
10

Solvers for Incompressible Immiscible Flow

The multiphase flow equations introduced in Chapter 8 can describe very different flow
behavior depending upon what are the dominant physical effects. During the formation of
petroleum reservoirs, fluid movement is primarily driven by buoyancy and capillary forces,
which govern how hydrocarbons migrate upward and enter new layers of consolidated
sediments. The same effects are thought to dominate long-term geological carbon storage
if the buoyant CO2 phase continues to migrate upward in the formation long after injection
has ceased. In recovery of conventional hydrocarbon resources, on the other hand, the
predominant force is viscous advection caused by pressure differentials. Here, pressure
disturbances will in most cases propagate much faster through the porous medium than
the material waves that transport fluid phases and chemical components. This is one of the
main reasons why solving multiphase flow equations turns out to be relatively complicated.
In addition, we have all the other difficulties already encountered for single-phase flow in
Chapters 5–7. The variable coefficients entering the flow equations are highly heteroge-
neous with orders of magnitude variation and complex spatial patterns involving a wide
range of correlation lengths. The grids used to describe real geological media tend to
be highly complex, having unstructured topologies, irregular cell geometries, and orders
of magnitude aspect ratios. Flow in injection and production wells takes place on small
scales relative to the reservoir and hence needs to be modeled using approximate analytical
expressions, and so on.

This chapter will teach you how to solve multiphase flow equations in the special case
of incompressible rock and immiscible and incompressible fluids. As we saw in Chapter 8,
the system of PDEs can then be reformulated so that it consists of an elliptic equation for
fluid pressure and one or more transport equations. These transport equations are generally
parabolic, but have a strong hyperbolic character (see Section 8.3). Since the pressure and
saturations equations have very different mathematical characteristics, it is natural to solve
them in consecutive substeps. Examples of such methods include the classical IMPES
method [276, 284] (see also [73] and references therein), the adaptive-implicit method
(AIM) [280], and the sequentially implicit method [307]. Operator splitting is also used
in streamline simulation [79] and in recent multiscale methods [195].

289

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

290 Solvers for Incompressible Immiscible Flow

Incompressible models are best suited for fluid systems consisting mainly of liquid
phases such as in waterflooding of oil reservoirs that either do not contain gas com-
ponents or are well below the bubble point. Such systems often have weak coupling
between pressure and fluid transport, which can be exploited by sequential solution
procedures. For systems with a high gas content, significant compressibility effects,
strong coupling between different types of flow mechanisms, or large differences in
time constants, one generally has to use compressible flow models and fully implicit
solvers. Nonetheless, also in this case the mixed elliptic-hyperbolic character of the model
equations plays a key role in developing efficient preconditioning strategies [304, 305].
The combination of incompressible models and sequential solution procedures is very
popular in academia and for research purposes, since it provides a simple means to
develop more clean-cut model equations that still have many of the salient features for
multiphase flow.

10.1 Fluid Objects for Multiphase Flow

In Chapter 5, we discussed the basic data objects entering a flow simulation. When going
from a single-phase to a multiphase flow model, the most prominent changes take place in
the fluid model. It is this model that generally will tell your solver how many phases are
present and how these phases affect each other when flowing together in the same porous
medium. We therefore start by briefly outlining a few fluid objects that implement the basic
fluid behavior discussed in Chapter 8.

To describe an incompressible flow model, we need to know the viscosity and the
constant density of each fluid phase, as well as the relative permeabilities of the fluid phases.
If the fluid model includes capillary forces, we also need one or more functions that specify
the capillary pressure as function of saturation. The most basic multiphase fluid object in
MRST implements a simplified version of the Corey model (8.15)

fluid = initSimpleFluid('mu' , [1, 10]*centi*poise , ...
'rho', [1014, 859]*kilogram/meter̂ 3, ...
'n' , [2, 2]);

Here, the residual saturations Swr and Snr are assumed to be zero and the end-points are
scaled to unity, so that krw =

(
Sw

)nw and Srn =
(
1 − Sw

)nn . To recap from Chapter 5,
the fluid object offers the following interface to evaluate the petrophysical properties of the
fluid:

mu = fluid.properties(); % gives mu_w and mu_n
[mu,rho] = fluid.properties(); % plus rho_w and rho_n

New to multiphase flow is the relperm function, which takes a single fluid saturation or
an array of fluid saturations as input and outputs the corresponding values of the relative
permeabilities. To plot the relative permeability curves of the fluid object, we can use the
following code:

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.1 Fluid Objects for Multiphase Flow 291

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

Figure 10.1 Corey relative permeabilities (left) and their first and second derivatives (middle and
right) constructed by the initCoreyFluid function.

s=linspace(0,1,20)';
kr = fluid.relperm(s);
plot(s,kr(:,1),'-s',s,kr(:,2),'-o');

The relperm function can also return the first and second derivatives of the relative per-
meability curves when called with two or three output arguments.

The incomp module also implements the general Corey model with end-point scaling
k0
α and nonzero residual saturations Swr and Snr .

fluid = initCoreyFluid('mu' , [1, 10]*centi*poise , ...
'rho', [1014, 859]*kilogram/meter̂ 3, ...
'n' , [3, 2.5] , ...
'sr' , [0.2, .15] , ...
'kwm', [1, .85]);

Figure 10.1 shows the relative permeabilities and their first and second derivatives for this
particular model.

Whether the flow equations incorporate capillary pressure is specified by the fluid object.
The incomp module implements two different capillary-pressure models, a simple linear
relationship of the form Pc(S) = C(1 − S) and the Leverett J -function scaling (8.9).
Both models take the same input as initSimpleFluid and are generated the following
functions

fluid = initSimpleFluidPc(.., 'pc_scale', 2*barsa);
fluid = initSimpleFluidPc(.., 'rock', rock,

'surf_tension',10*barsa*sqrt(100*milli*darcy/0.1));

fluid =
properties: @(varargin)properties(opt,varargin{:})
saturation: @(x,varargin)x.s

relperm: @(s,varargin)relperm(s,opt,varargin{:})
pc: @(state)pc_funct(state,opt)

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

292 Solvers for Incompressible Immiscible Flow

You may notice that the capillary function pc is evaluated using a state object and not a
saturation. This may seem awkward, but provides a simpler interface to Pc functions that
depend on rock properties, like Leverett-J .

Computer exercises

10.1.1 Modify the Corey model so that it also can output the residual saturations and the
end-point scaling values.

10.1.2 Implement the Brooks–Corey (8.16) and the van Genuchten models (8.17) and
(8.18).

10.1.3 Extend the models to also include the capillary functions (8.11) and (8.12).

10.2 Sequential Solution Procedures

To solve the two-phase, incompressible model, we rely entirely on the fractional-flow
formulation developed in Section 8.3.2. As you may recall, in this formulation, the flow
equations consists of an elliptic pressure equation

∇ · �v = q, �v = −λ
(∇pn − fw∇Pc − (ρwfw + ρnfn)g∇z

)
(10.1)

and a parabolic transport equation

φ
∂Sw

∂t
+∇ · [fw

(�v + λn(�ρg∇z+ ∇Pc)
)] = qw. (10.2)

Here, the capillary pressure pc = pw − pn is assumed to be a known function Pc

of the wetting saturation Sw, and the transport equation becomes hyperbolic whenever P ′c
is zero.

In the standard sequential solution procedure, the system (10.1)–(10.2) is evolved in
time using a set of discrete time steps �ti . Let us assume that p, �v, and Sw are all known at
time t and that we want to evolve the solution to time t +�t . At the beginning of the time
step, we first assume that the saturation Sw is fixed. This means that the parameters λ, fw,
and fn in (10.1) become functions of the spatial variable �x only. We then use the resulting
Poisson-type equation to update pressure pn and Darcy velocity �v. Next, we hold �v and
pn fixed while (10.2) is evolved a time step �t to define an updated saturation Sw(�x,t +
�t). This saturation is then held fixed when we update pn and �v in the next time step,
and so on.

Some authors refer to this solution procedure as an operator splitting method, since
the solution procedure effectively splits the overall solution operator of the flow model
into two parts that are evolved in consecutive substeps. Likewise, some authors refer to
the sequential solution procedure as IMPES, which is short-hand for implicit pressure,
explicit saturation. Strictly speaking, using the name IMPES is only correct if the saturation
evolution is approximated by a single time step of an explicit transport solver. The size of
the splitting step �t is then restricted by the CFL condition of the explicit scheme. In many

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.2 Sequential Solution Procedures 293

cases, the overall flow system does not have stability requirements that necessitate such
a restriction on �t . Indeed, by writing the flow model in the fractional-flow formulation,
we have isolated the parts of the system that have stability restrictions to the hyperbolic
saturation equation. The elliptic pressure equation, on the other hand, describes (smooth)
solutions resulting from the instant redistribution of pressure in a system with infinite speed
of propagation. For this equation, we can therefore in principle use as large time step as we
want.

