
AN ALGEBRAIC PROBLEM IN CONTROL THEORY

by ARTHUR WOUK f
(Received 29th April 1963)

1. In the series of papers in the early forties summarised in (1), (2), A. I.
Lur'e showed how to utilise Liapunov's second or direct method in the in-
vestigation of the stability of linear automatic control systems with a single
nonlinear actuator. His approach consists of

1. the transformation of the original system of differential equations via
the so-called Lur'e transformation into canonical coordinates in which
the construction of the Liapunov function is direct, and

2. the conversion of the differential problem into a purely algebraic problem.

We will be concerned here with the questions of the existence and con-
struction of the Lur's transformation.

A system with a single nonlinear actuator is described by a system of
differential equations (cf. e.g. Hahn (5), p. 42):

(y'=Ay + up, ^

!«'=/(*), s = (b,y)-hu, h>0,

where ' = djdt, Ais& real constant n x n matrix, b and p # 0 are real constant
n-vectors, (,) denotes scalar product, and / is a real continuous nonlinear
function such that s/(s)^O. Here the vector y represents the physical state
of the system, the scalar u represents the amount of control to be utilised and
the vector/? represents the distribution of the control w among the state variables.
An error signal s is constructed from the deviation of y from a plane normal
to the vector b; modified by a multiple of the current control u, it signals an
actuator whose response is characterised by the non-linear function /(s). In
many physical systems, the ability to control state variables is limited to those
state variables which represent physical velocities; only their derivatives may
be changed (Newton's Laws of Motion). Thus a physically significant problem
is one in which A, p,fare assumed as given; the physically interesting problem
of stability is that of selecting a vector b such that the solution y = 0 of (1) is
asymptotically stable in the large (cf. e.g. (4), pp. 7-8) for all functions /
belonging to a suitable class of functions. (This means that all solutions of
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206 A. WOUK

(1) tend to zero as t-* oo). It should be noted, however, that in many electronic
systems, all the variables in the mathematical representation may be controlled.

We note first (compare Hahn (5), p. 43) that the transformation to the
desired canonical coordinates is accomplished by a Lur'e transformation

y = Bx+uq,
which converts (1) into the form

jx' = Dx + mf(s),

\s' = (c,x)-hf(s).
Here D is the Jordan normal form of A, c = BTATb ( r denotes transpose)
and m i s a vector f with m( = 1 or 0, i = 1, ..., n. It is easy to see that we
require B to be a nonsingular matrix such that B~*AB = D and that Aq = —q,
B~1q = — m, or

ABm = p (3)
The choice of mi as either 1 or 0 is a normalisation for the convenience of

analysis and exposition. What is important is the vanishing or non-vanishing
of rriii should m{ vanish, then the corresponding canonical variable xt is not
directly controlled by the actuator. (It may, however, be indirectly controlled.)
Lur'e (1) (see also (2), pp. 38-47) gives certain algorithms, valid for the case of
a matrix with n distinct characteristic values, in determinantal form, for what
is, in effect, a construction of B and q. In these determinantal algorithms,
the geometric meaning of the manipulations is not clear, and the construction
fails for the case of multiple characteristic values. We will exhibit a procedure
which determines the possibility of construction of the Lur'e transformation
as it constructs it; it will be seen that the algorithm of Lur'e valid for matrices
with n distinct characteristic values results in no more than the special scaling
of an arbitrary B which transforms A to Jordan normal form so as to set
mi = 1, or 0. We will show that the question of which canonical variables can
be controlled (m; #0 ) can be resolved by knowing any matrix B which reduces
A to Jordan normal form.

