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Abstract. Measure homology was introduced by Thurston (W. P. Thurston, The
geometry and topology of 3-manifolds, mimeographed notes (Princeton University
Press, Princeton, NJ, 1979)) in order to compute the simplicial volume of hyperbolic
manifolds. Berlanga (R. Berlanga, A topologised measure homology, Glasg. Math. J.
50 (2008), 359–369) endowed measure homology with the structure of a graded, locally
convex (possibly non-Hausdorff) topological vector space. In this paper we completely
characterize Berlanga’s topology on measure homology of CW-complexes, showing in
particular that it is Hausdorff. This answers a question posed by Berlanga.
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1. Introduction. Measure homology was introduced by Thurston in [10], where
it was exploited to compute the simplicial volume of closed hyperbolic manifolds. It
is proved in [5, 11] that measure homology is canonically isomorphic to the usual
real singular homology, at least for CW-complexes. Moreover, Loeh proved in [7] that
these homology theories are not only isomorphic but also isometric (with respect to
Thurston’s seminorm on measure homology [10] and Gromov’s seminorm on singular
homology [4]), a fact that plays a fundamental rôle in applications to the simplicial
volume. For a comprehensive account about the notion of measure homology and its
applications, see e.g. the Introductions of [11, 1].

Thurston’s seminorm is not the only extra-structure naturally supported by
measure homology. In [1], for every n ∈ � the nth measure homology module Hn(X) of
a topological space X is endowed with a natural structure of a locally convex (possibly
non-Hausdorff) topological vector space.

Let us now recall the main result of [1].

THEOREM 1.1. Suppose that X has the homotopy type of a countable CW-complex.
Then H1(X) is a locally convex Hausdorff vector space.

In [1] Berlanga asks the following:

QUESTION 1.2. Is Hn(X) a Hausdorff space in general?

In this paper we completely characterize Berlanga’s topology on measure
homology, giving in particular a positive answer to Question 1.2, at least in the case
of CW-complexes. If W is a real vector space, then the strongest weak topology on W
is the weakest topology which makes every linear functional on W continuous (see
Section 2.3). Our main result is the following.
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THEOREM 1.3. Suppose that X has the homotopy type of a CW-complex and let
n ∈ �. Then Berlanga’s topology on Hn(X) coincides with the strongest weak topology.
In particular, it is Hausdorff.

Let us briefly discuss the meaning of Theorem 1.3. In order to study the
isomorphism and the isometry type of homology modules, it is often useful to take
advantage of suitable duality principles that reduce computations in homology to
computations in cohomology. This strategy, which in the context of singular homology
dates back to Gromov [4], has been profitably put to use also in the study of measure
homology and �1-homology (see e.g. [7, 8]). Theorem 1.3 may be rephrased by saying
that the topological dual space of measure homology coincides with its abstract dual
space, and this fact may be probably exploited to provide effective duality arguments
in the study of measure homology.

On the other hand, Theorem 1.3 also has some disappointing consequences.
For example, it implies that, at least for CW-complexes, the isomorphism type of
measure homology as a graded real vector space (which coincides in turn with the
isomorphism type of the corresponding ordinary singular homology [5, 11]) completely
determines the isomorphism type of measure homology as a graded topological
vector space. In particular, the additional structure provided by Berlanga’s topology
cannot be used to distinguish CW-complexes sharing the same singular homology.
Moreover, as proved in Remark 3.2 at the end of the paper, Berlanga’s topology is not
related to the topology induced by Thurston’s seminorm on measure homology. As a
consequence, Theorem 1.3 seems to suggest that Berlanga’s topology may intervene
in applications to the simplicial volume just via the duality arguments mentioned
above.

2. Preliminaries.

2.1. Measure homology. Let X be a topological space and let Sn(X) be the set
of singular n-simplices with values in X . We endow Sn(X) with the compact-open
topology and denote by �n(X) the σ -algebra of Borel subsets of Sn(X). If μ is a signed
measure on �n(X) (in this case we say for short that μ is a Borel measure on Sn(X)),
then μ has finite total variation if |μ(A)| < ∞ for every A ∈ �n(X). For every n ≥ 0,
the measure chain module Cn(X) is the real vector space of the Borel measures on Sn(X)
having finite total variation and admitting a compact determination set (see [11] for the
definition of determination set and a detailed discussion of the relationship between
this notion and the notion of support). The graded module C∗(X) can be given the
structure of a complex via the boundary operator