As long as we ensure that the evolving discontinuities and sharp transitions are propa-
gated in a stable manner in the saturation equation, our only concern when choosing the
size of the splitting step should be to control or minimize the splitting error introduced by
accounting for pressure and transport in separate substeps. The fractional-flow formulation
underlying our operator splitting was developed to minimize the coupling between satura-
tion and pressure. For incompressible flow models, the effect that dynamic changes in the
saturation field have on pressure is governed entirely by the total mobility λ(S), which in
many cases is a function that locally has small and relatively smooth variation in time. For
this reason, you can typically use splitting steps that are significantly larger than the CFL
restriction from the hyperbolic part of the saturation equation and still accurately resolve
the coupling between pressure and saturation. In other words, for each pressure update, the
saturation can be updated by an explicit solver using multiple saturation substeps, or by an
implicit solver using either a single or multiple saturation substeps. If necessary, you can
also iterate on the splitting steps.

10.2.1 Pressure Solvers

The pressure equation (10.1) for incompressible, multiphase flow is time dependent. This
time dependence comes as the result of three factors:

• K/μ is replaced by the total mobility λ(Sw), which depends on time through the satura-
tion Sw(�x,t),

• the constant density ρ is replaced by a saturation-dependent quantity ρwfw(Sw)

+ ρnfn(Sw), and

• the new source term q − ∇λw(Sw)∇Pc(Sw) depends on saturation.

Nevertheless, once Sw is held fixed in time, all three quantities become functions of �x
only, and we hence end up again with an elliptic Poisson-type equation having the same
spatial variation as in (4.10) on page 117. Hence, we can either use the two-point scheme
introduced in Section 4.4.1 or one of the consistent discretization methods from Chapter 6,
mutatis mutandis. The incompTPFA solver discussed in Chapter 5 and the incompMimetic
and incompMPFA solvers from Chapter 6 are implemented so that they solve the pressure
equation for a general system of m incompressible phases. Whether this system has one or
more phases is determined by the fluid object and the reservoir state introduced in Section
5.1.2. We will therefore not discuss the pressure solvers in more detail.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

294 Solvers for Incompressible Immiscible Flow

10.2.2 Saturation Solvers

Apart from the time loop, which we have already encountered in Chapter 7, the only
remaining part we need is a solver for the transport equation (10.2) that implements the
discretizations we introduced in Section 9.4. Summarized, this can be written in the fol-
lowing residual form, for each cell �i

Fi (s,r) = si − ri + �t

φi |�i |

[∑
k

Hik(s)−max(qi,0)−min(qi,0)f (Si)

]
. (10.3)

Here, s and r are cell-averaged quantities and subscript i refers to the cell the average is
evaluated in. The sum of the interface fluxes for cell i

Hi(s) =
∑

k

λu
w(si,sk)

λu
w(si,sk)+ λu

n(si,sk)

[
vik + λu

n(si,sk)(gik + Pik)
]
. (10.4)

is computed using the single-point, upstream mobility-weighting scheme discussed on
page 287, whereas the fractional flow function f in the source term is evaluated from the
cell average of S in cell �i . The explicit scheme is given as Sn+1 = Sn − F(Sn,Sn) and
the implicit scheme follows as a coupled system of discrete nonlinear equations if we set
F(Sn+1,Sn) = 0. In the following, we discuss the inner workings of these solvers in more
detail.

Explicit Solver

The incomp module offers the following explicit transport solver

state = explicitTransport(state, G, tf, rock, fluid, 'mech1', obj1, ..)

which evolves the saturation given in the state object a step tf forward in time. The func-
tion requires a complete and compatible model description consisting of a grid structure G,
petrophysical properties rock, and a fluid model fluid. For the solver to be functional, the
state object must contain the correct number of saturations per cell and an incompressible
flux field that is consistent with the global drive mechanisms given by the 'mech' argu-
ment ('src', 'bc', and/or 'wells') accompanied by correctly specified objects obj, as
discussed in Sections 5.1.3–5.1.5.

In practice, this means that the input value of state must be the output value of a previ-
ous call to an incompressible solver like incompTPFA, incompMPFA, or incompMimetic.
In addition, the function takes a number of optional parameters that determine whether
the time steps are prescribed by the user or to be automatically computed by the solver.
The solver can also ignore the Darcy flux and work as a pure gravity segregation solver if
the optional parameter onlygrav is set to true. Finally, the solver will issue a warning if
the updated saturation value is more than satwarn outside the interval [0,1] of physically
meaningful values (default value: sqrt(eps)).

The explicit solver involves many of the same operations and formulas used for the
spatial discretizations as the implicit solver. To avoid duplication of code we have therefore
introduced a private helper function

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.2 Sequential Solution Procedures 295

[F,Jac] = twophaseJacobian(G, state, rock, fluid, 'pn1', pv1, ..)

that implements the residual form (10.3) and its Jacobian matrix J = dF , returned as two
function handles, F and Jac. With this, the key lines of the explicit saturation solver read

F = twophaseJacobian(G, state, rock, fluid, 'wells', opt.wells, ..);
s = state.s(:,1);
t = 0;
while t < tf,

dt = min(tf-t, getdt(state));
s(:) = s - F(state, state, dt);
t = t + dt;
s = correct_saturations(s, opt.satwarn);
state.s = [s, 1-s];

end

Here, the function getdt implements a CFL restriction on the time step by estimating
the maximum derivative of each function used to assemble interface fluxes and source
terms (you can find details in the code). The function correct_saturations ensures
that the computed saturations stay inside the interval of physically valid states. If this
function issues a warning, it is highly likely that your time step exceeds the stability limit,
or something is wrong with your fluxes or setup of the model.

Implicit Solver

The implicit solver has the same user interface and parameter requirement as the explicit
solver

state = implicitTransport(state, G, tf, rock, fluid, 'mech1', obj1, ..)

In addition, there are optional parameters controlling the Newton–Raphson method used to
solve for Sn+1. To describe this method, we start by writing the residual equations (10.3)
for all cells in vector form

F (s) = s − S + �t

φ|�|
[
H (s)−Q+ −Q−f (s)

] = 0. (10.5)

Here, s is the unknown state at time tf and S is the known state at the start of the time step.
As you may recall from Section 7.1, the Newton–Raphson linearization of an equation like
(10.5) can be written as

0 = F (s0 + δs) ≈ F (s0)+∇F (s0)δs,

which naturally suggests an iterative scheme in which the approximate solution s�+1 in the
(�+ 1)-th iteration is obtained from

J (s�) δs�+1 = −F (s�), s�+1 ← s� + δs�+1. (10.6)

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

296 Solvers for Incompressible Immiscible Flow

Here, δs�+1 is called the Newton update and J is the Jacobian matrix. The incomp module
was implemented before automatic differentiation was introduced in MRST, and hence the
Jacobian is computed analytically through the following expansion

J (s) = dF

ds
(s) = 1+ �t

φ|�|
[dH

ds
(s)−Q−

df

ds
(s)
]
,

dH

ds
= dH

dλw

dλw

ds
+ dH

dλn

dλn

ds
+ f wλn

dP

ds
,

dH

dλw

= f w

λ

[
v + λn(g + P)

]
,

dH

dλn

= −f w

λ

[
v − λw(g + P)

]
.

In general, we are not guaranteed that the resulting values in the vector s�+1 lie in the
interval [0,1]. To ensure physically meaningful saturation values, we can introduce a line-
search method, which uses the Newton update to define a search direction p� = δs�+1

and tries to find the value α that minimizes h(α) = F(s� + α p�). We may now either
solve h′(α) = 0 exactly, or use an inexact line-search method that only asks for a sufficient
decrease in h. In the implicit solver discussed herein, we have chosen the latter approach
and use an unsophisticated method that reduces α in a geometric sequence. The following
code should give you the idea:

function [state, res, alph, fail] = linesearch(state, ds, target, F, ni)
capSat = @(sat) min(max(0, sat),0);
[alph,i,fail] = deal(0,0,true);
sn = state;
while fail && (i < ni),

sn.s(:,1) = capSat(state.s(:,1) + pow2(ds, alph));
res = F(sn);
alph = alph - 1; i = i + 1;
fail = �(norm(res, inf) < target);

end
alph = pow2(alph + 1); state.s = sn.s;

Here, F is a function handle to the residual function F . The number of trials ni in the line-
search method is set through the optional parameter 'lstrails', whereas the target value
is set as the parameter 'resred' times the residual error upon entry. Default values for
'lstrails' and 'resred' are 20 and 0.99, respectively.

