the centroid, which serves as
a global flame variable. The flame oscillations and the modified flame shape that the
thermoacoustic coupling produces in the unstable process are recorded as presented in
figure 3. The (a) and (b) panels show the evolution of the flame propagation from right to
left over time, together with the front detection in red superposed lines, and reproduced
below for every two frames to track the propagation along x . The (c) and (d) panels show
the velocity oscillations as extracted from image processing and centroid detection uc(t),
and pressure measurements of the experimental run p(t). The good accordance between
both signals indicates that the flame-front dynamics behave initially as a passive interface
subject to acoustic oscillations. However, these so-called primary instabilities can undergo
a transition towards secondary regimes, where the flame is folded and actively modifies
the coupling with the pressure oscillations that grow an order of magnitude larger. The
characteristic behaviour and dynamics involved in this process have long been studied
by different authors theoretically (Pelcé & Rochwerger 1992; Markstein & Squire 1955),
in two-phase flows (Clanet, Searby & Clavin 1999) and experimentally for various fuels
(Martínez-Ruiz et al. 2019; Veiga-López et al. 2019).

2.2. Porous plugs characterisation
Prior to filling the tube with the gas mixture, a porous plug of diameter D = 1.55 cm,
matching the inner diameter of the tube, is introduced and tightened in place by a rubber
O-ring to prevent it from sliding. The position of the plug in the tube is fixed for each
experimental run at a distance L p from the closed end, measured at the border of the
porous plug facing the open end. The lattice structure is displayed in figure 4(a), and is
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Figure 4. Illustration of the 3-D-printed porous plug (a), the lattice structure of a BCC-SC unit cell (b) and
the experimental characterisation arrangement (c).

based on a combination of body-centred cubic and single cubic (BCC-SC) arrangements.
Three unit-cell sizes a were considered, with values of a = 4.0, 3.0 and 2.0 mm. These
elements are fabricated using low-force stereolithography and made of FormLabs© Clear
Resin, which emulates the strength and rigidity of polyethylene. The diameter of the
structure bars is 0.20 mm in all cases, while the printing layer resolution is 25 microns
in height. Different unit-cell layouts, sizes a and plug lengths �, were characterised and
tested in a predesign study. In fact, each unit-cell size a ∈ (2, 3, 4) mm was tested for
different lengths of the porous plug � ∈ (20, 30, 45) mm.

The porous structures of this work were manufactured specifically to alter the
thermoacoustic behaviour of the premixed-flame system at hand by means of viscous
dissipation. In order to quantify this effect, some prior testing was required to characterise
the permeability K of the structures which is defined in accordance with Darcy’s
law as

u = − K

μ

�p

�
, (2.1)

where μ is the dynamic viscosity, �p is the pressure drop across the plug, and u is the
flow velocity. It should be noted that a constant pressure loss is considered, with linear
velocity variation in the axial direction. Furthermore, figure 4(c) shows a schematic of
the experimental set-up carried out to determine the permeability of different porous plug
designs. The utilisation of linearised Darcy’s law as a model for the acoustic response
is substantiated under the premise of low permeability and negligible inertial effects,
conditions under which the flow remains within the linear regime. Despite the fact that
this approximation may be subject to loss of accuracy at high frequencies, it remains valid
within the operating range that has been considered in this work.

The characterisation experiments are performed by forcing a controlled mass flow rate
of air through the porous plug, once fixed inside the PMMA tube. Pressure measurements
were taken inside the tube at both ends of the plugs to measure the pressure drop for
varying air velocity, u ∈ (0.0, 0.7)m s−1 , which is in the range of the amplitude of the
velocity oscillations observed in the thermoacoustic instabilities from the experiments.

Table 1 presents the unit-cell size a, the plug length �, porosity Φ as the ratio of
empty to total volume, the experimentally obtained permeability K and the coefficient of
determination R2, together with the mean and standard deviation value K for each of the
porous types considered in the study. In addition, we shall use a dimensionless parameter
κ =μ�/(ρucu K ), which will be utilised to characterise the porous plugs. Here, μ, ρu and
cu are dynamic viscosity, density and speed of sound in the unburnt gas, respectively. The
parameter κ represents the resistance to the flow and the porous plugs with the larger κ
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a � Φ K R2 K κ

(mm) (mm) (–) (×10−9 m2) (–) (×10−9 m2) (–)

20 0.64 0.9828 1.46
2.0 30 0.83 0.65 0.9837 0.68 ± 0.04 2.15

45 0.73 0.9865 2.92
20 1.77 0.9979 0.53

3.0 30 0.92 2.01 0.9824 1.95 ± 0.16 0.70
45 2.08 0.9984 1.02
20 6.59 0.9959 0.13

4.0 30 0.96 6.83 0.9971 6.70 ± 0.12 0.20
45 6.67 0.9965 0.30

Table 1. Unit-cell size a, length �, porosity Φ, permeability K , the R2 fit quality and dimensionless parameter
κ for each porous structure. The values K represent the mean values of permeability with their associated
standard deviations.

are those that produce a larger pressure drop. Finally, the linear fit of the experimental
permeability returned an R2 value higher than 0.97.

