
10
Induced interaction

As discussed in the last section of Chapter 9 a pair of nucleons can interact
with each other through the nuclear surface in a process in which one nucleon
excites a vibrational mode which is then absorbed by the other nucleon (see
inset Fig. 10.1). This process leads to a renormalization of the nucleon–nucleon
interaction which, for nucleons close to the Fermi energy, is controlled by the
exchange of low-lying surface collective vibrations. This is because low-energy
surface vibrations match the frequencies of these nucleons and are very col-
lective. This argument is the same as that used to explain the central role of
surface vibrations in renormalizing the single-particle motion. The contribution
of surface vibrations to the single-particle self-energy and to the ω-mass was
analysed in Chapter 9 and a simplified version of the particle-vibration cou-
pling model was introduced in Section 9.3. It gave explicit expressions for both
the ω-mass and the induced pairing interaction and pairing gap due to phonon
exchange. They both have a simple dependence on the coupling strength gp-v

which is defined in equation (9.31). The present chapter extends the discus-
sion of the induced interaction and presents the results of microscopic calcula-
tions. Section 10.3 presents results in a slab model, where the simplicity of the
infinite system is retained (absence of shell structure), without losing surface
effects.

10.1 Simple estimates

Estimates of the induced pairing interaction due to phonon exchange were ob-
tained in Section 9.3 in a model with constant matrix elements and a uniform
distribution of single-particle levels. The present section extends that discussion
by including shell effects (Broglia et al. (2001)). The starting point is a pertur-
bation expression for the induced interaction written in terms of ( j, j) coupled
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Figure 10.1. State-dependent pairing gap �ν for the nucleus 120Sn, calculated by making
use of the induced interaction (see inset, where particles are represented by arrowed lines
and phonons by a wavy line) (after Barranco et al. (1999)). Reprinted with permission from
Barranco et al., Phys. Rev. Lett. 83: 2147–50 (1999). Copyright 1999 the American Physical
Society.

matrix elements

v j j ′ ≡ 〈( j j)0|v|( j ′ j ′)0〉 =
∑
λ

vλj j ′, (10.1)

where

vλj j ′ =
2√

(2 j + 1)(2 j ′ + 1)

V 2
(

j, j ′; λ
)

Dλ
. (10.2)

Here v j j ′ is the induced matrix element for scattering of a pair of nucleons from
the state j with energy ε j to the state j ′ with energy ε j ′ . The nucleons are coupled
to a total angular momentum zero in both the initial and final states (see Appendix
D, equations (D.11)–(D.14)). The matrix element v j j ′ is a sum of components
vλj j ′ corresponding to the exchange of phonons with different multipolarities λ
and energies �ωλ. The V 2

(
j, j ′; λ

)
are the square of particle-vibration coupling

matrix elements

V 2
(

j, j ′, λ
) = β2

λ

2λ+ 1
〈 j ′|R0

∂U

∂r
| j〉2〈l ′ j ′||Yλ||l j〉2, (10.3)

introduced in Section 8.3 and defined in Appendix D (equation (D.9)). They
were used in equation (9.6) for the calculation of single-particle self-energies.
The quantity βλ is the root mean square fluctuation of the collective coordinate
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10.1 Simple estimates 221

of the phonon of multipolarity λ in the ground state and 〈 j ′|R0∂U/∂λ| j〉 is a
radial coupling matrix element. The energy denominator Dλ in equation (10.2)
can be approximated in different ways. In Section 9.3 (equation (9.34)) it was
written as

1

Dλ
≈ �ωλ(

εi − ε j
)2 − (�ωλ)

2
,

which reduces to Dλ ≈ −�ωλ when εi = ε j . The microscopic calculations pre-
sented in the next section use a more accurate energy denominator from Bloch–
Horowitz perturbation theory (Bloch and Horowitz (1958))

Dλ = E0 − (�ωλ + e j + e j ′), (10.4)

used in Barranco et al. (1999) for calculating the contribution of phonon exchange
to pairing in nuclei. Here e j =

∣∣ε j − εF

∣∣ are single-particle energies measured
from the Fermi energy and E0 is a (negative) BCS correlation energy.

The diagonal ( j = j ′) induced matrix elements can be estimated from

vλj j = −
2β2
λ

2λ+ 1

〈 j |R0
∂U
∂r | j〉2

(2 j + 1)

〈 j ||Yλ|| j〉2
�ωλ

≈ − 0.2β2
λ

2λ+ 1

(50 MeV)2

�ωλ
, (10.5)

with the approximations Dλ ≈ −�ωλ for the energy denominator and
〈 j ||Yλ|| j〉2 ≈ 0.1 (2 j + 1)) for the square of the reduced matrix element, as well
as 〈 j |R0∂U/∂r || j〉 ≈ −50 MeV (Appendix D). Only even values of λ contribute
when j = j ′ because of the parity selection rule contained in the reduced ma-
trix elements 〈 j ||Yλ|| j〉. There is also an angular momentum constraint λ � 2 j .
For 120Sn, β2 = 0.119 and �ω2 = 1.171 MeV (Beer et al. (1970)), while an
RPA estimate of the corresponding parameters for λ = 4 leads to β4 = 0.07 and
�ω4 = 1.2 MeV (Gori (2002)). Making use of these values one obtains

v2
j j = −1.2 MeV, v4

j j = −0.2 MeV, v j j = −1.4 MeV, (10.6)

a number which is also consistent with the result given in equation (9.8) (note
the difference of a factor of 2 between self-energy and induced interaction; see
equations (9.6) and (9.35) respectively). The same factor occurs in equations
(10.2) and (10.5). It has its origin in the two possible time orderings in the
phonon exchange diagram shown in Fig. 8.3(c) (see inset to Fig. 10.1).

The (typical) matrix element v j j = 〈( j j)0|v|( j ′ j ′)0〉 (= −1.4 MeV) induced
interaction reported in equation (10.6) is found to be of the same order of magni-
tude or even larger than the (attractive) bare interaction matrix elements reported
in Fig. 8.5 (i.e.−1.8 � 〈 j2(0)|v14| j2(0)〉 ≤ 0, j = s1/2, p3/2, d5/2). The fact that
‘The polarization interaction resulting from the coupling to the low frequency
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222 Induced interaction

modes may be considerably larger than the bare force . . . ’ was discussed by
Bohr and Mottelson (1975) in Section 6-5f p.432 (see also Broglia, Paar and Bes
(1971a,b)).

Let us compare the induced interaction with the strength of the typical pairing
force with constant matrix elements G (≈ 25/A MeV) tailored to reproduce the
empirical value of the pairing gap � ≈ 12/

√
A MeV. The pairing strength G is

a matrix element between uncoupled pair states and to make the comparison the
states | ( j j)0〉 with total angular momentum zero have to be written in terms of
uncoupled m-states

| ( j j)0〉 =
∑

m

(−1) j−m

√
2 j + 1

| jm, j − m〉 =
∑

m

1√
(2 j + 1)

| jm, j̃m〉,

where | j̃m〉 is the time reverse of the state | jm〉. The expression for the matrix
element v j j ′ becomes

v j j ′ = 〈( j j)0 |v|
(

j ′ j ′
)

0〉 =
∑
mm ′

1√
(2 j ′ + 1) (2 j + 1)

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉.

Assuming that the matrix elements in the m-scheme are all equal, an induced
pairing interaction strength can be defined by

G ind = −〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉,
and one obtains (cf. equation (D.15))

〈( j j)0 |v| ( j ′ j ′)0〉 = −
√

(2 j + 1) (2 j ′ + 1)

2
G ind. (10.7)

Consequently, for j = j ′,

G ind = − 2v j j

(2 j + 1)
. (10.8)

The single neutron states near to the Fermi energy in 120Sn are d5/2, h11/2, s1/2,
g7/2 and d5/2, corresponding to an average j̄ = 7/2. Making use of this value,
the relation (10.8) and the estimate given in equation (10.6) one obtains G ind =
0.35 MeV. This number should be compared with the empirical pairing strength
G = (25/A) ≈ 0.21 MeV. In spite of the over-simplifications of this estimate
it surely indicates that the induced pairing interaction due to particle–phonon
coupling can account for a significant fraction of the total pairing interaction.

The estimates of βλ and �ωλ in Section 7.1 have a simple A-dependence
(βλ ∝ A−2/3 and �ωλ ∝ A−2/3). Thus the matrix element

vλj j ≈ −
185 MeV

(λ− 1)(λ+ 2)

(1+ 0.001A)

A2/3
(10.9)
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10.2 Microscopic calculations 223

is approximately independent of j . The A-dependence of the induced pairing
interaction strength given in equation (10.8) can be estimated by using this
relation and the average degeneracy (2 j + 1) of a j-orbit near the Fermi level.
This quantity can be calculated in terms of the mean value k̄F = (2/3)kF of the
Fermi momentum (kF = 1.36 fm−1) and of the nuclear radius R = 1.2A1/3 fm
( j ≈ k̄F R) leading to (2 j + 1) ≈ 2.2A1/3. Using this estimate and equations
(10.1), (10.8) and (10.9) (λ = 2 and 4) we get

G ind ≈ 29

A
MeV. (10.10)

This has the same A-dependence as the empirical pairing strength but is some-
what too large.