The implicit discretization is stable in the sense that there exists a solution Sn+1 for
an arbitrarily large time increment �t . Unfortunately, there is no guarantee that we will
be able to find this solution using the line-search method described previously. If the time
step is too large, the Newton method may simply compute search directions that do not
point us toward the correct solution. To compensate for this, we also need a mechanism
that reduces the time step if the iteration does not converge and then uses a sequence of
shorter time step to reach the prescribed time tf. First of all, we need to define what we
mean by convergence. This is defined by the optional 'nltol' parameter, which sets the
absolute tolerance ε (default value 10−6) on the residual ‖F(Sn+1,Sn)‖∞ ≤ ε. In addition,

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 297

we use a parameter 'maxnewt' that gives the maximum number of iteration steps (default
value 25) the method can take to reach a converged solution. The following code gives
the essence of the overall algorithm of the iterative solver, as implemented in the helper
function newtonRaphson2ph

mints = pow2(tf, -opt.tsref);
[t, dt] = deal(0.0, tf);
while t < tf && dt >= mints,

dt = min(dt, tf - t);
redo_newton = true;
while redo_newton,

sn_0 = resSol; sn = resSol; sn.s(:) = min(1,sn.s+0.05);
res = F(sn, sn_0, dt);
err = norm(res(:), inf);
[nwtfail, linfail, it] = deal(err>opt.nltol,false,0);
while nwtfail && �linfail && it < opt.maxnewt,

J = Jac(sn, sn_0, dt);
ds = -reshape(opt.LinSolve(J, reshape(res', [], 1)), ns, [])';
[sn, res, alph, linfail] = update(sn, sn_0, ds, dt, err);
it = it + 1;
err = norm(res(:), inf);
nwtfail = err > opt.nltol;

end
if nwtfail,

% Chop time step in two, or use previous successful dt
else

redo_newton = false;
t = t + dt;
% If five successful steps, increase dt by 50%

end
end
resSol = sn;

end

The algorithm has two optional parameters: 'tsref' with default value 12 gives the num-
ber of times we can halve the time step, whereas 'LinSolve' is the linear solver, which
defaults to mldivide. Beyond this, the best way to find more details about the solver is to
read the code.

10.3 Simulation Examples

You have now been introduced to all the functionality you need to solve incompressible,
multiphase flow problems. It is therefore time to start looking into the qualitative behavior
of such systems and the typical multiphase phenomena you may encounter in practice.
The examples presented in the following are designed to highlight individual effects, or
combinations of effects, and may not always be fully realistic in terms of physical scales,
magnitude of the parameters and effects involved, etc. We will also briefly look at the

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

298 Solvers for Incompressible Immiscible Flow

structure of the discrete systems arising in the implicit transport solver. The last section of
the chapter discusses numerical errors resulting from specific choices of discretizations and
solution strategies.

We have already seen that there are essentially three effects that determine the direction
of a single-phase flow field. The first is heterogeneity (i.e., spatial variations in permeabil-
ity) that affects the local magnitude and direction of the flow. The second effect is intro-
duced by drive mechanisms, such as wells and boundary conditions, that determine where
fluids flow to and from. However, the further you are from the location of a well or a bound-
ary condition, the less effect it will have on the flow direction. The last effect is gravity.

Multiphase flow is more complicated, since the fluid dynamics is now also affected by
the viscosity and density ratios of the fluids present, as well as by relative permeability and
capillary pressure. These effects will introduce several challenges. If the displacing fluid
is more mobile than the resident fluid, it will tend to move rapidly into this fluid, giving
weak shock fronts and long rarefaction waves. For a homogeneous reservoir, this will result
in early breakthrough of the displacing fluid, and slow and incremental recovery of the
resident fluid. In a heterogeneous reservoir, you may also observe viscous fingering, which
essentially means that the displacing fluid moves unevenly into the resident fluid. This is a
self-reinforcing effect that causes the fingers to move farther into the resident fluid.

Gravity segregation, on the other hand, will force fluids having different density to
segregate, and lead to phenomena such as gravity override, in which a lighter fluid moves
quickly on top of a denser fluid. This is a problem in many recovery methods relying on
gas injection and for geological storage of CO2. Finally, we have capillary effects, which
tend to spread out the interface between the invading and displaced fluids. When combined
with heterogeneity, these effects are generally difficult to predict without detailed simula-
tions. Sometimes, they work in the same direction to aggravate sweep and displacement
efficiency, but can also counteract each other to cancel undesired behavior. Gravity and
capillary forces, for instance, may both reduce viscous fingering that would otherwise give
undesired early breakthrough.

This section discusses most of the phenomena just outlined in more detail. In most cases,
we only consider a single effect at the time. Throughout the examples, you will also learn
how to set up various types of simulations using MRST. As a rule, for brevity we will not
discuss complete codes, and when reading the material you should therefore take the time
to also read the accompanying codes found in the in2ph directory of the book module.
You will gain much more insight if you run these codes and try to modify them to study the
effect of different parameters and algorithmic choices. I also strongly encourage you to do
as many of the computer exercises as possible.

10.3.1 Buckley–Leverett Displacement

As a first example, let us revisit the 1D horizontal setup from Example 9.3.4 on page 284, in
which we compared explicit and implicit transport solvers for the classic Buckley–Leverett

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 299

displacement profile arising when pure water is injected into pure oil. The following code
sets up a slightly rescaled version of the problem, computes the pressure solution, and then
uses the explicit transport solver to evolve the saturations forward in time

G = computeGeometry(cartGrid([100,1]));
rock = makeRock(G, 100*milli*darcy, 0.2);
fluid = initSimpleFluid('mu' , [1, 1].*centi*poise, ...

'rho', [1000, 1000].*kilogram/meter̂ 3, 'n', [2,2]);
bc = fluxside([], G, 'Left', 1, 'sat', [1 0]);
bc = fluxside(bc, G, 'Right', -1, 'sat', [0 1]);
hT = computeTrans(G, rock);
rSol = initState(G, [], 0, [0 1]);
rSol = incompTPFA(rSol, G, hT, fluid, 'bc', bc);
rSole = explicitTransport(rSol, G, 10, rock, fluid, 'bc', bc, 'verbose',true);

The explicit solver uses 199 time steps to reach time 10. Let us try to see if we can do this
in one step with the implicit solver:

[rSoli, report] = ...
implicitTransport(rSol, G, 10, rock, fluid, 'bc', bc, 'Verbose', true);

This corresponds to running the solver with a CFL number of approximately 200. From
the output in Figure 10.2 we see that this is not a big success. With an attempted time
step of �t = 10, the solver only manages to reduce the residual by a factor 2.5 within the
allowed 25 iterations. Likewise, when the time step is halved to �t = 5, the solver still
only manages to reduce the residual one order of magnitude within the 25 iterations. When
the time step is halved once more, the solver converges in 20 iterations in the first step and
then in 9 iterations in the next 3 substeps. This time-step chopping is not very efficient:
Altogether, more than half of the iterations (50 out of 97) were wasted trying to compute
time steps that would not converge. The explicit solver avoids this problem since the time
step is restricted by a CFL condition, but requires significantly more time steps.

To overcome the problem with wasted iterations, we can explicitly subdivide the pres-
sure step into multiple saturation steps:

rSolt = rSol;
for i=1:n

rSolt = implicitTransport(rSolt, G, 10/n, rock, fluid, 'bc', bc);
end

Figure 10.3 reports the approximate solutions and the overall number of iterations used
by the implicit solver with n equally spaced substeps. The solver typically needs more
iterations during the first time steps when the displacement front is relatively sharp. As
the simulation progresses, the shock is smeared across multiple cells, which contributes to
weaken the nonlinearity of the discrete system and hence reduce the number of required
iterations. This explains why the reported number of iterations is not an exact multiple
of the number of time steps. We also see that to get comparable accuracy as the explicit

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

300 Solvers for Incompressible Immiscible Flow

--
Time interval (s) iter relax residual rate
--
[0.0e+00, 1.0e+01]: 1 1.00 7.82670e+00 NaN
[0.0e+00, 1.0e+01]: 2 0.12 6.81721e+00 0.07
: : : : : :
[0.0e+00, 1.0e+01]: 25 0.03 3.17993e+00 1.00

-------------------- Reducing step -------------------
[0.0e+00, 5.0e+00]: 1 1.00 7.03045e+00 NaN
: : : : : :
[0.0e+00, 5.0e+00]: 25 0.25 6.34074e-01 0.74

-------------------- Reducing step -------------------
[0.0e+00, 2.5e+00]: 1 1.00 5.64024e+00 NaN
: : : : : :
[0.0e+00, 2.5e+00]: 20 1.00 1.23535e-08 1.91

-------------------- Next substep -----------------------
[2.5e+00, 5.0e+00]: 1 0.25 3.59382e-01 NaN
: : : : : :
[2.5e+00, 5.0e+00]: 9 1.00 1.71654e-08 1.86

-------------------- Next substep -----------------------
[5.0e+00, 7.5e+00]: 1 0.25 2.67914e-01 NaN
: : : : : :
[5.0e+00, 7.5e+00]: 9 1.00 8.49299e-09 1.94