Furthermore, the relationship between the pressure drop, �p, and the flow velocity, u,
can be expressed as

�p

�
= Au + Bu2, (2.2)

where A and B are constants determined by least-squares fitting. This model considers
non-Darcy flow effects in single-phase flow by introducing relative permeability in
the viscous term and the B factor in the inertial term (Fourar & Lenormand 2001;
Bhattacharya, Calmidi & Mahajan 2002; Nowamooz, Radilla & Fourar 2009). In fact, the
constants enable the definition of the permeability K =μ/A and the inertial coefficient
CE = B

√
K/ρu (Ekade & Krishnan 2019).

Table 2 presents the permeability and inertia coefficient values determined based on the
quadratic non-Darcy relationship for each of the porous plugs. The table also includes the
corresponding mean values and standard deviations. The R2 parameter of the fit has been
excluded from the presented data set, as it consistently exhibited a constant value of 0.99
in all cases.

The results obtained from the characterisation tests for various porous structures are
shown in figure 5. The symbols show the experimental measurements for �= 20 mm
(triangles), 30 mm (squares) and 45 mm (circles), confirming that the permeability is
governed only by the cell size a, regardless of the length �. In addition, the graphs include
the linear (dashed line) and quadratic (continuous line) fits for each series of experiments,
which is the mean value obtained from three different lengths of each unit-cell size.

The linear and parabolic fittings return different values for the permeability K . Among
these options, the linear fitting is considered sufficient to describe the porous plug in
this application since the acoustic velocity is much smaller than one for most of an
acoustic cycle during primary instabilities. As a final remark, this characterisation using
a steady flow is deemed acceptable to describe the porous plug’s properties under an
oscillating flow. This is because the response time of a viscous flow in the pores which
are approximately δp = 0.2 mm wide is of the order of tv ∼ ρuδ

2
p/μ≈ 1 × 10−3 s smaller

than the typical acoustic period from the experiments ta ≈ 1 × 10−2 s.
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a � K CE K C E

(mm) (mm) (×10−9 m2) (m3) (×10−9 m2) (m3)

20 1.51 0.73
2.0 30 1.49 0.69 1.49 ± 0.02 0.66 ± 0.08

45 1.48 0.57
20 4.27 0.45

3.0 30 4.59 0.40 4.53 ± 0.24 0.41 ± 0.03
45 4.74 0.39
20 19.1 0.29

4.0 30 17.6 0.29 18.4 ± 0.76 0.29 ± 0.01
45 18.6 0.28

Table 2. Geometric parameters of the unit cell (a) and characteristic length (�), along with the permeability (K )
and the coefficient of inertia (CE ) for each porous structure, as obtained from the non-Darcy flow relationship.
The values K and C E represent the mean values of permeability and coefficient of inertia, respectively, with
their associated standard deviations.

0 0.2 0.4 0.6 0.8 1.0

�p/μ𝓁 (1ms–1) ×109

0

0.2

0.4

0.6

0.8

u 
(m

 s
–
1
)

Figure 5. Flow velocity as a function of pressure drop as tested experimentally (symbols) for unit-cell sizes of
a = 4 mm (green), a = 3 mm (red) and a = 2 mm (blue), with their respective least-squares linear (dashed line)
and quadratic (continuous line) fits.

3. Theoretical model: non-isothermal acoustics with porous plug
This section presents a one-dimensional acoustic perturbation analysis developed from
first principles to predict the effect on thermoacoustic instability eigenmodes of a porous
structure and a premixed flame in a slender tube.