Recently, Yakubovich has shown that the transformation to canonical
coordinates is unnecessary from the point of view of theory (cf. (3) pp. 75-103,
in particular pp. 75-91 or (8), pp. 129-123 for expositions in English of his
work.) That is to say, the conditions of Lur'e for the stability of the controlled
system are derived by matrix theoretic methods which do not directly utilise
the Jordan normal form. • Hidden in the theory is the necessity for solving
the matrix equation ATL+LA = — C for any prescribed positive definite sym-
metric matrix C. In fact this is a very difficult matter if A is not in Jordan
normal form. Thus, at the point of application it remains necessary (cf. e.g.
LaSalle and Lefschetz (3) pp. 91-103 for the case where this form is diagonal)^
to utilise the transformation to canonical coordinates in order to establish

t Hahn ((5), p. 43, p. 138) first observed that it is not always possible to have mi = 1,
i = 1, ..., n; i.e. some zero values may be necessary if p is orthogonal to characteristic vectors
of A.
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AN ALGEBRAIC PROBLEM IN CONTROL THEORY 207

computable constraints on the control variables p, b and h of (1) which lead
to desired stability properties (in this regard, see also (4)). Thus it remains
necessary to determine which sets of canonical variables may be achieved by
this reduction, what effects, if any, this indeterminacy in the reduction has
on stability, and which canonical variables permit easiest calculation of stability
criteria.

Lastly, in an appendix we will relate these results to those of Kriuchkov (9)
which construct a " canonical form ", other than the Lur'e form, which need
not preserve the stability properties of the original system. We will see that
the Lur'e form is, in suitable modification, always achievable, and that stability
is always preserved.

2. We note first that if we set p = Bp, then (3) becomes Dm = p. Thus,
for a given B, the decomposition of p along the basis consisting of the column
vectors of B, bt, ..., bn, determines the possibility of finding m. If m exists,
it is unique up to a solution of the homogeneous equation Dm = 0, i.e. to
an arbitrary vector in the null space of D while p must be orthogonal to the
null space of D. Thus p must be orthogonal to the null space of A. Henceforth
this is always assumed.

Next we note that if k{ # 0 is a characteristic value of A (and D) possessing
two or more linearly independent characteristic vectors, then there exist two
columns of B, bh, bh satisfying Abtj = A,-6̂ , j = 1, 2. If ph and pi2 are both
nonzero, then we must have ptl = ph. To see this, note that Dm = p implies
Ajm.-j = pir Since kh ph and ph are not zero, then we must have mtl = 1,

= 1,2 and pit = ph = X{. This, however, is only an apparent restriction,
for we can always rescale p by renormalising the characteristic vectors bh,
bh, ..., so that p^ = {bt], p) is a constant for all characteristic vectors belonging
to a given nonzero characteristic value. Note that this entails, with the
renormalisation of btj, the renormalisation of the other columns of B which
are in the same cyclic invariant subspace as bit.

On a given cyclic invariant subspace corresponding to an elementary divisor
(A—/I;)*', D has the representation

1 \
1 \

(4)
1 /
h

If the relevant components of m and p are indexed by j \ , ..., jk, we find that
on this subspace (3) is equivalent to

jl + mj2 = ph
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208 A. WOUK

From these equations, it becomes clear that (3) is not in general solvable for
/M; = 1 or 0, and the construction of the transformation is not immediate.
Further it seems that renormalisation of the bJk might not effect equality of
other pj's belonging to distinct invariant subspaces corresponding to the same
A;. It might appear from this that the restriction of mx to the values 1 or 0
is at fault here. If m; were allowed arbitrary values, then the numerical value
of the Pi would enter into the determination of the mt; we shall see below
that this is misleading: only the vanishing and non-vanishing of some of the
Pi are significant to this determination.

3. The starting point of our procedure is the observation that the trans-
formation to Jordan form of A is unique only to an arbitrary nonsingular
matrix V which commutes with A, for then {VBylA(yE) = B~1AB = D.
Henceforth we assume that we know a matrix B which reduces A to D. The
construction of such matrices B is well known (cf. e.g. (6), pp. 66-69 or (7),
pp. 159 ff.). We can restate our problem as the determination of a matrix V
which commutes with A such that under the transformation y = VBz + uq
the system (1) goes over into (2) where c = BTVTATb, and in addition

AVBm = p (5)