-------------------- Next substep -----------------------
[7.5e+00, 1.0e+01]: 1 0.25 2.57462e-01 NaN
: : : : : :
[7.5e+00, 1.0e+01]: 9 1.00 8.74041e-11 2.01

Iterations : 47 Wasted iterations : 50
Sub steps : 4 Failed steps : 2
Final residual : 8.74e-11 Convergence rate : 1.9

-- 10
−10

10
−5

10
0

10

20

30

40

50

60

70

80

90

Figure 10.2 Results from running the implicitTransport solver on a 1D Buckley–Leverett
displacement problem with CFL number 200. Left: screen output, where several lines have been
deleted for brevity. Right: convergence history for the residual, with cumulative iteration number
increasing from top to bottom.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expl: 199 steps
n= 4: 47 its
n= 10: 65 its
n= 20: 102 its
n= 40: 161 its
n=100: 301 its
n=200: 407 its

Figure 10.3 Approximate solutions computed by the explicit transport solver and the implicit
transport solver with n time steps.

transport solver, the implicit solver needs to use at least 40 time steps, which amounts to
more than 160 iterations. In this case, there is thus a clear advantage of using the explicit
transport solver if we want to maximize accuracy versus computational cost.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 301

10.3.2 Inverted Gravity Column

In the next example, we revisit the inverted gravity column from Example 8.4.3 on page 267
with a light fluid at the bottom and a heavier fluid at the top. We change the setup slightly
so that the fluids are representative for supercritical CO2 and brine found at conditions that
would be plausible when storing CO2 in a deep saline aquifer. The following is the essence
of the simulator (plotting commands are not included for brevity):

gravity reset on
G = computeGeometry(cartGrid([1, 1, 40], [1, 1, 10]));
rock = makeRock(G, 0.1*darcy, 1);
fluid = initCoreyFluid('mu' , [0.30860, 0.056641]*centi*poise, ...

'rho', [975.86,686.54]*kilogram/meter̂ 3, ...
'n', [2,2], 'sr', [.1,.2], 'kwm',[.2142,.85]);

hT = computeTrans(G, rock);
xr = initResSol(G, 100.0*barsa, 1.0); xr.s(end/2+1:end) = 0.0;
xr = incompTPFA(xr, G, hT, fluid);
dt = 5*day; t=0;
for i=1:150

xr = explicitTransport(xr, G, dt, rock, fluid, 'onlygrav', true);
t = t+dt;
xr = incompTPFA(xr, G, hT, fluid);

end

In Example 8.4.3 the fluids had the same viscosity and hence moved equally fast upward
and downward. Here, supercritical CO2 is much more mobile than brine and will move
faster to the top of the column than brine moves downward. Hence, whereas the CO2

reaches the top of the column after 250 days, it takes more than 400 days before the
first brine has sunk to the bottom. After approximately two years, the fluids are clearly
segregated and separated by a sharp interface; see Figure 10.4.

In the simulation, we used relatively small splitting steps (150 steps of 5 days each)
to march the transient solution towards steady state. Looking at Figure 10.5, which shows
the vertical pressure distribution every fiftieth day (i.e., for every tenth time step), we see
that the pressure behaves relatively smoothly compared with the saturation distribution.
It is therefore reasonable to expect that we could get away with using a smaller num-
ber of splitting steps in this particular case. How many splitting steps do you think we
need?

Before leaving the problem, let us inspect the discrete nonlinear system from the implicit
transport solver in some detail. Figure 10.6 contrasts the sparsity pattern at two instances
in time to that of the 1D horizontal Buckley–Leverett problem. From the discussion in
Section 9.3.4, we know that the latter only has a single nonzero band below the diagonal
and hence can be solved more robustly if we instead of using Newton’s method, use
a nonlinear substitution method with a bracketing method for each single-cell problem
[220]. Since the lighter fluid moves upward and the heavier fluid moves downward during
gravity segregation, there will be nonzero elements above and below the diagonal in the

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

302 Solvers for Incompressible Immiscible Flow

Figure 10.4 Simulation of an inverted gravity column where pure CO2 initially fills the bottom half
and brine the upper half of the volume. The upper plot shows S(z,t) with yellow color signifying
pure CO2 and blue color signifying pure brine. At equilibrium, the CO2 at the top contains some
irreducible water and the brine at the bottom contains residual CO2, which thus can be considered as
safely trapped within the immobile brine.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8
x 10

4

Figure 10.5 Pressure distribution at every tenth time step as function of depth from the top of the
gravity column, with blue color and dotted markers indicating initial time and red color and cross
markers indicating end of simulation.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 303

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 199
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 78
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 118

Figure 10.6 Sparsity pattern for the 1D Buckley–Leverett problem (left) and the inverted gravity
column after 125 days (middle) and 390 days (right)

two-phase region and at the interface between the two phases. In the figure, we also see
how the sparsity pattern changes as the two-phase region expands upward and downward
from the initial interface. Since the nonlinear system is no longer triangular, a substitution
method cannot be used, but each linearized system can be solved efficiently using the
Thomas algorithm, which is a special O(n) Gaussian elimination method for tridiagonal
systems. Knowing the sparsity pattern of the problem is a key to efficient solvers. The
mldivide solver (i.e., A\b) in MATLAB performs an analysis of the linear system and
picks efficient solvers for triangular, tridiagonal, and other special systems. To confirm that
the optimal solver is indeed used, you can type spparms('spumoni',2) before you run the
example.

10.3.3 Homogeneous Quarter Five-Spot

To gain more insight into the simulation of multiphase displacement processes, we consider
the classical confined quarter five-spot test case discretized on a 128×128 grid. As you may
recall from Section 5.4.1, this test case consists of one quarter of a symmetric pattern of four
injectors surrounding a producer (or vice versa), repeated to infinity in each direction. We
neglect capillary and gravity forces and assume a simplified Corey model with exponent
2.0 and zero residual saturation, i.e., krw = S2 and kro = (1 − S)2. We start by setting
the viscosity to 1 cP for both fluid phases, giving a unit mobility ratio. The injector and
producer operate at fixed bottom-hole pressure, giving a total pressure drop of 100 bar
across the reservoir. Since we have assumed incompressible flow, equal amounts of fluid
must be produced from the reservoir so that injection and production rates sum to zero. The
total time is set such that 1.2 pore volumes of fluid will be injected if the initial injection is
maintained throughout the whole simulation. However, the actual injection rate will depend
on the total resistance to flow offered by the reservoir, and hence vary with time when the
total mobility varies throughout the reservoir as a result of fluid movement. (Remember
that the total mobility is less in all cells containing two fluid phases.) The simulation code

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

304 Solvers for Incompressible Immiscible Flow

t=0.20 PVI t=0.40 PVI t=0.60 PVI t=0.80 PVI Sw

0.2

0.4

0.6

0.8

1

Figure 10.7 Evolution of a two-phase displacement front for a homogeneous quarter five-spot case
with water injected into oil. The single line shown in each plot is a contour at value t/(2

√
2− 2) PVI

for the time-of-flight field computed from the corresponding single-phase problem (i.e., with λ ≡ 1).

follows the same principles as outlined in the two examples just discussed; you can find
details in the file quaterFiveSpot2D.m.

Figure 10.7 shows how the displacement profile resulting from injection of water into
the oil-filled reservoir expands circularly near the injector. As the displacement front prop-
agates into the reservoir, it gradually elongates along the diagonal and forms a finger that
extends towards the producer. As a result, water breaks through in the producer long time
before the displacement front has managed to sweep the stagnant regions near the northwest
and southeast corners. The evolution of the saturation profile is the result of two different
multiphase effects.

To better understand these effects, it is instructive to transform our 3D transport equation
into streamline coordinates. Since the flow field is incompressible, we can use (4.44) to
write �v · ∇ = φ ∂

∂τ
so that (10.2) transforms to a family of 1D transport equations, one

along each streamline,

∂S

∂t
+ ∂fw(S)

∂τ
= qw

φ
. (10.7)

Hence, the first flow effect is exactly the same Buckley–Leverett displacement as we saw
in Section 10.3.1, except that it now acts along streamlines rather than along the axial
directions. It is therefore tempting to suggest that to get a good idea of how a multiphase dis-
placement will evolve, we can solve a single-phase pressure equation for the initial oil-filled
reservoir, compute the resulting time-of-flight field, and then map the 1D Buckley–Leverett
profile (8.60) computed from (8.53) onto time-of-flight. How accurate this approximation
is depends on the coupling between the saturation and pressure equations.