3.1. Governing equations
Firstly, the flow is considered to be one-dimensional due to the large aspect ratio of the
tube, L � D. The characteristic length scale of the acoustic problem is the tube length L ,
along which the acoustic waves travel at the local speed of sound c = √

γ p/ρ, where γ is
the ratio of specific heats of the gas. Consequently, the length scales of the plugs �, and
flame thickness δT are much smaller than the tube length, L � �� δT . Therefore, both
the porous plugs and the flame are treated as surfaces of discontinuity in the acoustics
problem. Acoustics within the porous plug are neglected based on the length difference
�/L � 1.
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The subscript ‘u’ refers to the unburnt gas conditions where ρu and Tu define the
density and temperature of the unburnt gas, respectively. The characteristic acoustic time
ta = L/cu is referred to the cold-gas speed of sound cu , and is much shorter than the
flame residence time tr = L/S, where S is the flame propagation speed. In terms of
the acoustic problem, the flame-induced flow field can be considered as quasi-steady.
The dimensionless coordinate and time are given by ξ = x/L and τ = t/ta , respectively.
Furthermore, the dimensionless flow variables such as velocity û, density ρ̂, temperature
T̂ and pressure p̂ arise from rescaling with the characteristic flame speed S, unburnt
density ρu , temperature Tu and acoustic pressure ρucu S. Dimensionless conservation
equations for mass, momentum and energy are written, with viscous and dissipative terms
neglected, as

∂ρ̂

∂τ
+ M

∂(ρ̂û)

∂ξ
= 0, (3.1)

ρ̂
∂ û

∂τ
+ M ρ̂û

∂ û

∂ξ
= −∂ p̂

∂ξ
, (3.2)

∂ p̂

∂τ
+ Mû

∂ p̂

∂ξ
= 1

M

c2

c2
u

(
∂ρ̂

∂τ
+ Mû

∂ρ̂

∂ξ

)
, (3.3)

where the flame propagation Mach number M = S/cu is low, and use is made of the ideal
gas equation of state.

These flow-field variables are split into a quasi-steady base flow and acoustic
perturbations, as ψ̂(x, t)=ψ0(x)+ψ ′(x, t). It should be noted that from linearised
isentropic acoustics, density perturbations ρ′ 
 p′M � p′ should not be retained. First-
order perturbations in the linearised system enable writing the wave equations for velocity
and pressure as

∂2u′

∂τ 2 − T0
∂2u′

∂ξ2 = 0, (3.4)

∂2 p′

∂τ 2 − ∂

∂ξ

(
T0
∂p′

∂ξ

)
= 0, (3.5)

where T0 = c2/c2
u arises from consideration of non-isothermal acoustics and local

variation of the speed of sound. Note that the characteristic time variation of the
temperature profile along the tube is, in first order, directly linked to the flame residence
time. The latter is much longer than the acoustic time of pressure wave propagation,
tr/ta ∼ O(M−1)� 1. Therefore, the one-dimensional temperature distribution can be
considered as a quasi-steady function of the flame position ξ f = L f /L . Finally, the
domain is split in two regions at either side of the porous plug location, ξp = L p/L , which
will be referred to as closed side and open side depending on their end of the tube.

In order to close the set of wave equations, the following boundary conditions are
applied. At the porous discontinuity, the flame is always arrested and the density remains
equal to the initial reactant mixture, hence a constant mass flow must be imposed u′(ξ−

p )=
u′(ξ+

p ), where superscripts + and − indicate a position slightly after or before ξp.
Moreover, the pressure drop therein is set by Darcy’s law in (2.1), specifically [p′(ξ+

p )−
p′(ξ−

p )] = −κu′(ξp), where the dimensionless parameter of the porous structure κ =
μ�/(ρucu K ) is recalled here for convenience. Then, additional boundary conditions are
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prescribed at the closed end, u′(ξ = 0)= 0, and open end, that in first approximation
remains at atmospheric pressure, p′(ξ = 1)= 0.

The acoustics solution of (3.4)–(3.5) at either side of ξp is expected to be of the form
p′ = eiΩτ [Aφ(ξ)+ B], with the normalised eigenvalue Ω =ωta , referred to the angular
frequency of an oscilation ω and the acoustic time ta . The real part Ωr of the complex
eigenvalue indicates the frequency of each mode, whereas the imaginary part Ωi denotes
the damping or amplification of the modes. When the imaginary part is positive the modes
are damped.

Moreover, φ(ξ) represents the eigenfunctions which, for isothermal porousless acoustic
problems, recover the classic sin–cos solutions. Since the time dependence of the variable
profiles is prescribed, Euler momentum (3.2) can be used as iΩu′ = −T0∂p′/∂ξ to replace
the variable u′ by p′. The end-tube and additional porous boundary conditions over the
pressure perturbation variable are

∂p′

∂ξ

∣∣∣∣
ξ−

p

= ∂p′

∂ξ

∣∣∣∣
ξ+

p

; p′(ξ+
p )− p′(ξ−

p )=
κ

iΩ

∂p′

∂ξ

∣∣∣∣
ξp

; ∂p′

∂ξ

∣∣∣∣
0
= 0; p′(1)= 0.