The following three sections present the results of detailed microscopic calcu-
lations of the induced interaction. The first is a self-consistent calculation of the
pairing gap for the semi-magic nucleus 120Sn as well as for Ca and Ti isotopes
and the second is for a slab-model where shell effects are suppressed. Both of
these calculations use Bloch–Horowitz energy denominators (10.4) which are
always larger than the value �ωλ used for the estimates in this section. In Section
10.4 a calculation is presented based on the Dyson equation, which takes into
account, aside from the bare nucleon–nucleon potential, the induced pairing in-
teraction, on equal footing to the self-energy and vertex corrections. All of these
microscopic theories give induced pairing strengths which are considerably
smaller by a factor of about 2 than the estimate given in equation (10.10).

10.2 Microscopic calculations

In this section the results of a calculation of the state-dependent pairing gap
associated with the induced interaction will be presented. The discussion is
based on Broglia et al. (2001), Barranco et al. (1999). In the following ν refers
to the pair state | ( jν jν)0〉 = | j2

ν (0)〉 with total angular momentum zero and the
matrix element (see Appendix D, equation (D.15))

Gνν ′ = −vνν ′ = − 2〈 j2
ν (0)|v| j2

ν ′(0)〉√
(2 jν + 1) (2 jν ′ + 1)

, (10.11)

so that the normalization of Gνν ′ is the same as the normalization of the induced
interaction in equation (10.8), and can be directly compared with the pairing
coupling constant and G (≈ 25/A MeV) introduced in defining the BCS pairing
Hamiltonian (Chapter 3).

The calculation of the matrix elements uses the perturbation method of Bloch
and Horowitz (1958). The application of this method to nuclear problems is
explained in Appendix B of Bes et al. (1976a). In the Bloch–Horowitz ap-
proach, the exchange of phonons (vibrations) is iterated to infinite order, by the
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224 Induced interaction

self-consistent solution of the set of coupled equations

Gνν ′ = −
∑
λn

4β2
λ(n)

(2 jν + 1) (2 jν ′ + 1) (2L + 1)

〈 jν ′ |R0
∂U
∂r | jν〉2〈 jν ′ ||Yλ|| jν〉2

E0 − [eν + eν ′ + �ωλ(n)]
,

(10.12)

with

E0 = U − Eunp. (10.13)

The energy E0 in equation (10.13) is the pair-correlation energy and is the dif-
ference between the ground-state energy U including pairing correlations and
the unperturbed ground state energy Eunp. The energies U and Eunp are defined
explicitly in the following paragraph (see also Appendix G). The sum in equa-
tion (10.12) is taken over all multipolarities λ. The sum over n allows for the
possibility that there may be several phonons with the same multipolarity. Equa-
tion (10.12) differs from (10.2) and (10.5) in several respects. The normalization
is different because of the normalization (10.11) of Gνν ′ . In Bloch–Horowitz
perturbation theory the energy denominator is the difference between the final
energy of the system E0 and the energy of the, unperturbed, intermediate state
(see Fig. 10.1) eν + eν ′ + �ωλ(n). The dependence on E0 is a feature of the
Bloch–Horowitz perturbation method. The eν and eν ′ are magnitudes of single-
particle energies of the states ν and ν ′ measured from the Fermi energy. As the
correlation energy E0 is negative, the denominator in the last factor in equation
(10.12) is always negative and each term contributing to Gνν ′ is positive. The ex-
pression for Gνν ′ (equation (10.12)) is automatically symmetric in the initial and
final states ν and ν ′. Thus it is not necessary to make the ad hoc symmetrization
as in equations (9.33), (9.34).

The unperturbed ground-state energy in equation (10.13) is

Eunp =
∑

jν
εν < εF

(2 jν + 1) (εν − εF) . (10.14)

where εν are single-particle energies and εF is the Fermi energy. The perturbed
energy is

U =
∑

jν

(2 jν + 1) (εν − εF) V 2
ν −

∑
jν jν′

(2 jν + 1) (2 jν ′ + 1)

4

Gνν ′

4

� jν� jν′

E jν E jν′
.

(10.15)

Thus E0 = U − Eunp is the ground-state correlation energy. The gap parameters
�ν satisfy the gap equation

� jν =
∑

jν′

2 jν ′ + 1

2

Gνν ′� jν′

2E jν′
, (10.16)
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where the quasiparticle energies are given by

E jν =
√(
ε jν − εF

)2 +�2
ν . (10.17)

The BCS occupation probabilities are defined by

V 2
jν =

1

2

(
1− ε jν − εF

E jν

)
,

and the Fermi energy εF is fixed by the condition

N = 2
∑

jν

V 2
jν . (10.18)

By using the gap equation (10.16) the second term in equation (10.15) can be
written as a single sum∑

jν j ′ν

(2 jν + 1) (2 jν ′ + 1)

4

Gνν ′

4

� jν� jν′

E jν E jν′
=

∑
jν

(2 jν + 1)

2

�2
jν

2E jν

(10.19)

The basic ingredients needed in solving these equations are the single-particle
energies εν and the corresponding wavefunctions φν(	r ), as well as the phonon
energies �ωλ(n) and the transition probabilities

B (Eλ : 0→ λ(n)) =
(

3

4π
ZeRλ

)2

β2
λ

of the vibrational modes. The quantities εν and φν(	r ) are calculated assuming nu-
cleons to move in an average field containing a spin-orbit term and parametrized
in terms of a Saxon–Woods potential, with standard parameters. The vibrations
are calculated in the quasiparticle random phase approximation (see equation
(8.47)), adjusting the coupling constant to reproduce the energy and transition
probabilities of lowest-lying vibrational states. The resulting values are, as a
rule, quite close to the self-consistent value relating the potential variation to the
density variation in a self-sustained normal mode of oscillation.

In Fig. 10.1 we show the calculated state-dependent pairing gap for the nu-
cleus 120Sn. The matrix elements Gνν ′ are shown in Fig. 10.2 and Table 10.1.
The corresponding state dependence of �ν is closely connected with the strong
state dependence of Gνν ′ . This dependence reflects the fact that scattering
processes implying spin-flip are essentially possible only because of quantal
fluctuations.

In any case, the average value of these matrix elements associated with states
lying close to the Fermi energy is Ḡ =∑

ν≥ν ′ Gνν ′/15 ≈ 0.11 MeV (see Section
9.3, discussion following equation (9.35), note that Ḡ is to be compared to |v̄|),
while the pairing-correlation energy is E0 ≈ 4 MeV. The value of Ḡ can be
compared with the value G ≈ 0.2 MeV of the standard parametrization G =
25/A MeV. It is seen from Fig. 10.1 that the pairing gap around the Fermi energy
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226 Induced interaction

Table 10.1. Matrix elements Gνν ′ of the induced inter-
action as shown in Fig. 10.2; The corresponding aver-
age value is Ḡ =∑

ν ′≥ν Gνν ′/15 = 0.11 MeV (after Gori
(2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.08 0.016 0.182 0.158 0.109
g7/2 0.016 0.08 0.05 0.022 0.143
s1/2 0.182 0.05 0 0.124 0.272
h11/2 0.158 0.022 0.124 0.179 0.032
d3/2 0.109 0.143 0.272 0.032 0.167

d

d

d

d

d

s

g

h

g

s

s

h

d

Figure 10.2. Matrix elements Gνν ′ of the induced interaction defined in equations (10.11)–
(10.12) used in the calculation of the state-dependent pairing gap of 120Sn (equation (10.16))
shown in Fig.10.1 for levels lying close to the Fermi energy εF (εd5/2 = −12.0 MeV, εg7/2 =
−10.9 MeV, εs1/2 = −9.7 MeV, εh11/2 = −9.21 MeV, εd3/2 = −9.0 MeV, ε f7/2 = −4.0 MeV,
εF = −9.2 MeV). The values on the ordinates are in MeV (after Gori (2002)).

is of the order of 0.8 MeV, which is an appreciable fraction of the empirical value
of 1.4 MeV, obtained from the mass table (Audi and Wapstra (1995)) making
use of the relation

� = 1
2 [B (N − 2, Z )+ B (N , Z )− 2B (N − 1, Z )] , (10.20)

where B(N , Z ) is the binding energy of the nucleus with N neutrons and Z
protons.