With linear relative permeabilities and unit mobility ratio, there is no coupling between
pressure and transport, and mapping 1D solutions onto time-of-flight thus produces the
correct solution. In other cases, changes in total mobility will modify the total Darcy
velocity and hence the time-of-flight. To illustrate this, let us compare the propagation of
the leading shock predicted by the full multiphase simulation and our simplified streamline
analysis. For fluids with a viscosity ratio μw/μn = M , it follows by solving f ′(S) =
f (S)/S that the leading shock of the Buckley–Leverett displacement profile moves at a
speed M/(2

√
M + 1 − 2) relative to the Darcy velocity, shown as a single black line

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 305

for each snapshot in Figure 10.7. Compared with our simplified streamline analysis, the
movement of the injected water is retarded by the reduced mobility in the two-phase region
behind the leading displacement front.

In most simulations, the primary interest is to predict well responses. To extract these,
we introduce the following function:

function wellSol = getWellSol(W, x, fluid)
mu = fluid.properties();
wellSol(numel(W))=struct;
for i=1:numel(W)
out = min(x.wellSol(i).flux,0); iout = out<0; % find producers
in = max(x.wellSol(i).flux,0); iin = in>0; % find injectors
lamc = fluid.relperm(x.s(W(i).cells,:))./mu; % mob in completed cell
fc = lamc(:,1)./sum(lamc,2); %
lamw = fluid.relperm(W(i).compi)./mu; % mob inside wellbore
fw = lamw(:,1)./sum(lamw,2); %
wellSol(i).name = W(i).name;
wellSol(i).bhp = x.wellSol(i).pressure;
wellSol(i).wcut = iout.*fc + iin.*fw;
wellSol(i).Sw = iout.*x.s(W(i).cells,1) + iin.*W(i).compi(1);
wellSol(i).qWs = sum(out.*fc) + sum(in.*fw);
wellSol(i).qOs = sum(out.*(1-fc)) + sum(in.*(1-fw));

end

Inside the simulation loop, this function is called as follows

[wellSols, oip] = deal(cell(N,1), zeros(N,1));
for n=1:N

x = incompTPFA(x, G, hT, fluid, 'wells', W);
x = explicitTransport(x, G, dT, rock, fluid, 'wells', W);
wellSols{n} = getWellSol(W, x, fluid);
oip(n) = sum(x.s(:,2).*pv);

end

The loop also computes the oil in place at each time step. Storing well responses in a cell
array may seem unnecessarily complicated and requires a somewhat awkward construction
to plot the result

t = cumsum(dT);
plot(t, cellfun(@(x) x(2).qOs, wellSols));

The call to cellfun passes elements from the cell array wellSols to an anonymous
function that extracts the desired field qOs containing the surface oil rate of the second
well (the producer). Each element represents an individual time step. The reason for using
cell arrays is to provide compatibility with the infrastructure developed for compressible
models of industry-standard complexity. Here, use of a cell array provides the flexibility
needed to process much more complicated well output. As a direct benefit, we can use a
GUI developed for visualizing well responses:

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

306 Solvers for Incompressible Immiscible Flow

Figure 10.8 Graphical user interface plotWellSols from the ad-core module for plotting com-
puted well responses. The GUI does not work in GNU Octave.

mrstModule add ad-core
plotWellSols(wellSols,cumsum(dt))

This brings up a plotting window as shown in Figure 10.8, where we have chosen to
visualize the surface water rate for injector and producer.

To better understand the deviation between the ideal and the actual recovery, we can
look at the well responses and total mass balance in more detail, as shown in Figure
10.9. We see that the oil rate drops immediately as water enters the system in the first
time step and then decays slowly until water breaks through in the producer around time t

= 0.7. Since this well now produces a mixture of water and oil, the oil rate decays rapidly
as the smoothed displacement front enters the well, and then decays more slowly when
the inflow of water is determined by the trailing rarefaction wave. The left plot shows
the cumulative oil production computed in two different ways: (i) using the oil rate from
the well solution, and (ii) measured as the difference between initial and present oil in
place. Up to water breakthrough, the two estimates coincide. After water breakthrough, the
production estimated from the well solution will be slightly off, since it for each time step
uses a simplified approximation that multiplies the size of the time step with the total flow
rate computed at the start of the time step and the fractional flow in the completed cell at
the end of the time step.

Computer exercises

10.3.1 Repeat the experiment with wells controlled by rate instead of pressure. Do you
observe any differences and can you explain them?

10.3.2 Repeat the experiment with different mobility ratios and Corey exponents.
10.3.3 Can you correct the computation of oil/water rates?

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 307

Figure 10.9 Well responses computed for the homogeneous quarter five-spot test. The left plot shows
the cumulative oil production computed from the well solution shown as a thin line compared with the
amount of extracted oil derived from a mass-balance computation (initial oil in place minus current
oil in place) shown as a thick dashed line. The lower-right plot shows oil rate and the upper-right plot
shows water saturation and water cut (fractional flow) in the well perforation.

10.3.4 Heterogeneous Quarter Five-Spot: Viscous Fingering

In the previous example we studied imbibition in a homogeneous medium, which resulted
in symmetric displacement profiles. However, when a displacement front propagates
through a porous medium, the combination of viscosity differences and permeability het-
erogeneity may introduce viscous fingering effects. In general, the term viscous fingering
refers to the onset and evolution of instabilities at the interface between the displacing and
displaced fluid phases. Fingering can arise because of viscosity differences between two
phases or as a result of viscosity variations within a single phase that, for instance, contains
solutes. In the laboratory, viscous fingering is usually studied in so-called Hele–Shaw cells,
which consist of two flat plates separated by a tiny gap. The plates can be completely
parallel, or contain small-scale variations (rugosity) to emulate a porous medium. When
a viscous fluid confined in the space between the two plates is driven out by injecting a
less viscous fluid (e.g., dyed water injected into glycerin), beautiful and complex fingering
patterns can be observed. I recommend a search for “Hele–Shaw cell” on YouTube.

Figure 10.10 shows results of three different simulations of a quarter five-spot on a
square domain represented on a uniform 60× 120 grid with petrophysical properties sam-
pled from the topmost layer of the SPE 10 data set. The wells operate at a fixed rate,
corresponding to the injection of one pore volume over a period of 20 years. To reach a
final time, we use 200 pressure steps and the implicit transport solver. As in the previous
example, the fluid is assumed to obey a simple Corey fluid model with quadratic relative
permeabilities and no residual saturations. (Complete code for the example is found in
viscousFingeringQ5.m.)

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

308 Solvers for Incompressible Immiscible Flow

Figure 10.10 Quarter five-spot solutions on a subsample from the first layer of the SPE 10 model for
three different viscosity ratios μw : μn.

If the viscosity of the injected fluid is (significantly) less than that of the resident fluid,
we get an unfavorable displacement in which the displacing phase forms a weak shock front
that will “finger” rapidly through the less mobile phase that initially fills the medium. Once
a finger develops, it will create a preferential flow direction for the injected phase, which
causes the finger to extend towards the producer, following the path of highest permeability.
In the opposite case of a (significantly) more viscous fluid being injected into a less viscous
fluid, one obtains a strong front that acts almost like a piston and creates a very favorable
and stable displacement with a leading front that has much fewer buckles than in the
unfavorable case. Not only does this front have better local displacement efficiency (i.e.,
it can push out more oil), but the areal sweep is also better. The unit viscosity case is
somewhere in between the two, having a much better local displacement efficiency than
the unfavorable case, but almost the same areal sweep at the end of the simulation.

Figure 10.11 reports well responses for the three simulations. Because water is injected
at a fixed rate, the oil rate will remain constant until water breaks through in the producer.
This happens after 1,825 days in the unfavorable case, after 4,050 days for equal viscosities,
and after 6,300 days in the favorable case. As discussed in the previous example, the decay
in oil rate depends on the strength of the displacement front and will hence be much more
abrupt in the favorable mobility case, which has an almost piston-like displacement front.
On the other hand, by the time the favorable case breaks through, the unfavorable case has
reached a water cut of 82%. Water handling is generally expensive and in the worst case
the unfavorable case might shut down before reaching the end of the 20-year production
period.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 309

1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Time (days)

cumulative oil production

P (Ratio 1:10)

P (Ratio 1:1)

P (Ratio 10:1)

initial oil in place

2,000 4,000 6,000
0

0.5

1

1.5

2

Time [days]

Oil surface rate

2,000 4,000 6,000
0

0.2

0.4

0.6

0.8

Time [Days]

Water cut

Figure 10.11 Well responses computed for the heterogeneous quarter five-spot with different
mobility ratios μw : μn.