Hence q = — VBm. (We omit components in the null space of A.)
In terms of the given nonsingular matrix B, p can be decomposed uniquely as

n

P= Z Pibi = Bp
i = 1

for a unique vector p, with components pu ..., pn. Among the matrices which
commute with A are the polynomials in A, say

g{A) = \ M*.
i = 1

Unfortunately, if any two elementary divisors of A have a nonlinear common
factor, a suitable V may be found in this way only for restricted classes of
vectors p (see below). Instead, we observe (cf. e.g. (6), pp. 143 ff. or (7), pp.
220-223) that the set of matrices V which commute with A is generated by
V = BUB'1 where U runs over the set of matrices which commute with D.
Then (5) can be rewritten as B~1AVBm = p or

DUm = UDm = p (6)

4. In order to construct the desired nonsingular matrix V, we must study
the block structure of U, which is dependent upon the elementary divisors
of D. If these are

then ((6), p. 144 or (7), p. 218) C/is decomposed into blocks Uxll, a/? = 1,..., q
where U^ is a rectangular matrix with ra rows and rp columns. Further,
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AN ALGEBRAIC PROBLEM IN CONTROL THEORY 209

UxB is a zero matrix if Aa # Xp, while it is " upper triangular " if ka = Xf

(" Upper triangular " for an m row, n column matrix M means M;j- = 0 if
j<i+max (0, n—m); for square matrices this is the usual definition.)- Lastly,
the elements along each diagonal of U^ are constant. Thus each block contains
min(ra, rp) arbitrary parameters. It would therefore appear that we have
sufficient freedom to restrict the class of matrices U among which we look
for our solution, possibly to upper triangular matrices (Uafi = the zero matrix
if <x>P). It will be seen below, however, that this can be done only in special
circumstances; this will explain in part our inability to find U among the
matrix polynomials in D.

We will prove first two lemmas, one guaranteeing the solvability of (6)
for arbitrary p, the other guaranteeing the nonsingularity of U.

It is evident from the description that we can restrict our attention to the
invariant subspaces associated with a given nonzero characteristic value, say
Xu since U and DU are reduced to block diagonal form with respect to these
subspaces. Let Wdenote the block in U which corresponds to Ax. We rewrite
the form of (6) on such a subspace as follows. Let (A—A^", ..., (A—XyY",
r1'^r2^....rk^l be the elementary divisors associated with Ax. Let the index
pair [i, t] denote the index.

where t = 1, ..., rt, i = 1, 2, ..., k. (The sum is taken as zero when i = 1.)
Let (t/«xp)i,j = z«,/(,i-y, where i = 1, ...ra; j = 1, ...rfi and a, P = 1, ..., k.
Since Uafi is upper triangular, it follows that zafii_j must vanish if

j<i+max(0, rp-rx).

On the other hand, the matrix product DU = UD has the same block structure
as U, with elements z ^ ^ j . ^ = A1za>/,>I-__/ + za>pj,-__,-+1. (We extend the
definition of zXt p> f_,- by setting it equal to zero if i orj are outside their respective
ranges ],..., ra and 1, ...r^). Let W be the block in DU which corresponds to
W. Then (6) becomes

If we take m[p> n as given, and hopefully s 1, then (7) is to be regarded as
r, + . . . + rk equations in the unknowns zaiPt,_;. There are

k k
m= £ £ min(ra, rp) = rl + 3r2 +...+(2k-l)rk

a = 1 0 = 1

such unknowns. Thus we have more unknowns than equations. Solutions
exist if the equations are consistent. The consistency conditions may be
expressed in terms of an auxiliary matrix M which we determine thus: enumerate
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the z' variables so that

A. WOUK

z l —

— z l , 2 , 0 >

= z l,k,Oi ••••> — z
1 , * , 1 - l - f c '

™ ' _ ' - ' _ '
z r i + ... + r k + l — Z 2 , 1 , l - ( r , - r 2 ) ' • • • » Z M + . . . + r k + r 2 "~ Z 2 , 1 , l - r i >

Z r i + . . . + r f c + r 2 + l = Z 2 , 2 , 0> ••••

That is, we start with the upper left corner of the W matrix and enumerate
from left to right in each row, those elements z'aift (_y in the 1st, (rt + l)th, ...,
(rl + ...+rk_1 + l)th rows for which j " ̂  1 + max (0, rf — ra). Then Mz' = p
where M is a rectangular matrix of the following block form:

M =

where Mt is a matrix of rt rows, '>
M{ into blocks of rt, ..., rj; r i + 1 ,
form of the following rt x rt matrix

M i

M2

Mk

-.+''fc columns. If we subdivide
rk columns, then thejth block has the

m
U,rj->

m V.rj-O

m
U, i

if j^i, while it has the form

"A

m
U. 1]

mU.21

Hj, 2]

m

m

0

6

U.rj-U 0

0

0

From this structure, it follows that the assignment mw_ (] = 1 provides
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a matrix M which is of maximal rank, since its rows constitute an independent
set of rl +... + rk vectors in an w-dimensional space. In fact, it is sufficient
for this if mcl> r i ] ^ 0; then the 1st block of Mj is a square nonsingular matrix.
On the other hand, wi[lirij=0 makes the rank of M less than rl + ... + rk

so that the existence of DU solving (6) is not guaranteed for arbitrary vectors
p. We have proved the following:

Lemma 1. The condition w [ l r i ] = 1 is necessary and sufficient for the
solvability of (7) for arbitrary p.

k

There are £ Qj~ 2)rj independent parameters in the W matrix whose
i= i

assignment leads to a solution of (7) with m^n = 1, /? = 1,..., k,j = 1,..., rf.
If, as would be desirable for computational purposes, the matrix U is sought
among the class of upper triangular matrices, the following change must be
made in the preceding analysis. W and W are now upper triangular matrices
and (7) specialises to

S E z M , i - j m [ f , j ] = / ' [ . , i ] ' i = l,...,ra, a=l,...,k (7 ' )
t> = o. j = I

The number of unknowns ẑ , ̂  ,_y now is

m = E £ min(ra, rp) = r1 + 2r2 + ...-\-krk

which still exceeds the number of equations. We proceed as before in the
enumeration of the elements of z', i.e. from left to right in W, but now

z i = z i , i , o

Z r i + r 2 + . . . + i - f c + l = Z 2 , 2 , 0 J •••»

z r i + 2r2 + ... + r f c + l = Z 3 . 3 0 ; ••••>

Mt is now a rectangular matrix of rt rows, rt + rl+l + ... + rk columns whose
jth column block is given only by the second of the forms above, that for
j = i+p—l^i. The assignment m^.o s 1 provides a matrix M of maximal
rank, as before. However, in this case mih rjl == 1 makes the first column
block of Mj a non-singular square matrix, while if any mUi ry] = 0, the corres-
ponding Mj has a row of zeros. We have then

Lemma 1'. *n\j,rj\ = 1> j = 1, •••, k is necessary and sufficient for the
solvability of (7') for arbitrary p.

k

There are £ (j — l)ry independent parameters in the W matrix whose
J = i

assignment leads to a solution of (7') w i t h m ^ ^ = l,j = l,...,rf,p = \,...,k.

5. We wish next to guarantee the nonsingularity of U. Again, owing to
the block structure of U and DU, we work on the invariant subspace associated
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212 A. WOUK

with Ax ^ 0; there the nonsingularity of DU and U are equivalent. The
singularity of DU or W there is equivalent to the existence of a set of numbers
ht,n> P ~ 1> •• •>£>./ = 1 ,•••,/>, not all zero, such that

k rf

E £ z ' * , i > . i - j 5 u > , n = 0> i = h • • • , r a , cc = l , . . . , k ( 8 )
fi = i j = I

Set i = ra, ct = 1, ..., k, and consider the resulting k equations

£ z ^ , r . - r , < W = 0> « = l,...,k (9)
fi = i

If the determinant of the auxiliary kxk matrix {z'x p,,.,,_,.,) is not zero, then
we must have 5lfit r^ = Q, fi = 1, ..., k, and (8) can be replaced by

£ " E V / u - . ^ t f . . n = 0, i = l , . . . , r « - l , a = 1, ..., k (10)
p = i j = i