Fig. 10.3 shows the value of the state-dependent pairing gap averaged over
levels lying in an energy interval of the order of ±2� around the Fermi energy,
for a number of Sn isotopes, in comparison with the corresponding empirical
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A
50

A

Figure 10.3. Average value of the state dependent pairing gap associated with levels lying
close to the Fermi energy of A

50Sn isotopes, calculated making use of the induced pairing in-
teraction Gνν ′ (equations (10.11)–(10.12)), in comparison with the empirical pairing gap (see
equation (10.20)). The results of two calculations are shown, associated with RPA solutions
which fit two different sets of transition probabilities associated with the low-lying quadrupole
and octupole surface vibrations. The first set (also used to obtain the results reported in Fig.
10.1) was taken from Beer et al. (1970), Th. a). The second set is from Jonsson et al. (1981),
Th. b). Reprinted with permission from Barranco et al., Phys. Rev. Lett. 83:2147–50 (1999).
Copyright 1999 by the American Physical Society.

values obtained from equation (10.20) and mass table. In all cases, theory ac-
counts for a consistent fraction of the empirical values of the pairing gaps. If
one were to reproduce this empirical value of�, one would need to add to Gνν ′

an approximately constant quantity, which changes only slightly from isotope
to isotope, and whose average value is G0 ≈ 0.06 MeV. This corresponds to a
parametrization G0 = X/A MeV with X ≈ 7.

The main contribution to the state-dependent pairing gap defined in equation
(10.16) arises from the exchange of low-lying surface collective modes. In fact,
repeating the calculation of �ν but this time including only the lowest-lying
surface vibrations (n = 1, λπ = 2+, 3−, 4+, 5−), one obtains results which co-
incide, within 20%, with those obtained from the full calculation. The main
contributions arise from the exchange of low-lying quadrupole and octupole
vibrations. These results are closely connected with the difference in matrix el-
ements associated with low-lying collective surface vibrations and with giant
resonances. In fact the average value of Gνν ′ resulting from the coupling to vi-
brational states with energy �ωλ(n) ≤ 7 MeV is 0.08 MeV (see Fig. 10.4 and
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Table 10.2. Induced matrix elements (Gνν ′)low (in MeV)
(see Fig. 10.4) (after Gori (2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.059 0.01 0.156 0.124 0.07
g7/2 0.01 0.062 0.028 0.015 0.12
s1/2 0.156 0.028 0 0.074 0.258
h11/2 0.124 0.015 0.074 0.162 0.02
d3/2 0.07 0.12 0.258 0.02 0.162

d

d
d

d

d

g

h
s

s

g

s

hd

Figure 10.4. Induced interaction matrix elements (Gνν ′ )low (in MeV) associated with the
exchange between nucleons moving in time-reversal states close to the Fermi energy εF of
120Sn of low-lying (�ω(n) ≤ 7 MeV) surface vibrations (λπ = 2+, 3−, 4+, 5−) (after Gori
(2002)).

Table 10.2), while that associated with the coupling to vibrational states with
�ωλ(n) > 7 MeV is 0.03 MeV (see Fig. 10.5 and Table 10.3). One expects that
this small average value would become even smaller by considering the fact that
giant resonances are not sharp states but display a damping width.

Because low-lying surface vibrations are built, to some extent, by the same
valence nucleons which participate in the Cooper pair formation, one would
expect that the values of (Gνν ′)low shown in Fig. 10.4 (and thus the total value
Gνν ′ = (Gνν ′)low + (Gνν ′)high shown in Fig. 10.2 as well as�ν (Fig. 10.1) will be
somewhat modified by Pauli principle corrections. In fact, it is found that these
corrections modify (reduce), as a rule, the value of �ν by about 10% from the
value obtained by making use of equation (10.12) (Appendix F). This correction
is expected to be larger in the case of light, halo nuclei (see next chapter).
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Table 10.3. Matrix elements (Gνν ′)high (in MeV) as shown
in Fig. 10.5 (after Gori (2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.026 0.007 0.04 0.044 0.048
g7/2 0.007 0.025 0.025 0.009 0.036
s1/2 0.04 0.025 0 0.064 0.046
h11/2 0.044 0.009 0.064 0.042 0.016
d3/2 0.048 0.036 0.046 0.016 0.027

d

d

d

g

g

s

s

s

h

h

d

d

d

Figure 10.5. Induced matrix elements (Gνν ′ )high (in MeV) associated with the exchange
of high-lying vibrations (essentially giant resonances) with �ωλ(n) > 7 MeV and (λπ =
2+, 3−, 4+ and 5−) between nucleons moving in time-reversal states close to the Fermi energy
εF of 120Sn (after Gori (2002)).

In Fig. 10.6 the results of calculations of the pairing gap carried out as ex-
plained above for the isotopes ACa and ATi are shown compared with the em-
pirical values obtained with the help of equation (10.20). The average value
of Gνν ′ associated with levels lying close to the Fermi energy is, in this case,
of the order of 0.2 MeV, while E0 is of the order of −3 MeV. The induced
interaction leads to pairing gaps which again, in these cases, account for a
consistent fraction of the empirical value. The results furthermore display a sim-
ilar dependence on A to that displayed by the experimental values, a dependence
which reflects the shell dependence of the collective surface modes. In particular,
the low predicted value of � in 50Ca compared with 42Ca is due to the fact that
the ‘core’ 48Ca is more rigid than the core 40Ca, as can be seen from Fig. 10.7
where theβ2 andβ3 values associated with the different Ca-isotopes are reported.
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A

Figure 10.6. Average value of the state-dependent pairing gap associated with levels lying
close to the Fermi energy of the A Ca- and the ATi-isotopes, compared with the experimental
data calculated by making use of the relation � = 1

2 [B(N − 2, Z )+ B(N , Z )− 2B(N −
1, Z )], where B(N , Z ) is the binding energy of the nucleus with N protons and Z neutrons,
after Gori (2002).

Within this context it is interesting to note that the corresponding quantities for
the Sn-isotopes are essentially constant as a function of A (see Fig. 10.8)), a fact
which is intimately connected with the essential constancy, as a function of A,
observed in the gap of the Sn-isotopes (see Fig. 10.3).

The results discussed in this section may provide, at the microscopic level,
insight into the success found by surface and density-dependent pairing interac-
tions used in the literature to describe the low-energy nuclear structure (Green
and Mozkowski (1965), Faessler (1968), Bertsch and Esbensen (1991)).

Let us conclude this section by noting that, because collective vibrations cou-
ple democratically to all nucleons, regardless of their isospin quantum number,
the induced pairing-force mechanism is expected to lead to a consistent proton–
neutron pairing correlation, as well as to multipole (in particular quadrupole)
pairing correlations. Although the field has not been explored, calculations car-
ried out in 42Sc (Barranco et al. (1999)) indicate this to be the case.
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Figure 10.7. Value of the deformation parameters β2, β3 for the Ca-isotopes (after Gori (2002)).
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Figure 10.8. Value of the deformation parameters β2, β3 for the Sn-isotopes (Jonsson et al.
(1981)) (after Gori (2002)).

10.3 Slab model

To assess the universality of the results presented in the previous section, we
shall study the induced pairing interaction in a system free of shell effects, but
retaining the properties associated with the confinement of nucleons by an elastic
surface. For this purpose we use the slab model for semi-infinite nuclear matter
proposed by Esbensen and Bertsch (1984a,b) and Bertsch and Esbensen (1985).
In the present section the aim is to study the induced interaction between nucleons
due to coupling with surface modes. The discussion here is based on the work
of Giovanardi et al. (2002). The collective response of the nuclear surface is
approximated by the RPA response function and the coupling of the nucleon
motion to the surface vibrations is calculated self-consistently.
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In the theory of Esbensen and Bertsch (1984a,b) the nucleons are confined in
the half-space z < 0 by the one-dimensional Fermi-like potential

V (z) = V0(1+ e−z/a)−1. (10.21)

The single-particle wavefunctions in the potential (10.21) can be written as


ν(	r ) = ei	kνp·	rpφν(z). (10.22)

The corresponding energy eigenvalues and momentum parallel to the surface are

εν = �2k2
νp

2m + ενz where 	kνp = (kνx , kνy, 0). The vector 	rp is parallel to the plane
of the surface of the slab (x, y, 0). The wavefunctions φν(z) are solutions of the
single-particle Schrödinger equation(−�

2

2m

d2

dz2
+ V (z)

)
φν(z) = ενzφν(z), (10.23)

normalized so that, for z →−∞,

φν(z) =
√

2 cos(kνzz + θν), (10.24)

where kνz is the asymptotic wavenumber and θν a phase.
The next step in the calculation of the induced interaction consists in deter-

mining the vibrational modes of the system. For this purpose one diagonalizes
the surface-peaked separable interaction

v(	r , 	r ′) = k0g(|	rp − 	r ′p|)V ′(z)V ′(z′), (10.25)

in a particle–hole basis and in the harmonic approximation (RPA). The quantity
V ′(z) is the derivative of the potential defined in equation (10.21). The finite-
range Yukawa interaction acting in the x, y-direction,

g(|	rp − 	r ′p|) =
e|	rp−	r ′p|/ar

2πar |	rp − 	r ′p|
, (10.26)

with ar = 1 fm, has been chosen so as to give a realistic value of the nuclear
surface tension (1 MeV/fm2). The coupling strength κ0 is determined by the
relation