(3.6)

Accurate modelling calls for incorporating the slowly varying temperature field owing
to the propagation of the flame. The classical strategy followed by Clavin, Pelcé & He
(1990) incorporates two distinct regions separated by the flame position at unburnt T0 = 1
and burnt T0 = ε temperatures, where ε is defined as the temperature ratio through the
flame. However, experimental evidence in slender tubes shows a non-negligible mismatch
of the self-excited acoustic frequencies owing to the non-adiabatic nature of the system and
temperature decay after the flame as proposed by Flores-Montoya et al. (Flores-Montoya
et al. 2022). Therein, good frequency agreement with experimental results is provided via
the estimation of the length affected by conductive heat losses through the tube’s wall
lc = 4ub D2/(Nu DT ). This length is extracted from the solution of a section-averaged
heat transport problem in a tube with the burnt-gas speed ub, thermal diffusivity DT and
characteristic Nusselt number value in pipe flows, Nu = 3.66. Therefore, the region ahead
of the flame (ξ < ξ f ) remains at initial temperature T0 = 1, while the burnt region (ξ > ξ f )
can be described as

T0(ξ)= 1 + (ε − 1) exp[−σ(ξ − ξ f )], (3.7)

with use made of the dimensionless parameter σ = L/lc = (Nu/Pe)(L/D)2, constant for
a given flame temperature (or air–fuel mixture) and tube aspect ratio L/D, with Pe =
Lub/DT the Péclet number. If an average flame velocity of 0.50 m s–1 is considered, and
for the testing conditions analysed in this work, it can be obtained that σ = 11.

In our generic non-isothermal acoustics, a new pair of boundary conditions are required
at the flame location ξ f , assuming small pressure variations through the flame in the low-
Mach propagation regime and continuity in velocity perturbations:

p′(ξ−
f

) = p′(ξ+
f

); ∂p′

∂ξ

∣∣∣∣
ξ−

f

= ε
∂p′

∂ξ

∣∣∣∣
ξ+

f

. (3.8)

This set of boundary conditions along with T0(ξ) successfully predicts the system’s
eigenmodes in the cited works. Thermoacoustic instabilities originate from the flame’s
unsteady heat release which depends on the flame-front dynamics during the propagation,
and no information on it is included in the model. Most importantly, the frequency
of oscillation is prescribed by the set-up, tube length, boundary conditions and gas
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Figure 6. Real part of the eigenvalues Ω depending on the flame location ξ f for (a) adiabatic (σ = 0) and
non-adiabatic (σ > 0) wall solutions without porous plug, (b) for porous location ξp = 1/6 and various κ ,
(c) ξp = 1/3, (d) ξp = 1/2. In all cases the heat-loss parameter is σ = 11. Horizontal solid lines are the
eigenvalues of the porousless, flameless case. The colour of the markers indicates the damping Ωi .

temperature distribution, which can be defined with a passive flame front. The self-
amplification arises only when the flame is in certain areas such that the propagation time
of a pressure wave from the flame to the end of the tube and back matches the flame
response delay (Crocco 1951; Poinsot 2005; Flores-Montoya et al. 2023). These regions
of instability inside the tube are expected to be slightly shifted due to the presence of the
porous plugs, but these corrections go beyond the scope of this work.

Given these two surfaces of discontinuity at ξp and ξ f , the domain is subdivided into
three regions, namely the closed end to porous plug (ξ < ξp), porous plug to flame (ξp <

ξ < ξ f ) and flame to open end (ξ f < ξ ), where (3.5) must be solved for six unknown
constants, Ai and Bi , with the six boundary conditions written in the pressure perturbation
variable, as defined in (3.6) and (3.8).

Then, the eigenvalue problem must be computed numerically as a function of the
non-homogeneous temperature, density and speed of sound. The spatial function φ and
its derivatives are discretised over equispaced ξ coordinates with a second-order finite
difference scheme. The numerical eigenvalues, λn = −Ω2

n , and eigenfunctions φn of (3.5)
carry the additional complexity of Ω appearing as a parameter in the algebraic system
through the boundary conditions in (3.6), which calls for an iterative solver.