Now set / = ra— 1, a = 1, ..., k. We obtain the system of equations
k

£ Z « ' , / > , r . - r , , < 5 W p r u = 0 , < X = 1 , ..., fc-1.
P = 1

The nonvanishing of the determinant of the auxiliary matrix again implies
(Jcp.rfl-i] = 0, fi = 1, ..., k. We may proceed in this manner for exactly rk

steps. Suppose that rt>rk if / = 1,..., s while r( = rk if z = s+1, ..., fc. Then
it follows that z^ ^ ,x_r? = 0 if ags and P^.s+1. Then

det i gI> p£k(.z'x, 0, r*-rii) = detj ga> p^s (z'Xi pt ri-rf) x de t s + x gai pg* (z^ ^ r a - r ^ ) -

Then at the end of rk steps the successors to equations (10) become
s rp-rk

Z £ < / » . i - ; < 5 [ 0 , j ] = o > i = 1 , •••, * • , - > * , a = l , . . . , 5 . . . . ( 1 0 ' )
0 = i ; = i

Now only the (s x s)th principle minor of the auxiliary matrix remains. This
is non-singular if and only if the auxiliary matrix is non-singular. We may
proceed in this manner to show that if det (zi,p,r.-r,) ^ 0, then W is non-
singular. On the other hand, if det (z'a p,,.,,-,•„) = 0 then (9) has a nonzero
solution; then we can, by elementary column operations on W, construct a
matrix k of whose rows vanish, so that the matrix is singular. Since elementary
column operations are themselves nonsingular, this proves

Lemma 2. The condition

det(z;/ l j ra_r(1)#0 (11)

is necessary and sufficient for the nonsingularity of W.

If all ra are distinct, so that (K,p,r*-r,,) is a lower triangular matrix, or
else if we seek an upper triangular matrix, U, condition (11) becomes

n zu<>*o (no
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6. Next we establish the conditions for the existence and nonsingularity
of the matrix U. We may still restrict attention to the block W in DU corres-
ponding to a single nonzero characteristic value Ax. In (7), set i = ra, a = 1,
..., k. This yields the set of equations

- 1
CC=l,...,k (12)

If P[a,r.] = 0, a = 1, ..., k, then it is impossible to have any W[«,r«] # 0
and simultaneously, a nonsingular z'-matrix (or, by Lemma 2, a nonsingular
matrix W). Thus we must set m[ctr(t] = 0, a = 1, ..., k and can choose
z'<t, e.r.-r, at will so as to satisfy (11).

Next consider the situation where P[ a > I . j^0 . Suppose first that r1>r2.
Then z i , a , r i - r k = 0, a, = 2 , ..., fc; if P[ i , P 1 ]#0 , then (12) may be solved
for a nonsingular lower triangular z'-matrix and a vector mWir/l] = 1, ft = 1,
..., k. We need only set z'lt l j 0 = P[i,r,] and

ztt, l , r . - r i + Z<z, a, 0 = P[a, r«]> K = 1, . . . , fc,

while all other ẑ  ,, r>_r/) = 0. This can always be done so that both (11)
and (11') are satisfied and the matrix W is nonsingular.

If rt = r2 = ... = rs, s^k, and at least one of plXtra] ^ 0, l^ocgr, then
we may reorder the basis bt so that P[i>r,] is again not zero, and proceed as
above . It is also possible to have mE1 > r i ] = 1, mw>P<lj = 0 or I at will, /? = 2 ,
..., fc, anrf preserve the nonsingularity of W. Thus to have mWir/l] = 0, set

If, however, p[a>Pai] = 0, a = 1, ..., s, then we must set m [ i r o ] = 0,
a = 1, ..., s. Otherwise, the matrix whose elements are z'xfir:t_rp, a, j9 = 1,
..., s, would be singular. Since the other elements of the first s rows of the z'
matrix are zero, this implies the singularity of the z' matrix, and by Lemma 2,
the singularity of the W matrix. When m[a>r<<] = pla-Pa] = 0, a = 1, ..., s,
the quantities z'a^yr^-rf, oc, /? = 1, ..., s, may be chosen as an arbitrary, non-
singular sxs matrix. The question of the nonsingularity of the z' matrix is
now reduced to that of the nonsingularity of the k—sxk—s matrix z ^ , . - , ^
with a, P = r + 1 , ..., k. The argument above applies without exception to
this submatrix.