κ−1
0 =

∫
dzρ ′0(z)V ′(z), (10.27)

which expresses the self-consistent condition existing between density and po-
tential fluctuations associated with the normal modes. Diagonalizing the inter-
action given in equation (10.26) in the harmonic approximation (RPA) one can
construct the linear response function

RRPA(K , �ω) = R0(K , �ω)

1− κ0g̃(K )R0(K , �ω)
. (10.28)
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It is written in terms of the unperturbed response R0(K , �ω) which, in the slab
model, can be accurately parametrized by an oscillator response function

R0 (K , �ω) = N

�

(
1

(ω − ω0)+ iγ /2
− 1

(ω + ω0)+ iγ /2

)
. (10.29)

The energy centroid �ω0(K ), the width �γ (K ) and normalization strength N (K )
are functions of K . The function

g̃(K ) = 1√
1+ (ar K )2

(10.30)

is the kernel of the two-dimensional Fourier transform

g(|	rp − 	r ′p|) =
∫

d2 K

(2π )2
ei 	K (	rp−	r ′p) g̃(K ).

The unperturbed strength function is proportional to the imaginary part of
R0 (K , �ω),

S0 (K , �ω) = − 1

π
Im R0 (K , �ω) . (10.31)

It is a symmetric function of K and is antisymmetric in ω.
The RPA strength function is an even function of K and an odd function of

ω. It can be expressed in terms of the unperturbed response as

SRPA (K , �ω) =
(

S0 (K , �ω)(
1+ κ Re R0 (K , �ω)

)2 + (κπ S0 (K , �ω))2

)
, (10.32)

where κ (K ) = κ0g̃(K ). Esbensen and Bertsch showed that the denominator
in equation (10.32) vanishes when ω = 0 and K = 0 because of the self-
consistency condition (10.27). When ω and K are small

SRPA (K , �ω) ∝ ω

ω2 + αK 2
, (10.33)

where α depends on the parameters in S0 and g̃(K ).
Now we consider the process in which pairs of nucleons moving in time-

reversal states exchange the eigenmodes of equation (10.28). We shall denote by
kνp and kν ′p the momentum of the single-particle states in the initial and in the final
channels respectively, in a plane parallel to that of the surface while kνz and kν ′z
denote the asymptotic momentum along the z-direction. The wavenumber 	K of
the exchanged phonon is fixed by the relation expressing the parallel momentum
conservation, i.e.

	K = 	kνp − 	kν ′p.
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The equation corresponding to (10.12) for the induced pairing matrix element
in the microscopic calculation in Section 12.2 can be written as

Gνν ′(K ) = 2(κ0g̃(K ))2 M2
νν ′ ×

∫ ∞

0
d�ω

SRPA(K , �ω)

E0 − (|eν | + |eν ′ | + �ω)
. (10.34)

The single-particle energies are defined by e j ≡ ε j − εF ( j = ν, ν ′), where εF is
the Fermi energy while

εν ≡ ενp + ενz =
�

2k2
νp

2m
+ ενz, (10.35)

εν ′ ≡ εν ′p + εν ′z = �
2

2m

(
	kνp − 	K

)2
+ εν ′z. (10.36)

The surface interaction matrix element is

Mνν ′ =
∫

dz φ∗kν′z (z)V ′(z)φkνz (z). (10.37)

and E0 is the pair-correlation energy. Equation (10.34) has the same Bloch–
Horowitz energy denomination as the induced pairing interaction in Section 10.2.

The total number of particles in the slab is

A = 2V
∫

d3k

(2π )3
V 2(	k), (10.38)

where V is the volume of the system. It is related to the surface area S and the
thickness d of the slab by

V = S · d.
This relation can be used to make a connection with finite nuclei. Putting V =
4
3πR3 and S = 4πR2 in the surface area, one obtains

d = 0.4 A1/3. (10.39)

In the framework of Bloch–Horowitz perturbation theory, the BCS number
and gap equations

N = 2V
∫

d2k

(2π )3
V 2(k), (10.40)

�(	kν) = 2d−1
∫

d3kν ′

(2π )3

Gνν ′ (K )

2
U (	kν ′)V (	kν ′) (10.41)

are solved self-consistently. The induced pairing matrix element Gνν ′(K ) di-
verges when K = 0 because of the 1/ω singularity in the unperturbed strength
function. The approximation (10.33) for SRPA which holds for small values of
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Figure 10.9. (a) Pairing gap of particles as a function of the particle energy ε − εF =
(�kν )2/(2m)− εF, for R = 6 fm. For each energy value, the pairing gap � has been cal-
culatd as an average over the gaps of particles having the same k2

ν . Detailed results for the
nucleus 120Sn are also shown (open dots, see Fig. 10.1). (b) The pairing gap of a particle at
the Fermi energy as a function of the momentum component parallel to the surface of the
slab. The gap goes to zero when (kν )p = 1.337 fm−1, corresponding to the case of particles
moving in a plane parallel to the surface of the slab (kz = 0). Reprinted with permission
from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002 by the American
Physical Society.

ω and K shows that Gνν ′(K ) diverges as ln |K | for small K . Because this di-
vergence is only logarithmic the integral in the gap equation converges. Equa-
tion (10.31) shows that g (K ) = 1 for a zero-range interaction (ar = 0) and that
g(K )∝ 1/ (ar K )2 for large K for a finite range interaction. Hence, because of the
factor g (K ) in equation (10.34), the finite-range Yukawa interaction suppresses
the high K contributions to Gνν ′(K ). This corresponds to the high multipolarity
surface vibrations in finite nuclei.

In the remainder of this section we discuss numerical results obtained by Gio-
vanardi et al. (2002). They take the depth of the potential in equation (10.21) to
be V0 = −45 MeV with a diffusivity a = 0.75 fm. Because of the finite thick-
ness of the slab the pairing gap �(	kν) is not an isotropic function of 	kν . An
energy-dependent pairing gap can be defined by averaging �(	kν) over all the
single-particle states with the same single-particle energy. This state-dependent
pairing gap is shown in Fig. 10.9(a) as a function of ε − εF = (�kν)2/(2m)− εF

for R = 6 fm (A ≈ 120). The results for the nucleus 120Sn from Section 10.2
are also shown (see Fig. 10.1). As expected, the pairing gap peaks at the Fermi
surface, the associated FWHM reflecting the frequency distribution of the linear
response of the system. In Fig. 10.9(b) we display the pairing gap associated
with a particle at the Fermi energy as a function of the momentum component kν
lying in the (x, y)-plane parallel to the surface of the slab. The marked decrease
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Figure 10.10. The experimental pairing gap of neutrons (open dots) and protons (solid dots)
as a function of the mass number A, calculated from the nuclear binding energies (see equation
(10.20)) are described, on average, by the function 12A−1/2 MeV (dotted curve) (Bohr and
Mottelson (1969)). The solid squares show the results of the self-consistent solution of equa-
tions (10.34)–(10.41), results which are well fitted by the expression� = 9.5A−0.62 MeV. In
the inset, the same results are displayed as a function of the nuclear radius R in a log-log
scale, to emphasize the different behaviour of the two power laws. Reprinted with permission
from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002 by the American
Physical Society.

of � as a function of kv testifies to the surface origin of the induced pairing
interaction Gνν ′ (equation (10.34)).

Following equations (10.41) and (10.40) the pairing gap should scale accord-
ing to A−1/3. This is, however, altered by the averaging and by the discrete
spectrum of energies ενz associated with motion in the z-direction.

In Fig. 10.10 we show the pairing gap �slab, obtained by solving equations
(10.34)–(10.41), and averaging �(	kν) over single-particle states with energy
|εν − εF| ≤ 4 MeV. The results are well fitted by the power law

�slab ≈ 9.5

A0.62
MeV, (10.42)

where the exponent of the mass number A is quite close to 2/3, typical of surface
phenomena. In keeping with the fact that the experimental values are reproduced,
on average, by the standard expression given in equation (1.30), i.e.

�exp ≈ 12/
√

A , (10.43)
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Figure 10.11. Plot of ψ2 (equation (10.44)), for R = 6 fm and for particles with zero relative
parallel coordinate (Rp = 0), obtained fixing the coordinate of one particle (z1, solid dot), as a
function of the coordinate of the second particle (z2). The surface of the slab is located at z = 0.
Also shown is the value of ψ2 averaged over an interval of≈ 5 fm (dashed curve). Reprinted
with permission from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002
by the American Physical Society.

one concludes that�slab ≈ (0.45± 0.04)�exp. In other words, the induced pair-
ing interaction leads to pairing gaps which are of the order of 50% of those
experimentally observed, a result which is similar to that obtained in the case of
detailed calculations in finite nuclei.