Next, we look at the sparsity of the transport equation. In the homogeneous case, all
fluxes point in the positive axial directions and the Jacobian matrix is thus lower triangular.
With heterogeneous permeability, or another well pattern, this unidirectional flow property
is no longer present and the Jacobian matrix will have elements above and below the diag-
onal; see Figure 10.12. However, if we look at the transformation to streamline coordinates
(10.7), it is clear that we still have unidirectional flow along streamlines. This means that
the Jacobian matrix can be permuted to triangular form by performing a topological sort on
the flux graph derived from the total Darcy velocity. In MATLAB, you can try to permute
the matrix to upper-triangular form by use of the Dulmage–Mendelsohn decomposition:

[p,q] = dmperm(J); Js = J(p,q);

The result is shown in the middle plot in Figure 10.12. This permutation is similar to what
is done inside MATLAB’s linear solver mldivide. Since we can permute the Jacobian
matrix to triangular form, we can also do the same for the nonlinear system, and hence
apply a highly efficient nonlinear substitution method [220] as discussed for 1D Buckley–
Leverett problems in Section 9.3.4. The same applies also for 3D cases as long as long
as capillary forces are neglected and we have purely co-current flow. Countercurrent flow
can be introduced by gravity segregation, as we saw in Section 10.3.2, or if the flow field
is computed by one of the consistent discretization schemes from Chapter 6, which are
generally not monotone.

It is also possible to permute the discretized system to triangular form by performing a
potential ordering [175], as shown to the right in Figure 10.12:

[�,i] = sort(x.pressure); Jp = J(i,i);

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

310 Solvers for Incompressible Immiscible Flow

Figure 10.12 The left plot shows the sparsity structure for the Jacobian matrix for the heterogeneous
quarter five-spot with viscosity ratio 1:10. The middle plot shows the sparsity structure after a
topological sort, whereas the right plot shows the sparsity structure after potential ordering.

Implementing this type of nonlinear substitution methods is unfortunately not very efficient
in MATLAB and should be done using a compiled language. In MRST, we therefore
mainly rely on the intelligence built into mldivide to give us the required computational
performance.

A remark at the end: in a real case, injectivity would obviously be a decisive factor,
i.e., how high pressure is required to ensure a desired injection rate without fracturing the
formation, or vice versa, which rate one would obtain for a given injection pressure below
the fracturing pressure. This is not accounted for in our earlier discussion; for illustration
purposes we tacitly assumed that the desired injection rate could be maintained.

Computer exercises

10.3.1 Repeat the experiments with wells controlled by pressure, fixed water viscosity,
and varying oil viscosity. Can you explain the differences you observe?

10.3.2 Run a systematic study that repeats the quarter five-spot simulation from the pre-
vious exercise for each of the 85 layers of the SPE 10 model. Plot and compare
the resulting production curves. (You can run the experiment for a single mobility
ratio to save computational time.)

10.3.3 Run the same type of study with 100 random permeability fields, e.g., as generated
by the simplified gaussianField routine from Section 2.5.2.
Alternatively, you can use any kind of drawing pro-
gram to generate a bitmap and generate a channelized
permeability as follows

K = ones(G.cartDims)*darcy;
I = imread('test.pbm');
I = flipud(I(:,:,1))';
K(I) = milli*darcy;

This can easily be combined with different random fields for the foreground and
background permeability.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 311

Figure 10.13 Illustration of the sloping sandbox used for the buoyancy example and how it is
simulated by rotating the gravity vector. (Color: Gaussian porosity field.)

10.3.5 Buoyant Migration of CO2 in a Sloping Sandbox

In Section 10.3.2, we considered the buoyant migration of supercritical CO2 inside a ver-
tical column. Here, we extend the problem to three spatial dimensions and simulate the
upward movement of CO2 inside a sloping sandbox with sealing boundaries. The rectangu-
lar sandbox has dimensions 100× 10× 200 m3, and we consider two different petrophysi-
cal models: homogeneous properties or Gaussian porosity with isotropic permeability given
from a Carman–Kozeny transformation similar to (2.6). The sandbox is rotated around the
y-axis so that the top surface makes an angle of inclination θ with the horizontal plane.
Instead of rotating the grid so that it aligns with the aquifer geometry, we will rotate the
coordinate system by rotating the gravity vector an angle θ around the y-axis; see Figure
10.13. The rotation is introduced as follows:

R = makehgtform('yrotate',-pi*theta/180);
gravity reset on
gravity(R(1:3,1:3)*gravity().');

MRST defines the gravity vector as a persistent, global variable, which by default (for his-
torical reasons) equals �0. The second line sets �g to the standard value (pointing downward
vertically) before we perform the rotation.

To initialize the problem, we assume that CO2, which is lighter than the resident brine,
fills up the model from the bottom and to a prescribed height,

xr = initResSol(G, 1*barsa, 1);
d = gravity() ./ norm(gravity);
dc = G.cells.centroids * d.';
xr.s(dc>max(dc)-height) = 0;

For accuracy and stability, the time step is ramped up gradually as follows,

dT = [.5, .5, 1, 1, 1, 2, 2, 2, 5, 5, 10, 10, 15, 20, ...
repmat(25,[1,97])].*day;

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

312 Solvers for Incompressible Immiscible Flow

Initial 20 days 100 days 250 days 500 days 1000 days 1500 days 2500 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.14 Buoyant migration of CO2 in a sandbox with sealing boundaries. The upper plots show
the homogeneous case and the lower plots the case with Gaussian heterogeneity. In the plots, only
cells containing some CO2 are colored.

to reach a final simulation time of 2,500 days. The remaining code is similar to what was
discussed in earlier examples; details can be found in buoyancyExample.m.

For the homogeneous case, the buoyant CO2 plume will initially form a cone shape
as it migrates upward and gradually drains the resident brine. After approximately 175
days, the plume starts to accumulate as a thin layer of pure CO2 under the sloping east
face of the box. This layer will migrate quickly up towards the topmost northeast corner
of the box, which is reached after approximately 400 days, This corner forms a structural
trap that will gradually be filled as more CO2 migrates upward. The trapped CO2 forms a
diffused and curved interface (see the plots at 500 and 1,000 days), but as time passes, the
interface becomes sharper and flatter. During the same period, brine will imbibe into the
trailing edge of the CO2 plume and gradually form a layer of pure brine at the bottom. After
approximately 1,000 days, the only CO2 left below the interface in the northeast corner is
found at small saturation values and will therefore migrate very slowly upward.

The heterogeneous case follows much of the same pattern, except that the leading
drainage front will finger into high-permeability regions of the sandbox. Low-permeability
cells, on the other hand, will retard the plume migration. Altogether, we see a significant
delay in the buoyant migration compared with the homogeneous case. Since the permeabil-
ity is isotropic, the plume will still mainly migrate upward. This should not be expected
in general. Many rocks have significantly lower permeability in the vertical direction or
consist of strongly layered sandstones containing mud drapes or other thin deposits that
inhibit vertical movement between layers. For such cases, one can expect a much larger
degree of lateral movement.

Computer exercises

10.3.1 To gain more insight into the flow physics of a buoyant phase, you should experi-
ment more with the buoyancyExample script. A few examples:

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 313

• Set θ = 88 and initial height to 10 meters for the heterogeneous case.

• Set θ = 60◦ and impose an anisotropic permeability with ratio 0.1:1:5 to mimic
a case with strong layering.

• In the experiments so far, we used an unrealistic fluid model without residual
saturations. Replace the fluid model by a more general Corey model having
residual saturations (typical values could be 0.1 or 0.2) and possibly also end-
point scaling. How does this affect the upward plume migration? (Hint: in addi-
tion to the structural trapping at the top of the formation, you will now have
residual trapping.)

10.3.2 Rerun the experiment with capillary forces included, e.g., by using initSimple
FluidJfunc with parameters set as in its documentation.

10.3.3 Replace the initial layer of CO2 at the bottom of the reservoir by an injector that
injects CO2 at constant rate before it is shut in. For this, you should increase the
spatial and temporal scales of the problem.

10.3.4 Gravity will introduce circular currents that destroy the unidirectional flow
property we discussed in Section 10.3.4. To investigate the sparsity of the
discretized transport equations, you can set a breakpoint inside the private
function newtonRaphson2ph used by the implicit transport solver and use the
plotReorder script from the book module to permute the Jacobian matrix
to block-triangular form. Try to stop the simulation in multiple time steps to
investigate how the sparsity structure and degree of countercurrent flow change
throughout the simulation.

10.3.6 Water Coning and Gravity Override

Water coning is a production problem in which water (from a bottom drive) is sucked
up in a conical shape towards a producer. This is highly undesirable since it reduces the
hydrocarbon production. As an example, we consider a production setup on a sector model
consisting of two different rock types separated by a fully conductive, inclined fault as
shown in Figure 10.15.