Figure 6(a) shows the frequency variation of different modes, fundamental and first
harmonic, with the position of the flame ξ f in the absence of porous media. In particular,
the isothermal solution in the absence of the porous plug is plotted (solid line) in
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Figure 7. Real Ωr and imaginary Ωi (colourbar) parts of the eigenmodes of a flameless tube (T0 = 1) against
the location of the porous plug location for κ = 0.3 (a) and κ = 2.92 (b). Horizontal solid lines are the
eigenvalues of the porousless, flameless case.

comparison with the adiabatic flame model of Clavin (Clavin et al. 1990) (dashed line) and
the complete numerical solution with heat losses of Flores-Montoya (Flores-Montoya et al.
2022) (dash-dotted line). In addition, figure 6(b–d) shows the new effect of permeability
through the variation of κ for three different locations of the porous plug, ξp = 1/6,
ξp = 1/3 and ξp = 1/2, respectively. It can be noted that the eigenmode frequencies drift
away from the porousless case for increasing κ and ξp.

Moreover, Ω is as sensitive to the location of the porous plug ξp as it is to κ , but the
effect of these two parameters on Ω shows a complex trend that is hard to infer from
figure 6 alone. To address this effect, the analysis of a simplified case of acoustics in the
absence of flame, with ε = 1, T0 = 1 (isothermal) and without imposing jump conditions
(3.8), reduces to the analytic expression

iκ sin(Ω(2ξp − 1))− 2 cos(Ω)+ iκ sin(Ω)= 0. (3.9)

Here, the solution eigenfrequencies and damping of the system depend only on the
permeability and location of the porous plug, represented together in figure 7. The limits
of small κ and κ → ∞ correspond respectively to a porousless case and the case with an
impermeable wall at ξp. For κ = 0.30, the Ωr (ξp) curves remain on top of the porousless
frequencies, while the damping Ωi takes its largest values when ξp sits near the pressure
nodes, which are at ξ = 1 for the fundamental mode, ξ = 1/3 and ξ = 1 for the first
harmonic and ξ = 1/5, ξ = 3/5 and ξ = 1 for the second harmonic. It is not surprising that
these are the most-dissipating placements as the velocity of the standing waves is maximal
there, causing the greatest dissipation at the porous plug. For κ = 2.92, the Ωr (ξp) curves
change dramatically, approaching those of a solid plug. This is visible in the formation of
a series of increasing branches ofΩr that correspond to the modes on the open side of the
tube becoming shorter, meanwhile a set of decreasing branches correspond to modes of
the closed side of the tube whose frequency decreases as this side becomes larger.

The eigenfunctions φ(ξ)= φr (ξ)+ iφi (ξ) are complex-valued as well as the
eigenvalues, so the real part of the solution for the pressure perturbations is p′

r =
e−Ωi τ [φr (ξ) cos(Ωrτ)− φi (ξ) sin(Ωrτ)]. In p′

r , two standing waves φr and φi coexist
and they oscillate with a π/2 phase lag one to the other. The shape of the fundamental
and first-harmonic modes can be observed in figure 8, where Ωi is set to zero to represent
the oscillating part of p′ aside from the damping process. The symbols correspond to
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Figure 8. Theoretical acoustic perturbations p′ in the absence of a flame of the fundamental (a,b) and first-
harmonic (c,d) modes for two locations of the porous plug ξp = 0.2 (a,c) and ξp = 0.85 (b,d) with κ = 2.92.
Instantaneous values are shown every one twentieth of the acoustic period from the lighter to the darker shades
of grey.

the location of the mode in the frequency panel of figure 7(b). It can be noted that both
modes involve a greater number of nodes when placing the porous plug closer to the open
end (figure 8b,d). Therefore, a modification of both the frequencies and the characteristic
acoustic pressure modes are expected when including this kind of dissipative media in the
experimental set-up.

Porous plugs are often modelled through their impedance in Fourier space. The
impedance is a complex number whose real part (the resistance) is related to the damping
while its imaginary part (the reactance) is related to the lag of the pressure signal across
the porous plug (Morse & Ingard 1986). Nevertheless, the present description in the time
domain using Darcy’s law implicitly contains the equivalent damping Ωi and lag effects
of the impedance, as shown in figure 8.

4. Results
This section presents the experimental measurements and the agreement of the theoretical
model, with the aim of providing further insight into the control of flame instabilities. The
results regarding the efficiency of the porous plugs in mitigating thermoacoustic waves
are evaluated based on the characteristics of the porous plug, acoustic measurements and
high-speed camera recordings. Thereafter, the predictions of the proposed model and the
physical analyses are discussed.