To account for the experimental pairing gap, one needs to add to the interaction
Gνν ′ an extra contribution which we shall parametrize as G0/A. One finds that
G0 ≈ (0.4± 0.1)G, where G/A is the strength of the pairing interaction which
reproduces the experimental data (see Fig. 10.10, dotted curve). In particular,
in the case of R = 7 fm, i.e. A = 200, one obtains G = 27 MeV, while G0 =
17 MeV.

The results shown in Figs. 10.11 and 10.12 provide further insight into the role
that the surface of a confined Fermi liquid has in the formation of Cooper pairs.
In Fig. 10.11, the modulus squared of the anomalous density (closely connected
with the Cooper pair wavefunction)

ψ(z1, z2, Rp) =
∫

dkp

2π
kp J0(kp Rp)

∫
dkz

2π
φkz (z1)φkz (z2)

×U (kp, kz)V (kp, kz), (10.44)
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Figure 10.12. Pairing gap calculated, for R = 6 fm, as the product of the anomalous density
ψ (equation (10.44)) and the induced interaction v (equation (10.45)), as a function of the
z-coordinate of one of the two particles (z2), giving the coordinate of the other particle (z1)
fixed values. Reprinted with permission from Giovanardi et al., Phys. Rev. C69: 041304 (R)
(2002). Copyright 2002 by the American Physical Society.

is shown as a function of the coordinate z2 of one of the particles, fixing the
coordinate z1(= 0) of the other particle on the surface. In the above equation,
J0 is a Bessel function and Rp is the distance between particles in the direction
parallel to the surface of the slab. Making use of the functionψ we have calculated
the mean square radius< r2 >1/2= (∫

d3r r2|ψ |2/ ∫ d3r |ψ2|)1/2
of the Cooper

pair, obtaining 22 fm. This quantity is closely connected with the coherence
length ξ = �vF/π� of the pair. Because εF ≈ 36 MeV and� ≈ 0.6 MeV at the
Fermi energy, one obtains, from this simple estimate, ξ = 28 fm.

The pairing gap �(z1, z2, Rp) = Gνν ′(z1, z2, Rp)× ψ(z1, z2, Rp) is obtained
by multiplying the anomalous density by the induced interaction, defined in
equation (10.34), a quantity which depends on eν and eν ′ . For single-particle
levels lying close to the Fermi energy we can neglect this dependence and write

G(z1, z2, Rp) = 2
∫

d2 K

2π2
k2

0 g̃(K )
V ′(z1)V ′(z2)

d2
eiK Rp

×
∫

d�ω
ImRRPA(K , ω)

E0 − �ω
. (10.45)
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In Fig. 10.12, the Fourier transform �(z1, z2, kp) of the quantity �(z1, z2, Rp),
in a plane parallel to the surface, and setting kp = 0, is shown as a function of
the z2-coordinate of one of the two particles, and the other coordinate z1 is given
a fixed value. As expected, the probability that the two partners of a Cooper pair
are close together, and thus that the associated pairing gap is large, is higher at
the surface of the slab than elsewhere.

10.4 Induced pairing interaction, effective mass and vertex correction
processes

As discussed in Section 9.3 there is an intimate relation between the self-energy
process renormalizing the mass of the nucleons (ω-mass) and the pairing gap
arising from Cooper pair formation through the exchange of surface vibrations
between nucleons moving in time-reversal states close to the Fermi surface. In the
above calculations the ω-dependence of the effective mass has been neglected.
While this approximation is the same as that employed in the standard treatment
of pairing leading to BCS number and gap equations (see Chapter 3), its range
of validity is an open question. This is because setting m∗ = m implies that
the occupation probability of the single-particle states is either 1 (εν ≤ εF) or
0 (εν > εF). Consequently, they can fully participate in the processes leading
to pair formation and thus to nuclear superfluidity. On the other hand, in the
case in which m∗ = mωmk

m ≈ m, although apparently identical to the previous
one, the spectroscopic factor associated with single-particle states lying close to
the Fermi energy is Zω ≈ (mω/m)−1 (see equation (9.23)). Because mω/m > 1,
Zω < 1, implying that the nucleons spend part of their time in more complicated
configurations, configurations which make use also of empty states within the
independent-particle approximation leading to an effective reduction of the space
available to the particles to correlate (�eff < �). Consequently, these single-
particle states can participate less effectively in producing the nuclear condensate,
a handicap which is further accentuated by taking into account the splitting of
the single-particle strength (see equation (9.41) and Section H.4).

10.4.1 Solution of the Dyson equation for normal and abnormal densities

Barranco et al. (2004) have investigated these questions in the case of a typical
superfluid nucleus, i.e. 120Sn. The formalism used is based on the Dyson equa-
tion (Terasaki et al. (2002a,b), Van der Sluys et al. (1993)). It gives a consistent
description of the dressed, single-particle state ã of an odd nucleon renormalized
by the (collective) response of all the other nucleons (Figs. 10.13(a)–10.13(d)),
the renormalization of the energy �ων (Figs. 10.14(a)–10.14(b)) and of the transi-
tion probability B(Eλ) (Figs. 10.14(c)–10.14(f)) of the collective vibrations of the
even system (correlated particle–hole excitations), and the induced interaction
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(a) (b) (c) (d)

(g)(f )(e)

Figure 10.13. Renormalization processes arising from the particle-vibration coupling phe-
nomenon. A line indicates quasiparticles obtained from BCS theory, making use of the mean-
field single-particle states of the Skyrme parametrization Sly4 and the nucleon–nucleon v14

Argonne potential. The wavy line indicates the vibrational states (after Broglia et al. (2004)).

(f )(e)(d)

(a) (b)

(c)

Figure 10.14. Most relevant processes taken into account in the renormalization of the energy
of the phonon (a,b) and of the associated transition strength (c–f).
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10.4 Induced pairing interaction, effective mass 241

due to the exchange of collective vibrations between pairs of nucleons, moving
in time-reversal states close to the Fermi energy (Figs. 10.13(e)–10.13(g)). It
includes both self-energy and vertex correction processes. Within this frame-
work, the self-consistency existing between the dynamical deformations of the
density and of the potential sustained by ‘screened’ particle-vibration coupling
vertices leads to renormalization effects which stabilize the collectivity and the
self-interaction of the elementary modes of nuclear excitation, in particular of the
low-lying surface vibrational modes. This procedure produces a rather accurate
description of experimental findings, in terms of very few parameters, namely:
the k-mass mk (equations (8.19) and (8.17)) and the particle-vibration coupling
vertex V ( j, j ′ : λ) (see equation (8.31)).

A Skyrme interaction (Sly4 parametrization, with mk ≈ 0.7m) was used to
determine the properties of the bare single-particle states, while the resulting
particles were allowed to interact through the Argonne V14 nucleon–nucleon
interaction, as well as to exchange phonons.

As seen from Fig. 10.15, Hartree–Fock theory is not able to account for the
experimental quasiparticle energies of the low-lying states. Diagonalizing the
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Figure 10.15. The spectra of the lowest quasiparticle states in 120Sn calculated using Hartree–
Fock theory, BCS with the Argonne V14 potential, and after renormalization, are compared
with the experimental levels in the odd neighbouring nuclei 119Sn and 121Sn (after Barranco
et al. (2004)).
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Table 10.4. The energy and reduced E2 transition strength of
the low-lying 2+ state, calculated according to different theo-
retical models, are compared to the experimental values (Stel-
son et al. (1970)) (after Barranco et al. (2004)).

�ω2+ (MeV) B(E2 ↑) (e2 fm4)

RPA (Gogny) 2.9 660
RPA (Sly4) 1.5 890
RPA + renorm 0.9 2150
Exp. 1.2 2030

Argonne V14 nucleon–nucleon potential in the Hartree–Fock basis, within
the framework of the BCS approximation including scattering states up to
800 MeV above the Fermi energy (to achieve convergence, repulsive core) in
a spherical box of radius equal to 15 fm, one obtains the state-dependent pairing
gap shown in Fig. 8.9 (labelled V14). The resulting pairing gap (average value for
levels around the Fermi energy) accounts for about half of the empirical pairing
gap value (≈ 1.4 MeV) obtained from the odd–even mass difference. In keep-
ing with this result, the quasiparticle spectrum (see Fig. 10.15), although being
slightly closer to the experimental findings than that predicted by Hartree–Fock
theory, displays large discrepancies with observations. The situation is rather
similar concerning the low-lying quadrupole vibration of 120Sn calculated in
the QRPA with standard effective nucleon–nucleon interactions like Gogny or
Skyrme forces. While energy is predicted too high, which may not be very im-
portant, the B(E2) value is too small by about a factor of 3 (see Table 10.4), a
result which calls for a better theory.