A vertical injector is placed in the low-permeability stone (K= 50 md and φ = 0.1)
to the east of the fault, whereas a horizontal producer is perforated along the top of the
more permeable rock (K= 500 md and φ = 0.2) to the west of the fault. The injector
operates at a fixed bottom-hole pressure of 700 bar and the producer operates at a fixed
bottom-hole pressure of 100 bar. To clearly illustrate the water coning, we consider oil
with somewhat contrived properties: density 100 kg/m3 and viscosity 10 cP. The injected
water has density 1,000 kg/m3 and viscosity 1 cP. Both fluids have quadratic relative
permeabilities. The large density difference was chosen to ensure a bottom water drive,
while the high viscosity was chosen to enhance the coning effect. Complete source code
can be found in coningExample.m in the book module.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

314 Solvers for Incompressible Immiscible Flow

Figure 10.15 Sector model used to demonstrate water coning. Blue color indicates low permeability
and red color high permeability.

The idea of using a vertical injector is that the lower completions will set up a bottom
water drive in the good rock to the west of the fault, whereas the upper completions will
provide volumetric sweep of the low-quality rock to the east of the fault. The water front
from the lowest perforations penetrates through to the better zone west of the fault after
approximately 40 days and then gradually builds up a water tongue that moves westward
more rapidly along the bottom of the reservoir as seen in the two plots in the upper row
of Figure 10.16. The advancing water front reaches the far west side of the reservoir after
approximately 670 days and forms a cone that extends upward towards the horizontal pro-
ducer. After 810 days, the water front breaks through in the midsection of the producer, and
after 1,020 days, the whole well is engulfed by water. If the well had been instrumented with
intelligent inflow control devices, the operator could have reduced the flow rate through the
midsection of the well to try to delay water breakthrough. As the water is sucked up to the
producer, it gradually forms a highly conductive pathway from the injector to the producer
as seen in the snapshot from time 1,500 days shown at the bottom-left of Figure 10.16. A
significant fraction of the injected water will therefore cycle through the water zone without
contributing significantly to sweep any unproduced oil. Cycling water like this contributes
to significantly increase the energy consumption and the operational costs of the production
operation and is generally not a good production strategy.

Looking at the well responses in Figure 10.17, we first of all observe that the initial
injection rate is very low because of the high viscosity of the resident oil. Thus, we need
high injection pressure to push the first water into the reservoir. Once this is done, the
injectivity increases steadily as more water contacts and displace a fraction of the oil.
Because the reservoir rock and the two fluids are incompressible, increased injection rates
give an equal increase in oil production rates until water breaks through after approximately
800 days. Since there is no heterogeneity to create pockets of bypassed oil, and residual
saturations are zero, we will eventually be able to displace all oil by continuing to flush the
reservoir with water. However, the oil rate drops rapidly after breakthrough, and increasing
amounts of water need to be cycled through the reservoir to wash out the last parts of the
remaining oil. By 4,500 days, the recovery factor is 73% and the total injected and produced
water amount to approximately 2.6 and 1.8 pore volumes, respectively.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 315

Figure 10.16 Evolution of the displacement profile for the water-coning case.

Another related problem is that of gravity override, in which a less dense and more
mobile fluid flows preferentially above a denser and less mobile fluid. To illustrate this
multiphase flow phenomenon, we consider a reservoir consisting of two horizontal zones
placed on top of each other. Light fluid of high mobility is injected into the lower zone by
a vertical well placed near the east side. Fluids are produced from a well placed near the
west side, perforated in the lower zone only; see Figure 10.18. Densities of the injected and
resident fluids are assumed to be 700 kg/m3 and 1,000 kg/m3, respectively. To accentuate
the phenomenon, we assume that both fluids have quadratic relative permeabilities, zero
residual saturations, and viscosities 0.1 cP and 1.0 cP, respectively. In the displacement
scenario, 0.8 pore volumes of the light fluid are injected at constant rate. For simplicity, we
refer to this fluid as water and the resident fluid as oil.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

316 Solvers for Incompressible Immiscible Flow

1,000 2,000 3,000 4,000
0

0.05

0.1

0.15

0.2

0.25

Time [days]

Oil surface rate [m3/s]

1,000 2,000 3,000 4,000
0

0.1

0.2

0.3

Time [Days]

Water surface rate [m3/day]

P

I

0 1,000 2,000 3,000 4,000
0

1

2

3

4

5
x 10

7

Time [Days]

Cumulative oil production [m3]

Initial oil in place

1,000 2,000 3,000 4,000
0

2

4

6

8

10

x 10
7

Time [Days]

Cumulative water injection/production [m3]

Initial oil in place

Figure 10.17 Well responses for the simulation of water coning. The top plots show rates in each
perforation of the horizontal producer; the red lines indicate water breakthrough. The middle plots
show total surface rates, whereas the lower plots show cumulative oil production and cumulative
water injection and production.

We consider two different scenarios: one with high permeability in the upper zone and
low permeability in the lower zone, and one with low permeability in the upper zone and
high permeability in the lower zone. To simplify the comparison, the injection rate is the
same in both cases. Figure 10.19 compares the evolving displacement profiles for the two
cases. In both cases, buoyancy quickly causes the lighter injected fluid to migrate into
the upper zone. With high permeability at the top, the injected fluid accumulates under
the sealing top and flows fast towards the west boundary in the upper layers, as seen

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 317

Figure 10.18 Setup for the case used to illustrate gravity override. Blue and red color indicate
different permeabilities. Perforated cells are colored green.

Figure 10.19 Evolution of the displacement profiles for the gravity-override setup. The reservoir is
viewed from a position below and to the southeast of the reservoir. Cells containing only the resident
fluid are not plotted.

in the upper-left plot of Figure 10.19. Looking at Figure 10.20, you may observe that
since the production well is pressure-controlled and perforated in the low-permeability
zone, the perforation rates will increase toward the top, i.e., the closer the perforation lies to
the high-permeability zone above. As the leading displacement front reaches the producer

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

318 Solvers for Incompressible Immiscible Flow

2,240

0

6,000

4,000

2,000

1

2

3

4 2,220
2,200

2,180
2,160

2,240

0

6,000

4,000

2,000

1

2

3

4 2,220
2,200

2,180
2,160

2,240

´104

2

1.5

1

0.5

0

1
2

3
4

2,220

2,200

2,180

2,160

2,240

´104

2

1.5

1

0.5

0

1
2

3
4

2,220

2,200

2,180

2,160

2,240

´104

2

1.5

1

0.5

1

2

3

4

2,220

2,200

2,180

2,160

2,240

´104

2

1.5

1

0.5

1

2

3

4

2,220

2,200

2,180

2,160

Figure 10.20 Perforation rates for the gravity-override case: oil (top), water (middle), and total
rate (bottom). For the oil rate, the red lines indicate peak production, while they indicate water
breakthrough in the plots of water and total rate. The left column reports the case with a high-
permeability upper zone, and the right column the opposite case.

near the west boundary, it is sucked down toward the open perforations and engulfs them
almost instantly, as seen after 360 days in the middle-left plot of Figure 10.19 and the red
line in the lower-left plot of Figure 10.20. This causes a significant drop in oil rate and a
corresponding increase in water rates towards the top of the well, which lies closer to the
flooded high-permeability zone. The oil rate is also reduced in the lowest perforations, but

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 319

200 400 600 800 1,000 1,200 1,400
0

0.5

1

1.5

2

2.5

x 10
7

Cumulative oil production [m
3
]

Time [Days]

Low permeability on top

High permeability on top

200 400 600 800 1000 1200 1400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 10.21 Cumulative oil production for the gravity-override case. The inset shows surface oil
rates.

because these grid layers do not produce much of the injected fluid, the drop in oil rate is an
effect of the internal adjustment of total perforation rates along the well, because mobility
is so much higher near the top of the well. Indeed, some time after water breakthrough the
oil rate is higher in the lower than in the upper perforations.

Also with a low-permeability zone on top, buoyancy will cause the injected fluid to
migrate relatively quickly into the upper zone. However, because this case has better direct
connection between the injector and producer through the high-permeability lower zone,
the displacement front will move relatively uniformly through all layers of the top zone and
the upper layer of the lower zone. The leading part of the displacement front is now both
higher and wider and has swept a larger part of the upper zone by the time it breaks through
in the producer. Unlike in the first case, the displacing fluid will not engulf the whole well,
but only break through in the three topmost perforations. However, after breakthrough,
most of the production comes from the topmost perforation, and the total rate in the three
lowest perforations quickly drops below 20% of the rate in topmost perforation.

Finally, looking at cumulative oil production and surface oil rates reported in Figure
10.21, we see that low permeability on top not only delays the water breakthrough, but also
enables us to maintain a higher oil rate for a longer period. This case is more economically
beneficial than with high permeability on the top. To increase the recovery of the latter case,
one possibility would be to look for a substance to inject with the displacing fluid to reduce
its mobility in the upper zone.