∂n : Cn(X) → Cn−1(X) , ∂nμ =
n∑

j=0

(−1)jμj ,

where μj is the push-forward of μ under the map that takes a simplex σ ∈ Sn(X) into
the composition of σ with the usual inclusion of the standard (n − 1)-simplex onto the
jth face of σ . The homology of the complex (C∗(X), ∂∗) is the measure homology of X ,
and it is denoted by H∗(X).
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2.2. Berlanga’s topology. If λ : Sn(X) → � is a continuous function, then the
map

ψλ : Cn(X) → � , μ �→
∫

Sn(X)
λ dμ

is a well-defined linear functional on Cn(X). Following [1], we put on Cn(X) the weakest
topology which makes ψλ continuous for every continuous λ : Sn(X) → �. We also put
on Hn(X) the quotient topology induced by the restriction of the topology of Cn(X) to
the subspace ker ∂n ⊆ Cn(X) of measure cycles.

2.3. Topological vector spaces. By a topological vector space we mean a real
vector space endowed with a topology τ such that the vector space operations are
continuous with respect to τ (in particular, we do not require that τ is Hausdorff).
It is readily seen that Berlanga’s topology endows Cn(X) with the structure of a
locally convex topological vector space. Since local convexity is inherited by subspaces
and quotients, the vector space Hn(X) is a locally convex (possibly non-Hausdorff)
topological vector space.

Let us now put Berlanga’s definition into the general context of weak topologies
associated to pairings. If V, W are real vector spaces, a pairing between V and
W is simply a bilinear map η : V × W → �. Let W ∗ be the algebraic dual of W .
We say that an element β ∈ W ∗ is represented by v ∈ V via η if β = η(v, ·), and
we denote by W ∗(η) ⊆ W ∗ the subset of functionals that are represented via η by
some element of V . The weak topology on W corresponding to η is the weakest
topology which makes every element of W ∗(η) continuous. This topology endows W
with the structure of a locally convex topological vector space, and it is Hausdorff
if and only if for every w ∈ W there exists v ∈ V such that η(v,w) 
= 0 (see e.g.
[6, Section 16]).

We define the strongest weak topology τW
sw on W as the weak topology associated

to any pairing η such that W ∗(η) = W ∗. So τW
sw endows W with the structure of a

locally convex Hausdorff vector space.

REMARK 2.1. Let τW
slc be the strongest locally convex topology on W (see e.g. [6]

for the definition and several properties of τW
slc ). If W is finite-dimensional, then

τW
sw = τW

slc , and they both coincide with the Euclidean topology on W . Otherwise,
τW

sw is strictly weaker than τW
slc . In fact, let p : W → � be a norm. The unit ball of p does

not contain any non-trivial linear subspace of W , while every τW
sw -neighbourhood

of 0 ∈ W contains a finite co-dimensional linear subspace of W . Therefore, if
dim W = ∞ then p is not continuous with respect to τW

sw . On the other hand, every
norm is continuous with respect to τW

slc , so τW
sw 
= τW

slc unless the dimension of W is
finite.

2.4. Singular homology vs. measure homology. Let X be a topological space. We
denote by C∗(X) the complex of real singular chains of X , and by C∗(X) the complex
of real singular cochains of X , i.e. the algebraic dual complex of C∗(X). We also let
H∗(X) (resp. H∗(X)) be the homology of the complex C∗(X) (resp. C∗(X)), i.e. the
usual real singular homology (resp. cohomology) of X . For every σ ∈ Sn(X), n ∈ �,
let us denote by δσ ∈ Cn(X) the atomic measure supported by the singleton {σ }. The
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chain map

ι∗ : C∗(X) → C∗(X) , ι∗

(
k∑

i=0

aiσi

)
=

k∑
i=0

aiδσi ,

induces a map

H∗(ι∗) : H∗(X) −→ H∗(X) .

The following result was proved independently by Zastrow [11] and Hansen [5]:

THEOREM 2.2 [5, 11]. Suppose that X has the homotopy type of a CW-complex.
Then the map

Hn(ιn) : Hn(X) −→ Hn(X)

is an algebraic isomorphism for every n ∈ �.

2.5. Continuous cohomology. Let us now recall the definition of continuous
cohomology of a topological space X . We regard Sn(X) as a subset of Cn(X) so
that for every cochain ϕ ∈ Cn(X) it makes sense to consider the restriction ϕ|Sn(X). We
say that ϕ is continuous if ϕ|Sn(X) is, and we set

C∗
c (X) = {ϕ ∈ C∗(X) | ϕ is continuous} .