In fact, renormalizing the energy and the transition strength of the 2+ phonon,
i.e. considering couplings of the type depicted in Fig. 10.14, couplings which
have been shown to be essential in determining, for example, the width of
giant resonances (see Fig. 8.16), one obtains an increase of the B(E2) transi-
tion probability which brings theory essentially in agreement with experiment
(see Table 10.4). The most important processes which renormalize the energy
of the phonon are shown in Figs. 10.14(a) and (b). Other graphs which are
also of fourth order in the particle-vibration coupling vertex, but contain in-
termediate states with more than four quasiparticle states, lead to very small
contributions. This is because these terms not only involve larger denominators,
but also, because of their higher degree of complexity, give rise to contributions
with ‘random’ phases which tend to cancel each other. This is a consequence of
the fact that, while cancellation between the contribution associated with graphs
(a) and (b) of Fig. 10.14 is strong in the particle–hole channel, the opposite is
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e

e

Figure 10.16. The state-dependent pairing gap for the levels close to the Fermi energy ob-
tained using BCS theory with the v14 Argonne potential (circles) is compared with the result
obtained by also including renormalization effects (squares) (after Barranco et al. (2004)).

true in the particle–particle channel (see equations (A.49) and (A.50)), and that
the phonons are calculated in a Bogoliubov–Valatin-quasiparticle basis. In keep-
ing with the above discussion, the most important processes renormalizing the
B(E2) transition probability are those shown in Figs. 10.14(c),(d),(e) and (f).

Solving the Dyson equation by making use of phonons which account for
the experimental findings, the state-dependent pairing gap shown in Fig. 10.16
was obtained. The average value of the resulting state-dependent pairing gap of
120Sn is now close to the value�exp = 1.4 MeV derived from the odd–even mass
difference. In Fig. 10.15 the energy centroid of the peaks carrying the largest
quasiparticle strength are shown, for the orbitals around the Fermi energy. These
results provide an overall account of the lowest quasiparticle states measured
in the odd systems 119Sn and 121Sn. In the case of d5/2 orbital, the associated
quasiparticle strength is strongly fragmented, and displays three low-energy
peaks which collect less than 40% of the single-particle strength. Figures 10.15
and 10.16 show, respectively, the energy and the pairing gap associated with the
lowest of these three peaks.

The results discussed in this section seem to be in contradiction with the results
discussed in connection with Figs. 8.6 and 8.9. In fact, from these two figures
one could expect that essentially the full effect associated with the increase of
the pairing gap arising from the polarization processes, examples of which are
shown in Fig. 10.13, are associated with effective mass processes like those
displayed in Fig. 10.13(a) (see also equation (8.21)), leaving a negligible role to
induced interaction processes like those shown in Fig. 10.13(e). The resolution
of such an apparent contradiction is to be found in the fact that effective mass
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processes simultaneously renormalize the density of levels N(0) and the pairing
interaction G. However, while (N (0))dressed ∼ N (0)/Zω, (G)dressed ∼ Z2

ωG, the
overall effect being (G N (0))dressed ∼ Zω(G N (0)). Because Zω < 1, effective
mass effects lead to a decrease of the pairing gap, decrease which is corrected
to the value to be compared to the experimental data, by the contribution Z2

ωvνν ′

arising from the induced interaction (see equation (9.33)). In fact, a further
decrease of N(0) is associated with fragmentation of the single-particle strength
arising from renormalization processes like the one shown in Fig. 10.13(a) and
measured by the (state dependent) width �( j, ω) (see Sections 9.1.2 and 9.3,
equation (9.41)).

For a detailed account of these effects we refer to Morel and Nozières (1962),
Schrieffer (1964), Mahan (1981) and Baldo et al. (2002). Also to Combescot
(1999). A simple estimate of the relative importance of the different processes
is given in Appendix H (Section H.4).

10.5 Superfluidity in the inner crust of neutron stars

There exists considerable experimental evidence which testifies to the fact that
pulsars are rotating neutron stars (Pines et al. (1992)). It is believed that the
crust of a neutron star is, in its outer part (106 g cm−3 < ρ < 1011 g cm−3 and
a few hundred metres thick), made out of nuclei arranged in a Coulomb lattice
and of a nearly homogeneous background of relativistic electrons. As one goes
deeper into the crust, because of the rising electron Fermi energy, the nuclear
species become progressively more neutron-rich, beginning as 56Fe and going
through 118Kr at mass density ρd = 4.3× 1011g cm−3, at which point neutrons
are barely bound (Negele and Vautherin (1973)). At this density, known as the
‘neutron drip density’, nuclei have become so neutron-rich that, with increasing
density, the neutron states lying in the continuum begin to be filled and the lattice
of neutron-rich nuclei becomes permeated by a sea of free neutrons.

The region of densities ρd < ρ < 0.7ρ0 (where ρ0 = 0.17 nucleons per fm3 ≈
3× 1014 g cm−3 corresponds to saturation density, and where ρd = 4.3× 1011

g cm−3 is the ‘neutron drip’ density) is the so-called ‘inner crust’ (thickness about
one kilometre), where a Coulomb lattice of neutron-rich nuclei is permeated by a
sea of free neutrons. In keeping with the fact that the nuclear interaction is, in this
range of densities, attractive for pairs of nucleons moving in time-reversal states
(1S0 neutron–neutron scattering, see Fig. 8.1) and because of the relatively low
temperatures (≤0.1 MeV) associated with all but the youngest of neutron stars,
the free neutrons are believed to pair and form an isotropic s-wave superfluid.
A proper understanding of the superfluidity properties of neutron-rich nuclei
embedded in a sea of free neutrons (Wigner–Seitz cell) is of importance to
determine the thermal properties of the neutron star crust, which is expected to
play a central role in the early stages (≈102 years since formation) of the cooling
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of neutron stars (Yakovlev and Pethick (2004), Pizzochero et al. (2002)). This
knowledge is also important for the understanding of the vortex motion in the
neutron superfluid within the solid crust of the neutron star, believed to be the
origin of observed sudden decrease of the rotational period (spinup), or glitches
(see Fig. 6.2) observed, for example, in the Crab (|�P|/P ≈ 10−8) and Vela
(|�P|/P ≈ 2× 10−6) pulsar periods P (Alpar (1977), (1998), Anderson and
Itoh (1975), Epstein and Baym (1988), Link and Epstein (1991), Pizzochero
et al. (1997), Donati and Pizzochero (2003)).

Much effort has been concentrated in describing superfluidity of a uni-
form neutron star system using realistic nucleon–nucleon interactions (see e.g.
Kennedy (1968), Sauls (1989), Takahara et al. (1994), Chen et al. (1986),
Takatsuka (1984), Baldo et al. (1990), (1991), Chen et al. (1993), Wambach
et al. (1993), Delion et al. (1995), Schulze et al. (1996), Lombardo and Schulze
(2001), and references therein). However, in all the calculations, the role of im-
purities represented by nuclei in the sea of free neutrons has been neglected.
In keeping with the fact that the pairing gap depends strongly on baryon den-
sity, a proper treatment of superfluidity in the neutron star crust should take into
account the simultaneous presence of the free neutrons as well as the neutrons
bound in the atomic nuclei (see also Delion et al. (1995)). To this purpose, theory
should be able to provide, making use of a realistic interaction, equally reliable
results for the uniform infinite system, as for the isolated atomic nucleus, limiting
situations in which the results can be compared with a variety of calculations
and with experimental data respectively. A unified description of these limiting
situations will lend confidence to the results associated with finite atomic nuclei
embedded in a sea of free neutrons. Contributions to carry out this programme
are found in Barranco et al. (1997) and Gori et al. (2004b) (see also Sandulescu
et al. (2004)).

The quantum mechanical calculations of the pairing gap in the inner crust of
neutron stars were carried out by solving the Hartree–Fock–Boguliubov (HFB)
equations (see Barranco et al. (1997), Barranco et al. (1998) and Section 8.1.1
equations (8.4)–(8.6); see also Dobaczewski et al. (2002), Dobaczezwski and
Nazariewicz (1998)).