Now suppose that m ^ ^ , /? = 1, ..., k, and the nonsingular auxiliary
kxk matrix ( z ^ , . - , ^ ) have been chosen. The remaining equations of (7)
can be written as

.(13)

where fc'gA: is such that ra = 1, k'<a^k. With appropriate identification
of terms, this system is of the same form as (7). Hence Lemma 1 may be
applied to (13). We conclude that the assignment

mif,r0-u = !» P = h ••-,k'
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214 A. WOUK

is necessary and sufficient for the solvability of (13) for any vector. The
remaining elements of the w-vector may be chosen as 0 or 1 at will.

We summarise these results as follows:

Let At # 0 be a characteristic value of A with elementary divisors {X — AJ'',
..., (X — Xtf", rl^r2^---^rk^l and characteristic vectors bu ..., bk. Let
(b,,p) = 0, i = 1, ..., s - 1 while (bs,p) # 0. Let

rXs-i>ras = rX3+1 = ... = rs = ... = r,t>r,s+1.

Then the assignment
mc=t.r.] = 0 ' a = 1, ... , a s - l ,

assures the existence and permits the calculation of a nonsingular matrix U
which commutes with D and satisfies (6). The remaining elements of m may be
taken as 1 or 0 at will.

The choice of m[(Zsj r> D in the above statement is not essential; any one
of W[i,r«] could be chosen to be 1, as^a^ts and the statement remains true.
Further, at least one of them must be so chosen.

The matrix U can be chosen among the upper triangular matrices if and
only if (bj, p) ^ 0 for at least one characteristic vector bt belonging to each set
of elementary divisors of given exponent. To see this, consider again equations
(7'). Here z^piP2_r/) = 0 if ra # rp. Repeating the preceding analysis leads
to this form of the assertion, using Lemma 1' in the place of Lemma 1. Lastly,
if the elementary divisors have no nonlinear common factors, then U may be
realised as a polynomial g(D), after renormalisation of the corresponding
characteristic vectors. To see this, note that this implies that U may be taken
as a block diagonal matrix, each block of which is precisely of the form which
is realisable by a suitable interpolating polynomial in D (see, for instance,
(6), pp. 62-63 or (7), p. 100. If the elementary divisors are all linear, then D
is diagonal and U is determined by (6) as a diagonal matrix, used only for
scaling purposes.

Thus the particular transformations described by Lur'e are seen to effect
only the scaling of mh when they are correct, i.e. in the case that A has n distinct
characteristic roots.

The preceding treatment leads to complex transformations, if the matrix A
has complex characteristic values. Since Ax = Xx+y if and only if

Ax* = X*x*+y*

(* denotes complex conjugate) when A is real, the equivalent real transforma-
tions can be constructed which lead to the real Jordan normal form, in the
usual manner. The reality of p and b implies that all operations associated
with the characteristic value X are exactly paralleled in the treatment of X*,
and the final form (2) can be chosen with the control /(s) present (mi = 1)
in precisely one pair of equations belonging to each pair of characteristic
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values X, X*, for which (p, bt) ^ 0 for some non-zero characteristic vector bt

belonging to X.

7. The indeterminacy in the form of m allows us to raise two questions.
Firstly, does this indeterminacy lead to different stability criteria? Secondly,
does this indeterminacy permit simplified calculation of conditions which
guarantee absolute stability? The first question is answered as follows.
Suppose that a matrix B has been calculated and the equations are in a real
Jordan normal form (2); let another canonical form

(x' = Dx + mf(s),

U' = (c, x)-hf(s) *•

be achieved by the matrix U where U commutes with D and is non-singular.
Then m = U~1m and c = UTc. The Lur'e special Liapunov function implies
absolute stability if and only if

h>(A~1[Lm + ic], [Lm+ic]) (14)

where A is some real symmetric positive definite n x n matrix and L is the unique
real symmetric positive definite solution of the matrix equation DTL+LD = — A
(cf. (3), p. 85 or (8), p. 122). Then

(A-^Lm + ic], [Lm + ̂ c]) = ((£/TA£/r1[(£/7JLE/)m+lc]) [(UTLU)m+ic]),

while
DT(UTLU)+(UTLU)D = -UTAU.