4.1. Pressure measurements
First, figure 9 shows the theoretical prediction of the fundamental mode of acoustic
pressure for two porous plugs of different κ placed at the same location ξp = 1/3 and with
the same flame position ξ f = 0.4. Both cases show similar changes of slope at ξ f owing
to the same flame discontinuity but are noticeably different around the porous position.
Curves are taken every �τ = 0.2 from the lightest shade of grey with Ωi = 0 to avoid
including damping dynamics. The pressure wave at the closed side of the porous plug
lags behind the open side’s, providing a greater difference for higher κ values. Moreover,
figure 10 presents the experimental validation of the acoustic mode when recording
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Figure 9. Theoretical prediction of p′ fundamental mode oscillations for ξp = 1/3, ξ f = 0.4 and σ = 11.
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Figure 10. Experimental measurements p′ at several locations along the tube under fundamental mode
excitation with ξp = 1/3, ξ f = 0.4 and σ = 11.

pressure variations at nine positions of the tube simultaneously. Curves are plotted every
�t = 1 × 10−3 s during approximately half an acoustic period, starting from the lighter
shade of grey, during the propagation of the flame around ξ f = 0.4. It can be noted that the
discrete measurement qualitatively reproduces the shape of acoustic mode prediction with
very good agreement, including the pressure jump at the porous discontinuity and slope
change at the flame position. Therefore, it should be noted that the boundary conditions
proposed at flame and porous positions may suffice to analyse the thermoacoustic problem
at hand. The experiment yielded the finding that the frequency of the pressure signals on
either side of the porous plug is identical, and that the lag among them remains constant
over time. The absence of non-acoustic frequencies or modulations on the pressure signal
at the porous location when the flow direction changes confirms the absence of viscous
flow hysteresis. This finding validates the hypothesis of nearly instantaneous adaptation of
the viscous flow within the pores.

Regarding the frequencies, figure 11(a) presents the comparison of pressure signals
between two experimental runs without (black) and with (red) a porous plug at ξp = 1/3.
It can be noted that the flame oscillation is controlled, with no noticeable transition to
large-amplitude oscillations, with estimated porous properties that yield a value κ = 2.92.
Figure 11(b) shows the frequency spectra of the experimental pressure signals for a porous
plug of dimensionless parameter κ = 2.92 positioned at different ξp. The pressure data in
the absence of the porous plug inside the pipe has been included (solid black). Two distinct
frequency peaks are noticeable in this figure, corresponding to the fundamental mode and
the first-harmonic mode. The fundamental frequency can be easily approximated in an
open–closed tube as f0 = cu/4L , given that the equivalent sinusoidal eigenfunction for
isothermal acoustics exhibits a span quarter-wavelength, while the first harmonic is given
by f1 = 3cu/4L . In the case under examination, the fundamental frequency derived from
the experimental data is approximately 64 Hz, higher than the approximate theoretical
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Figure 11. (a) Pressure signal evolution with time for a tube without (black) and with (red) a porous structure
of κ = 2.92 at ξp = 1/3. (b) Power spectral density for a slender tube with a length of 160 cm and a porous
plug with κ = 2.92 at different positions along the tube.

value of 53 Hz , with cu = 343 m s−1 . Furthermore, as illustrated in figure 11(b), the
introduction of the porous plug results in a reduction in power spectral density (Spp),
accompanied by a shift in the peak frequency as the porous plug approaches the open end.
The spectrum of each part of the pressure signal is computed as the product of the Fourier
transform of the pressure F[p] = p̃ by its complex conjugate p̃∗: Spp = p̃ ◦ p̃∗.

Furthermore, the outcomes of the pressure sensor measurements are collated from a
series of experiments in which the non-dimensional porous plug position, ξp = L p/L , is
varied along the tube. In fact, figure 12 illustrates the pressure signal and spectrogram as
a function of the flame location, ξ f , considering three positions of porous plugs, ξp =
1/6 (panels a,b), 1/3 (panels c,d) and 1/2 (panels e,f ), respectively. The figures present
the pressure signals as a function of the flame position. These are translated from the
temporal measurements of pressure to spatial reconstruction, assuming a constant mean
propagation velocity. Then, pressure signals and their spectrograms are represented with
respect to the flame location, ξ f = x f /L , where x f corresponds to the distance between
the flame front and the closed end of the tube. Moreover, each panel in figure 12 represents
a specific porous plug with a given value of permeability parameter κ = 0.30 (panels a,c,e)
and κ = 2.92 (panels b,d,f ).