In Barranco et al. (1997) the single-particle states |ak〉 = |nk(la1/2) jama〉
describing the motion of nucleons in the mean fields calculated by Negele
and Vautherin (1973) for each Wigner–Seitz cell density with a nucleus at the
centre, and parametrized in terms of a Saxon–Woods potential, are labelled by
the quantum numbers specifying the number of nodes nk , the orbital angular
momentum la , the total angular momentum ja and its third component ma , as
well as the parity (−1)la . The states |ã1〉 are obtained from the original states
by the operation of time reversal. The quantities U i

ak
and V i

ak
are the occupation

amplitudes of the single-particle states while Ei is the quasiparticle energy.
The Argonne v14 potential was used in the calculation of the matrix elements
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Figure 10.17. The pairing gaps obtained in a Wigner–Seitz cell of radius equal to 15 fm,
and εF = 20 MeV, containing the nucleus Sn whose bound states are described in terms
of a Saxon–Woods potential with a radius of 6.26 fm and a depth of 45.5 MeV, are shown
by a solid and dashed curve, respectively for a diffusivity a = 0.67 fm and a = 0 fm. The
gaps obtained for the discrete states have been averaged over 4 MeV. The gaps obtained for
uniform neutron matter are shown by the dashed line (from Barranco et al. (1997)). Reprinted
from Physics Letters B, Vol. 390, Barranco et al., ‘Role of finite nuclei on the pairing gap
of the inner crust of neutron stars’, page 15, Copyright 1997, with permission from Elsevier.

〈a1ã2|v|b1b̃2〉 (see Section 8.1). The quantity εF is the Fermi energy of the system
and thus determines the average number of nucleons. To obtain convergence
of the HFB equations, single-particle states lying as high as 600 MeV have to
be included in the calculations. To this purpose the continuum is discretized by
placing the nucleus in a box. For εF > 0, the radius of the box Rbox coincides with
the Wigner–Seitz cell radius RWS as calculated by Negele and Vautherin (1973).
For εF < 0, Rbox should be varied until convergence of the results is achieved.

A number of situations corresponding to the densities discussed in this refer-
ence have been worked out. Particularly illustrative is the system composed of
a nucleus containing 50 protons placed in the centre of a Wigner–Seitz cell of
radius RWS = 15 fm. Setting the Fermi energy at εF = 20 MeV (ρ = 0.18ρ0),
the Wigner–Seitz cell contains 600 neutrons. That is, we can view the system as
a gigantic neutron-rich nucleus 600

50 Sn. The selected density leads to the largest
value of the pairing gap at the Fermi energy for the system under discussion (see
Fig. 10.18).

Note that the large value of the pairing gap obtained in this calculation is con-
nected with the fact that the single-particle energies were determined by making
use of the bare nucleon mass and not the k-mass (see in this connection Figs.
8.6 and 8.9 as well as Sections 8.2 and 10.4). The same comment applies to
Fig. 10.17, in which we display the diagonal part of the neutron pairing gap
�ak (≡ �akak ) associated with the single-particle states of the system, obtained
by solving equations (8.4)–(8.6) with εF = 20 MeV. The results have been av-
eraged over an energy interval of 4 MeV to smooth out fluctuations associated
with particular shells. The quantity �ak has a peak that corresponds to single-
particle levels just barely unbound (εa1 ≈ 0 MeV). It decreases as εa1 increases,
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Figure 10.18. The dashed curve shows the pairing gaps at the Fermi energy in neutron matter
as a function of the Fermi momentum. The solid dots show the pairing gaps of bound levels
close to the Fermi energy, for different negative Fermi energies in the Saxon–Woods potential
(with a = 0.65 fm) used in connection with Fig. 8.6 to describe 120Sn. The Fermi momentum
is referred to the bottom of the well. The open dots show the pairing gaps of levels close to the
Fermi energy for positive values of εF and for the Wigner-Seitz cell discussed in connection
with Fig. 10.17. Reprinted from Physics Letters B, Vol. 390, Barranco et al., ‘Role of finite
nuclei on the pairing gap of the inner crust of neutron stars’, page 15, Copyright 1997, with
permission from Elsevier.

in keeping with the fact that the content of relative momentum associated with
such configurations also increases (see e.g. Baldo et al. (1990)). The pairing
gap also decreases for bound neutron levels, because the density inside the nu-
cleus is higher than outside it. The fact that the pairing gap does not vanish
for bound levels (εa1 < 0), i.e. levels inside the nucleus, highlights the role the
nuclear surface plays in the pairing phenomenon in atomic nuclei. We also show
in Fig. 10.17 the pairing gap �(k) associated with uniform neutron matter as
a function of the energy ε = �

2k2/2m, calculated again setting εF = 20 MeV.
From these calculations one concludes that the presence of the nucleus in the
sea of free neutrons leads to an overall reduction of the pairing gap in the energy
range 0 < ε < 100 MeV, and the appearance of a broad bump near the edge of
the single-particle potential well.

Results of calculations of the pairing gap for uniform neutron matter as a
function of neutron Fermi wavenumber kFn (as a measure of density) for six
models of crustal superfluidity are shown in Fig. 10.19 (from Lombardo and
Schulze (2001)). The model labelled BCS is the simplest in which the pairing
interaction is taken to be the neutron–neutron interaction in free space (see
also Fig. 10.18). The five others – C86 (Chen et al. (1986)), C93 (Chen et al.
(1993)), A (Ainsworth et al. (1989)), W (Wambach et al. (1993)), and S (Schulze
et al. (1996)) include medium polarization effects which weaken the pairing.
While all curves exhibit the same qualitative behaviour, there are also important
differences. The BCS model is oversimplified, since it does not take into account
effects of the medium.
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Figure 10.19. Energy gaps (left vertical axis) for various models of crustal neutron pairing
as a function of neutron Fermi wavenumber. The vertical dotted line marks the crust–core
interface (after Lombardo and Schulze (2001)).

Concerning the other results, one observes large variations in the predictions
for the upper density at which neutron superfluidity disappears. While the reason
for these differences is unclear, that the neglect of pairing fluctuations, fluctu-
ations which become quite important when the mean-field pairing gap goes to
zero, is likely to be one of the causes (see Section 6.6, Fig. 6.24).

In an infinite (3D) medium (i.e. a system where rs � ξ � L see Sec-
tion 4.1.1, equation (4.1) and subsequent discussion) the gap is affected mainly
by exchange of spin fluctuations, which reduce fluctuations, just as they do
in metals. This is very different from what is found in the case of a finite
(0D) medium (rs < L � ξ ), where density modes have a dominant role. The
difference in the relative role played by density and magnetic modes in 0D and
3D systems is at the basis of the fact that medium polarization enhances the
pairing gap in finite nuclei while it quenches it in the inner crust of neutron stars
(see e.g. Figs. 10.16 and 10.19). This point is taken up in the next section.

10.5.1 Interplay between density and magnetic modes

In this section we discuss the mechanism which is at the basis of the seemingly
contradictory results, namely the fact that while medium effects increase the
nuclear pairing gap, they reduce it in the case of the inner crust of neutron
stars. We shall show that these results are a natural consequence of the different
(relative) collectivity displayed by density S = 0 (mainly surface) and S = 1 spin
(mainly volume) modes in (infinite) neutron matter and in (finite) atomic nuclei
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(Gori et al. (2004b), see also Schrieffer (1994), Gor′kov and Melik-Barkhudrov
(1961), Bortignon et al. (1983)). Strictly speaking, in the case of atomic nuclei,
spin is not a good quantum number with which to identify the polarization
quanta, because of the strong spin-orbit term present in these systems. We have
thus adopted the criterion of distinguishing between natural (π = (−1)J ) and
non-natural (π = −(−1)J ) parity modes, where J indicates the total angular
momentum of the quanta. The classification reduces to that of S = 0 and S = 1
modes in the limit of no spin-orbit interaction.

In the following we address the question on hand within the scenario pro-
vided by the paradigmatic (superfluid) open-shell nucleus 120Sn. The starting
point corresponds to the calculation of the mean-field potential and associated
quasiparticle properties within the framework of Hartree–Fock plus BCS theory
using the SkM∗ force (Bartel et al. (1982)). The polarization quanta were worked
out within the framework of quasiparticle random phase approximation (QRPA)
(see e.g. Coló and Bortignon (2001)) making use of the particle–hole interaction

vph(	r , 	r ′) = δ2 EHF

δρ(	r )δρ(	r ′) (10.46)

= {[
F0 + F ′0	τ · 	τ ′

] + [(
G0 + G ′0	τ · 	τ ′

) 	σ · 	σ ′]} δ(	r − 	r ′) .
In what follows we shall only consider the diagonal part of the 	τ · 	τ terms,

in keeping with the fact that we are here interested in the neutron–neutron pair-
ing interaction. Off-diagonal terms are associated with charge-exchange modes.
Thus, in lowest order, they do not contribute to the neutron–neutron interaction,
but are expected to be of relevance in the discussion of the proton–neutron pairing
interaction.

The functions F0(	r ), F ′0(	r ), G0(	r ) and G ′0(	r ) (see also Section 4.3, discussion
following equation (4.80)), generalized Landau–Migdal (Landau (1959), Migdal
(1967)) parameters controlling the isoscalar and isovector (spin-independent and
spin-dependent) channels are displayed in Fig. 10.20.