From this we conclude that a triple (h, m, c) makes (2) absolutely stable if and
only if the triple Qi, m, c) makes (2') absolutely stable. This answers the first
question negatively. The second question can be answered affirmatively.
Notice first that the stability criterion (14) depends upon the calculation of the
solution of

DTL+LD= - A ; (15)

this is not readily calculable for arbitrary positive definite matrices. Even
for 3 x 3 matrices the computations are too cumbersome unless, as is customary,
we make A a diagonal matrix. This yields sufficient conditions for (14) which
in turn is only sufficient for absolute stability. If we solve (14) for all sets of h
and c which satisfy (14) for a given m and some positive definite diagonal
matrix A, we obtain stability criteria which depend upon the form of m. If
A is a characteristic number with many elementary divisors, and m has many
non-zero components, this leads to cumbersome calculations. If we replace
m by m, with only one non-zero component for each distinct characteristic
number X, the work is easier. As an example, suppose that D is

X
0
0

1
x
0

0
0
X _
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where X<0. Then (15) becomes

hi hi h
hi hi h
hi hi I32 '33 —I

0 / n 0
'11 z'l2 '13

L o /13 o J

Si
0
0

0 0
-<52 0

0 -5,

Then L is
-SJ2X

/ 2
0
0

L 0 0
If mt = 0, m2 = 1, w3 = 0, then (14) becomes

Clearly c3 is unrestricted. If both ct and c2 are non-positive, the right side
can be made arbitrarily small for suitable choice of A. If c2>0, then for any
<5t the second term is minimal if <52 = 5l\2X2—Xc2>0 with minimal value
bx\2X2 — c2jX. Thus sufficient for absolute stability is

h > 95J16X4 + c2/45j + cJ4X2 - c2/X.

If <5X = 2A2 | ct |/3 the right side is again minimised and a stability criterion
can be written as

AX2

where s(t) = 0 if t^O, while e = 1 if t>0. Suppose now that the reduction
of (1) to (2) had yielded mt = m2 = m3 = 1. Then U can be taken as

r i I - O - I
0 1 0 ;

L o i i J
since c = UTc, we have

= C

c2

C3 = C3>

and a sufficient condition for absolute stability is

f3 I ct |

t
In the present case the saving in effort is small but noticeable. If the exponents
of the various elementary divisors had been higher, the saving would have
been more significant.

Appendix

Kriuchkov (9) (in our notation) represents the fundamental matrix e4' of
the homogeneous system y' = Ay as a linear combination of the terms of
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the form tJeXkt with matrix coefficients which are the so-called components of
A. In this form, the highest power tj which appears is one less than the power
of (X — Xk) which appears in the minimal polynomial of v4(cf. e.g. (5), pp. HOff.).
If k is the degree of the minimal polynomial, then the solution of the system

h' = Ay + up

is represented, using the variation of constants formula, as

where G is a certain constant nxk matrix and ^ is a particular solution of

£' = AS + mf(s) (17)

Here A is a k x k matrix in Jordan normal form whose characteristic (and
minimal) polynomial is the minimum polynomial of A, while the projection of
m on each invariant subspace of A has component one along the characteristic
vector and zero elsewhere. Should 1, be a characteristic root with positive
real part, of greater multiplicity in the characteristic equation than in the
minimal equation of A the stability of (17) does not imply the stability of (16).
This, however, is not the Lur'e transformation, as constructed above. The
calculations above show that there is a vector m, and nonsingular matrices
B and V such that y = VBz transforms (16) into

\z' = Dz + mf(s),

s = (c, z)

where D = B~lAB, c = BTVTb, and V is a matrix which commutes with A.
In this instance, equation (5) becomes

VBm = p (5')
Setting

V = BUB'1,
we obtain

Um = p, (6')
where U is an arbitrary matrix commuting with D. It is easy to see that the
construction used for DU is now a construction for U. This Lur'e trans-
formation, however, clearly preserves stability and instability properties.

I wish to thank Mr P. C. Parks for his valuable comments on an earlier
version of this paper.
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