Additionally, the solutions obtained with the theoretical model proposed in this study
have been included in the spectrogram with colour symbols, encompassing both the
frequencies and the dissipation capacity (colourmap). In turn, the most dissipative flame
positions (yellow symbols) are not excited in the experimental spectrogram (dark areas).
Nevertheless, all the frequencies of experimentally self-excited regions show a great
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Figure 12. Pressure signal and spectrogram as a function of the flame position ξ f for various plug positions
ξp = 1/6 (a,b), ξp = 1/3 (c,d) and ξp = 1/2 (e,f ) and different porous properties κ = 0.3 (a,c,e) and κ = 2.92
(b,d,f ). The model prediction (symbols) includes frequency responses and the dissipation Ωi (colourbar).
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Figure 13. The normalised spectrum Spp of the first (a) and second (b) spectrum peaks as a function of the
porous plug position for different porous properties κ .

agreement with the theoretical frequency prediction. Also, it can be observed that as
the porous plug becomes denser (higher κ values) and is positioned closer to the
open end (increasing ξp), the frequencies increase. This behaviour is more evident in
the first harmonic, where the least dense porous plug generates a frequency change
of approximately 5 %, and the frequency of the most dense increases up to 35 %.
This behaviour can be attributed to the fact that as the density of the porous plug
increases, the acoustic problem begins to behave like a wall of decreasing permeabilities,
resulting in higher frequencies corresponding to shorter tubes. The prediction for the
natural frequencies of the porousless model with heat losses in a tube length of 160
cm has been included (dot-dashed blue) for comparison, showing a lack of agreement
as the porous parameter is increased. Finally, the spectrograms show the presence of
spurious frequencies at specific values of Ω ≈ 3 (and its multiples), which correspond
to frequencies of approximately 100 Hz associated with measurement equipment.

Next, a global measure of the decay of the excited frequencies, based on the position
of the porous plug, is provided in figure 13. There, the amplitude of the power spectral
density, denoted by Spp, normalised with respect to the porousless case is represented
as a function of the porous plug position ξp for the first (panel a) and second (panel b)
frequency peaks. The spectrum values have been normalised respectively with respect to
the amplitude of the fundamental mode’s peak in the spectrum, S0

pp, and the first-harmonic
mode’s peak, S1

pp, in the absence of the porous plug. As illustrated in figure 13(a), the
dissipation efficiency of the porous plug appears to increase as the plug is displaced
from the closed end of the slender tube. With regard to the first harmonic, the structure
dissipates a greater quantity of energy at approximately one-third of the tube length, which
is the approximate location of the pressure node of the first-harmonic mode, or velocity
maximum where dissipation can be the greatest.

This information can also be extracted in an approximate manner from the theoretical
model. Given the position of the porous dissipator, the frequencies as the flame position
advances inside the tube can be predicted. The mean values of the imaginary part of
the eigenvalues of the flame propagating inside the tube for each plug position ξp are
represented in figure 14. Here, a position-averaged damping factor is obtained which
provides a qualitative agreement with the spectral power density decay in the experimental
data in figure 13. However, it should be noted that when averaging the theoretical damping,
all the flame positions with the local value of Ωi are equally relevant, although in real
experiments the amplitude of the oscillations varies among different regions of the tube,
(figure 12a,b). In any case, the experimental results cannot be compared directly with
the model’s because they are essentially different; the experiments show amplitude deficit
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Figure 14. Theoretical damping e−Ω̄i as a function of ξp , averaged across all flame locations for the
fundamental (a) and first-harmonic (b) modes and various κ values.
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Figure 15. Normalised mean flame velocity (a), and standard deviation as a function of the porous plug
position (b).

compared with the porousless case, instead of linear damping. It is useful to present the
model’s damping Ωi as e−Ωi so as to represent it in the form of how the energy would
decrease under linear damping. In any case, in figure 14, a band of uncertainty is shown
around the averaged values whose limits correspond to the extreme values of the damping
for all the flame positions. Its thinness indicates that the flame location in the tube is of
little significance compared with the porous plug location.

4.2. High-speed video data
The experimental tests were also recorded with the high-speed camera presented earlier,
and the aforementioned image analysis was conducted to detect the contour of the flame
front and centroid for each frame. The data processing enables the computation of the
instantaneous flame velocity in each experiment by applying centred finite differences. As
the velocity variable of the oscillatory motion is a function of time, the average value and
standard deviation (calculated as the deviation of all data points with respect to the average
propagation velocity) at each experimental configuration is discussed next.