Vibrations of multipolarity J = 2, 3, 4 and 5 of both natural and unnatural
parity were worked out. Those having energy ≤30 MeV were used in the cal-
culation of the induced interaction (see Fig. 10.21(a)). The associated transition
densities are

δρi
α(r ) = 1√

2J + 1

∑
1,2

(X1,2(i, α)+ βY1,2(i, α))

× (U1V2 − cU2V1)× 〈 j1||Ôα|| j2〉ϕ1(r )ϕ2(r ), (10.47)

where one can have α = J , β = +1, Ôα = YJ or α = J L , β = −1, Ôα =
[YL × σ ]J (concerning c, see Eq. (3.89)). The index i labels the different
vibrational modes of a given spin and parity in order of increasing energy, while
X and Y are the forwardsgoing and backwardsgoing QRPA amplitudes of the
corresponding modes.
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Figure 10.20. Generalized Landau parameters associated with the interaction SkM∗ defining
the strength of the particle-hole interaction in the isoscalar (F0), isovector (F ′0), spin isoscalar
(G0) and spin isovector (G ′0) channels. In the inset the functions F0 + F ′0 (n–n interaction),
F0 − F ′0 (n–p), G0 + G ′0 (n–n) and G0 − G ′0 (n–p) are also shown. After Gori et al. (2004b).

We now calculate the induced pairing matrix elements associated with the
exchange of polarization quanta between pairs of neutrons moving in time-
reversed states. For this purpose the particle (neutron)-vibration coupling matrix
elements are worked out:

(a) spin independent

〈 j ′m ′, J M | [F0(r )+ F ′0(r )	τ · 	τ ′] δ(	r − 	r ′)| jm〉
∼

∫
drϕ j ′[(F0 + F ′0)δρi

Jn + (F0 − F ′0)δρi
Jp]ϕ j , (10.48)

δρi
Jn and δρi

J p being the neutron and proton contributions to the transition den-
sities defined in equation (10.47),

(b) spin dependent

〈 j ′m ′, J M | [G0(r )+ G ′0(r )	τ · 	τ ′] 	σ · 	σ ′δ(	r − 	r ′)| jm〉
∼

∫
drϕ j ′[(G0 + G ′0)δρi

J Ln + (G0 − G ′0)δρi
J Lp]ϕ j . (10.49)

These particle-vibration coupling matrix elements, together with the energies of
the modes and the HF single-particle energies are the basic ingredients needed to
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Figure 10.21. (a) Diagram depicting the pairing interaction induced by the exchange of
phonons; (b) particle-vibration coupling vertex making explicit the dominant part of the
particle–hole interaction giving rise, through the sum of bubble diagrams, to the corresponding
QRPA modes (wavy line).

calculate the pairing induced interaction vind (see Fig. 10.21(a)). For non-natural
parity modes, only the matrix elements (10.49) contribute. For natural parity
modes, the matrix elements (10.48) are the dominant ones, and one can show
that they are the only ones contributing to the diagonal matrix elements, which are
displayed in Fig. 10.22. In this case it is thus possible to distinguish between the
contributions associated with the exchange of S = 0 (density) and S = 1 (spin)
vibrations. From Fig. 10.22 we can see that the exchange of spin fluctuations
gives rise to repulsive matrix elements, while the exchange of density fluctuations
leads to attractive matrix elements, the net result being predominantly attractive
(in any case around the Fermi energy).

The resulting state-dependent pairing gap obtained by solving the BCS gap
and number equations making use of the (total) induced pairing matrix elements
(S = 0 (density) plus S = 1 (spin) modes) is depicted in Fig. 10.23(a). For
states close to the Fermi energy they account for a consistent fraction of the
experimental value (1.4 MeV). If one solves the BCS equations considering only
the exchange of density modes (i.e. neglecting the contributions from equation
(10.49)), one obtains values which are, on average, larger (see Fig. 10.23(b)).
In fact, the exchange of S = 1 modes quenches the pairing gap arising from the
exchange of only S = 0 modes by roughly 30%.
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Figure 10.22. Diagonal induced pairing matrix elements resulting from the exchange of
phonons with natural parity (solid circles) and those resulting from the exchange of phonons
with non-natural parity vibrations (open circles), displayed as a function of the energy of the
single-particle state εk . Note that the induced matrix elements in this figure can be directly
compared with the empirical constant G = 25/A(≈ 0.2 MeV, A = 120) used to describe
pairing correlations in nuclei within the framework of the BCS theory and a (pairing) force
of constant matrix elements (after Gori et al. (2004b)).

To gain insight into what one would expect from these results in the case
of infinite systems, we study the radial dependence of the particle-vibration
coupling vertices shown in Fig. 10.21(b). The S = 0 modes associated with
induced pairing matrix elements have a clear surface character. In particular, this
is the case for the most attractive pairing matrix element which is associated with
the 1h2

11/2(0) (ε1h11/2 = −8.07 MeV, εF = −8.50 MeV) configuration (see Fig.
10.22). Because of its large centrifugal barrier, the wavefunction of this single-
particle state is mainly concentrated at the nuclear surface. The main contribution
to the corresponding induced pairing matrix element arises from the exchange
of a 2+ phonon (of energy 1.5 MeV) between the two nucleons moving in time-
reversal states in the h11/2 orbital. The associated proton and neutron transition
densities depicted in Fig. 10.24(a) testify to the fact that this phonon has the
character of a surface vibration. Concerning the most repulsive matrix elements,
we have found that the corresponding S = 1 phonons are volume modes. In
particular, the largest (positive) matrix element is associated with the 2d2

3/2(0)
configuration (ε2d3/2 =−8.52 MeV). Because of the low angular momentum, one
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Figure 10.23. (a) The state-dependent pairing gap as a function of the single-particle energies
obtained by solving the BCS equations associated with the total (S = 0)+ (S = 1) induced
interaction matrix elements; (b) same as (a) but for the induced interaction matrix elements
produced only by exchange of density modes (S = 0) (after Gori et al. (2004b)).
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Figure 10.24. (a) The dashed and dot-dashed curves are respectively the neutron and proton
transition densities associated with the 2+ phonon with energy 1.5 MeV while the solid curve
is the wavefunction of the 1h11/2 state (in arbitrary units). (b) The same as (a) but for the 3+

phonon with energy 4.35 MeV and the 2d3/2 state (after Gori et al. (2004b)).

finds that a consistent fraction of the corresponding wavefunction is concentrated
in the interior of the nucleus. This state can thus couple efficiently with phonons
of volume character. In fact, the major contribution to the corresponding matrix
element is due to the exchange of the 3+ vibration (with energy at 4.35 MeV)
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which is a mode with a large volume component as testified by the corresponding
proton and neutron transition densities shown in Fig. 10.24(b). One can conclude
that states lying close to the Fermi energy with high j and thus localized at the
surface mainly feel the (attractive) coupling arising from the exchange of S = 0
phonons. Because the contributions of these states to the gap equation are larger
(statistically) than those associated with low-l states (lying also close to the
Fermi energy), the resulting induced pairing interaction in nuclei is attractive.
The situation is expected to be quite different in the case of infinite neutron
matter. In fact, in going from the finite to the infinite system the collectivity of
the S = 0, mainly surface modes will be strongly reduced, while not much is
expected to happen to the S = 1, mainly volume modes.

Furthermore, in going from nuclear (N = Z ) to neutron matter (N = A),
many attractive contributions vanish. In fact, if we turn off the neutron–proton
interaction contributing to the basic vertices shown in Fig. 10.20, a strongly
net repulsive induced interaction is obtained (see Fig. 10.25), a situation which
much resembles the neutron star case. This result can be understood by realizing
that, while the function F0 + F ′0 (corresponding to the particle–phonon coupling
mediated by δρi

Jn) has a node at the nuclear surface (see inset to Fig. 10.20),
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Figure 10.25. The diagonal matrix elements produced by the exchange of phonons with
natural parity (filled circles) and those produced by the exchange of phonons with non-natural
parity (empty circles) when the proton part of the phonon wavefunction is not included in
the calculation, are displayed as a function of the energy of the single-particle state εk (after
Gori et al. (2004b)).
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256 Induced interaction

G0 + G ′0 (corresponding to the particle-phonon coupling mediated by δρi
J Ln) is

large and positive.
Summing up, the exchange of low-lying vibrations (in which neutrons and

protons participate on equal footing) between pairs of nucleons moving in time-
reversal states close to the Fermi energy leads to a sizeable attractive pairing
interaction which accounts for about 70% of the pairing gap. The inclusion of
spin (volume) modes, reduces that contribution by 30% in the case of finite
nuclei, bringing the induced pairing contribution to the pairing gap to a value of
the order of≈50%, the other half coming from the bare nucleon–nucleon force.
Spin modes overwhelm density modes when the coupling to surface (namely
S = 0) modes as well as the proton–neutron coupling are neglected, a situation
which mimics neutron matter.
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