It is readily seen that C∗
c (X) is a subcomplex of C∗(X). Its homology is the continuous

cohomology of X , and it is denoted by H∗
c (X). The following result describes the

relationship between continuous cohomology and the usual singular cohomology.

THEOREM 2.3. Suppose that X has the homotopy type of a CW-complex. Then the
inclusion ρ∗ : C∗

c (X) ↪→ C∗(X) induces isomorphisms

H n (ρn ) : H n
c (X ) → H n (X ) , n ∈ � .

Proof. By [9, Theorem 2], any CW-complex has the homotopy type of a simplicial
complex, endowed with the metric topology in the sense of Eilenberg and Steenrod [2,
p. 75]. Therefore, X has the homotopy type of a locally contractible metrizable space,
and the conclusion follows from [3, Theorem 1.1]. �

3. Proof of theorem 1.3. Let X be a topological space. For every n ∈ �, the map

Cn
c (X) × Cn(X) → �, (ϕ,μ) �→

∫
Sn(X)

ϕ dμ

induces a pairing

ηn : Hn
c (X) × Hn(X) → � .
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It is very easy to compare this pairing with the usual Kronecker pairing

κn : Hn(X) × Hn(X) → �

between singular homology and singular cohomology. In fact, it readily follows from
the definitions that

ηn(α, Hn(ιn)(β)) = κn(Hn(ρn)(α), β) for every α ∈ Hn
c (X), β ∈ Hn(X) . (1)

By construction, Berlanga’s topology on Hn(X) coincides with the weak topology
associated to the pairing ηn. Therefore, Theorem 1.3 may be restated as follows:

THEOREM 3.1. Suppose that X has the homotopy type of a CW-complex. Then every
linear functional on Hn(X) is represented via ηn by some element in Hn

c (X).

Proof. Let β : Hn(X) → � be a fixed linear functional. The Universal Coefficient
Theorem ensures that the composition β ◦ Hn(ιn) : Hn(X) → � is represented via κn by
an element in Hn(X), i.e. there exists γ ∈ Hn(X) such that

κn(γ, c) = β(Hn(ιn)(c)) for every c ∈ Hn(X) . (2)

Recall now from Theorem 2.3 that the map Hn(ρn) : Hn
c (X) → Hn(X) is an

isomorphism, and set γc = Hn(ρn)−1(γ ) ∈ Hn
c (X). From equations (1) and (2) we

deduce that

ηn(γc, Hn(ιn)(c)) = κn(γ, c) = β(Hn(ιn)(c)) for every c ∈ Hn(X) .

By Theorem 2.2, the map Hn(ιn) : Hn(X) → Hn(X) is an isomorphism, so the last
equation implies that ηn(γc, ·) = β on the whole of Hn(X). We have thus shown that β

is represented by γc via ηn, and this concludes the proof. �
We conclude the paper with the following remark that describes the (lack of)

relationship between Berlanga’s topology and the topology induced by Thurston’s
seminorm on measure homology.

REMARK 3.2. Let X be a CW-complex, and let us call Thurston’s topology the
locally convex topology on Hn(X) associated to Thurston’s seminorm. We show here
that there are examples where Thurston’s topology is not finer than Berlanga’s one,
and vice versa.

Recall that the simplicial volume of the closed orientable surface �2 of genus two is
positive [4, 10]. Therefore, if X∞ is the disjoint union of a countable family of copies of
�2, then it is easily checked that Gromov’s seminorm on H2(X∞) is in fact a norm. Since
singular homology and measure homology are isometrically isomorphic [7], the same
is true for Thurston’s seminorm on H2(X∞). Since dim H2(X∞) = ∞, the argument
described in Remark 2.1 shows that in this case Berlanga’s topology is not finer than
Thurston’s one. On the other hand, every normed infinite dimensional vector space
admits a non-continuous linear functional, and this implies that Thurston’s topology
on H2(X∞) is not finer than Berlanga’s one.

If dimHn(X) < ∞, then Berlanga’s topology is the strongest locally convex
topology on Hn(X), and is therefore finer than Thurston’s one. More precisely, in
the finite dimensional case, Berlanga’s topology is strictly finer than Thurston’s one
if and only if Thurston’s seminorm is not a norm (this is the case, for example, for
H1(S1)).
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