Figure 15(a) presents the averaged flame propagation velocity, as a function of the
porous plug parameter κ and position at the tube ξp. The value is normalised with
respect to the averaged velocity in the absence of a porous plug within the tube (u0 =
0.552 m s−1). These results illustrate that as the porosity Φ decreases, smaller unit cell
a, lower permeability K or greater porous parameter κ , the mean flame velocity also
increases. In fact, the mean velocity is observed to increase by up to 10 % in comparison
with the mean velocity in the absence of the porous plug. In figure 15(b), the normalised
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velocity standard deviation, SD, is presented as an indicator of the flame’s instability
level in relation to the position of the porous plug. The SD values have been normalised
with respect to the standard deviation of the tube in the absence of the porous plug
(SD0 = 0.676 m s–1). Oscillations in flame-front velocities are directly associated directly
with combustion instability issues, with higher SD showing greater instability. It can be
observed that instabilities are lower when the porous plug is located around one-third of
the tube length. Additionally, a direct relationship between pressure readings and image
analysis can be observed when comparing the results from figures 15 and 13, showing
consistent trends. Furthermore, an increase in the SD is accompanied by a decrease in
the mean velocity. This finding is consistent with the results of previous studies on flames
propagating under primary regime conditions (Flores-Montoya et al. 2023), where the
retracting period of the oscillating dynamics and the reduction in period-averaged flame
surface produce a noticeable decay in overall flame propagation speed.

5. Summary and concluding remarks
The objective of this study was to conduct an experimental investigation into the efficacy
of a porous plug in mitigating thermoacoustic waves associated with the propagation of a
flame in a slender tube with a premixed air and methane mixture. The porous plugs were
constructed using a lattice structure and were manufactured via additive 3-D printing.
This study considered various porous plugs with varying porosity percentages. First, some
characterisation tests were carried out to ascertain the properties of the porous plugs. A
linear fit of the permeability coefficient was conducted for each configuration. Finally, the
dissipation capacity of the porous plug was evaluated based on its position within the tube
and its impact on the natural frequencies of flame propagation. To assess the efficacy of
the porous plug, pressure readings and video analysis were conducted at high speeds.

Furthermore, a theoretical one-dimensional acoustic model was developed to estimate
the variation in the natural frequencies of flame propagation and the capacity of the porous
media to dissipate waves based on the position of the porous medium. Great agreement was
achieved through the characterisation of the porous plug properties through parameter κ . It
was determined that the linear model aligns with the theoretical model in accordance with
the experimental results. In fact, the incorporation of porous media with a high relative
density results in a greater change in the natural frequencies of flame propagation, acting
as a piston that alters the length of the tube. The theoretical model proposed in this work
allows for the accurate prediction of acoustic frequencies and the qualitative estimation of
the capacity of porous plugs to dissipate thermoacoustic waves based on their location and
permeability.

All things considered, porous materials may serve as a control mechanism for
thermoacoustic instabilities, capable of dissipating up to 80 % of the energy generated
through fundamental and first-harmonic modes in tubes. The precise location of the porous
plug within the tube is of critical importance for the optimal mitigation of thermoacoustic
waves. The most efficient location for the incorporation of porous plugs is approximately
one-third of the length of the tube, where the pressure node and the maximum velocities
of the first harmonic are located. This fact indicates that the mitigation mechanism of
the porous plugs is based on viscous dissipation. This phenomenon is particularly evident
in porous plugs with the lowest permeability. The conclusion is that this strategy can be
employed and optimised as a chamber-based approach, considering the placement and
design of the plugs, not an operational approach targeting specific modes and frequencies.

Notwithstanding the aforementioned advantages of porous plugs in comparison with
other solutions, such as Helmholtz resonators, there are several issues that limit their
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range of applicability. The long-term usage of porous plugs can be compromised by the
accumulation of dirt particles that may clog the pores, and there is a risk of mechanical
failure of the thin, porous walls under harsh conditions. Additionally, when deployed in
devices with high mass flow rates, porous plugs may cause additional head losses if the
bulk flow is forced through. Furthermore, the efficacy of the system is expected to decrease
for frequencies much higher than those presented in this work, as the wavelengths could
approach the length of the pores, thereby reducing the plug’s ability to attenuate acoustic
waves. Therefore, a great design effort that grants further studies must be addressed in
the case of considering sufficient advantages to apply these configurations to combustion
systems.

A primary limitation of employing the porous plug as a means of mitigating combustion
instability is that the flame does not traverse it. Therefore, our experimental set-up may be
taken as a sort of cavity. Nevertheless, this is not the case in the sense of prescribing
the reduction of one particular frequency through the design and size of the cavity, with
a consistent damping of all the acoustic modes. Future experimental research will entail
the incorporation of a hole in the porous plugs to permit the flame to pass through them,
enabling the propagation in the closed part of the tube.
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