10.3.7 The Effect of Capillary Forces – Capillary Fringe

As you may recall from Section 8.1.3, the pressure in a non-wetting fluid is always greater
than the pressure in the wetting phase. In a reservoir simulation model, the capillary pres-
sure – defined as pc = pn − pw in a two-phase system – has the macroscale effect
of determining the local saturation distribution at the interface between the wetting and

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

320 Solvers for Incompressible Immiscible Flow

non-wetting fluid, or in other words, there is a relation pc = Pc(S) between capillary
pressure and saturation. This is seen in two ways: In a system that is initially in hydrostatic
equilibrium, capillary forces enforce a smooth, vertical transition in saturation upward from
a (horizontal) fluid contact. This transition is often referred to as the capillary fringe,
and will be discussed in more detail in this section. The second effect is that capillary
forces will redistribute fluids slightly near a dynamic displacement front so that this is
not a pure discontinuity, as assumed in the hyperbolic models discussed in Chapter 9, but
rather a smooth wave. For many field and sector models, the characteristic width of the
transition zone is small compared to the typical grid size, and hence capillary forces can be
safely neglected. In other cases, capillary forces have a significant dampening effect on the
tendency for viscous fingering and are therefore crucial to include in the simulation model.

Returning to the formation of a capillary fringe near a fluid interface, let zi denote the
depth of the contact between the wetting and non-wetting fluid, and let pn,i and pw,i denote
the phase pressures at this depth. The phase pressures and the capillary pressure are then
given by

pw(z) = pw,i + gρw(z− zi), pn(z) = pn,i + gρn(z− zi)

pc(z) = pc,i + g�ρ(z− zi),
(10.8)

where �ρ = ρn−ρw is density difference and pc,i is capillary pressure at zi . This pressure
is the capillary pressure necessary to initiate displacement of the wetting fluid by the non-
wetting fluid and is called the entry pressure. It follows from (10.8), that the total height of
the capillary fringe is given by pc,n/g�ρ. Figure 10.22 illustrates the concept of a capillary
fringe for a case with zero residual saturations.

If we know the phase contact zi , we can find the saturation directly by first computing
the capillary force as function of depth using (10.8) and then using the capillary pressure

Figure 10.22 Diagrams showing phase and capillary pressures (left) and saturation (right) as function
of depth. Here, zi is the depth of the contact between the non-wetting and the wetting fluid, and zn is
the depth of pure non-wetting fluid.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 321

function Pc(S) to invert for saturation. Alternatively, if we only know the volume of the
fluids, we can use the incompressible solvers to determine the hydrostatic fluid distribution.
To illustrate, we consider a 100 × 100 m2 vertical cross-section represented on a 20 × 40
grid. We assume a fluid system with CO2 and brine having the same basic properties as
in Section 10.3.2. With a density difference of approximately 290 kg/m3, the capillary
fringe corresponding to a capillary pressure of 1 bar has a height of 35 m. The relationship
between saturation and capillary pressure depends on permeability and porosity, and to
model this, we use the Leverett J -function (8.9). The initSimpleFluidJfunc imple-
ments a simplified Corey-type fluid in which J (S) = 1− S. This gives

Pc(S) = σ

√
φ

K
(1− S).

The surface tension σ is usually specific to the fluid. To illustrate capillary raise, we choose
σ such that median rock properties give a capillary pressure of one bar,

fluid = initSimpleFluidJfunc('mu' , [0.30860, 0.056641]*centi*poise, ...
'rho', [975.86, 686.54]*kilogram/meter̂ 3, ...
'n' , [2, 2], ...
'surf_tension',1*barsa/sqrt(mean(rock.poro)/(mean(rock.perm))),...
'rock',rock);

We set initial data such that the rock is filled with half a pore volume of wetting fluid at
the bottom and half a pore volume of non-wetting fluid at the top, and then simulate the
system forward in time until steady-state is reached. The time-loop is set up with a gradual
ramp-up of the time step to increase the stability of the solution procedure (we will come
back to the choice of time step in Section 10.4.1),

dt = dT*[1 1 2 2 3 3 4 4 repmat(5,[1,m])]*year;
dt = [dt(1).*2.^[-5 -5:1:-1], dt(2:end)];
s = xr.s(:,1);
for k = 1 : numel(dt),

xr = incompTPFA(xr, G, hT, fluid);
xr = implicitTransport(xr, G, dt(k), rock, fluid);
t = t+dt(k);
if norm(xr.s(:,1)-s,inf)<1e-4, break, end;

end

We consider two different permeability setups. In the first case, the permeability field
varies linearly from 50 md in the west to 400 md in the east. The porosity is assumed to be
constant. When the system is released from the artificial initial state with a sharp interface
at z = 50, the non-wetting fluid starts draining downward into the wetting phase, whereas
the wetting phase starts imbibing upward into the non-wetting phase. After approximately
3.5 years, the system reaches the steady state shown in the middle plot in the upper row
of Figure 10.23. Here, we say that steady-state is reached when the saturation difference
between two consecutive time steps is less than 10−4 measured in the L∞ norm. Because

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

322 Solvers for Incompressible Immiscible Flow

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 10.23 Capillary fringe for two different permeability fields: permeability increasing linearly
from west to east (top), and lognormal permeability (bottom).

permeability is homogeneous in the vertical direction, the steady-state saturation decreases
linearly upward from pure wetting to pure non-wetting fluid. The height of the capillary
fringe is much higher in west where the permeability is low, since the capillary scales as
1/
√

K , and lower in the east where the permeability is high. In the plot of capillary pressure
versus saturation to the upper-right in Figure 10.23, you may also be able to identify the
twenty different lines corresponding to the twenty columns of homogeneous permeability
in the grid.

The second case has random petrophysical parameters with a permeability field that is
related to a Gaussian porosity field through a Carman–Kozeny relationship; see the lower-
left plot in Figure 10.23. The permeability values span three orders of magnitude, from 1
md to 1 darcy, which in turn gives a wider span in time constants than in the case with
linear permeability. Because of the heterogeneities, the imbibing wetting phase will be
sucked higher up and sideways into regions of lower permeability. If you run the script
capillaryColumn yourself, you will see that the high-permeability regions surrounding
the initial sharp interface reach equilibrium within a few years, whereas the rise is much
slower in the low-permeability regions. The column next to the east boundary, in particular,
is the last to reach steady state after approximately 41 years. At steady state, the fringe
extends above the top of the reservoir section in the east-most column. Moreover, because
permeability is heterogeneous, the saturation at steady state is no longer monotone in the
vertical (and horizontal) direction.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 323

Figure 10.24 The Norne test case with grid and petrophysical data from the simulation model of the
real field. The well pattern is artificial and has nothing to do with how the real field is operated.

10.3.8 Norne: Simplified Simulation of a Real-Field Model

Having worked with highly idealized models so far in this chapter, it is now time to look at
a more realistic model. For this, we will use the grid geometry and petrophysical properties
from a simulation model of the Norne field from the Norwegian Sea. More details about
Norne and the reservoir geometry were given in Section 3.3.1. Figure 10.24 shows the
petrophysical properties as well as a well-pattern that was chosen somewhat haphazardly
for illustration purposes. We notice that the permeability is anisotropic and heterogeneous,
with a clear layered structure. This layered structure is also reflected in the histograms,
which show several modes. (Such histograms are discussed in more detail in Sections
2.5.3 and 2.5.5 for the SPE 10 and SAIGUP models.) The lateral permeability has four
orders of magnitude variations, whereas the vertical permeability is up to two orders lower
and has five orders of magnitude variations. In addition, the vertical communication is
further reduced by a multiplier field (MULTZ keyword), which contains large regions having
values close to zero in the middle layers of the reservoir. The porosities span the interval
[0.094, 0.347], but since the model has a net-to-gross field to model that a portion of
the cells may consist of impermeable shale, the effective porosity is much smaller in
some of the cells. For a model like this, we thus cannot expect to be able to use the
explicit transport solver and must instead rely on the implicit solver. (Note also that the
incomp module contains a similar example with synthetic petrophysical properties; see
incompExampleNorne2ph.)

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

324 Solvers for Incompressible Immiscible Flow

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

1

2

3

4

5

6

x 10
4

Time [Days]

Oil rate [stb/day]

P1 P2 P3 P4 P5

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Time [Days]

Water rate [stb/day]

P1 P2 P3 P4 P5

Figure 10.25 Incompressible two-phase simulation for the Norne model. The upper plots show
snapshots of the solution (after 6 and 12 years, respectively) and the lower plots show oil and water
surface rates for all producers.

Setting up the model proceeds as discussed previously; you can consult the runNorne
Simple script in the book module for full details. The only difference is how to account
for the transmissibility multipliers. This is done as follows:

hT = computeTrans(G, rock, 'Verbose', true);
tmult = computeTranMult(G, grdecl);
hT = hT.*tmult;

Here, the Eclipse input structure grdecl contains data for the MULTZ keyword. The second
call takes the MULTZ values associated with cells and assigns a corresponding reduction
value between 0 and 1 to all half-faces. We then multiply the half-transmissibilities hT by
tmult to get the reduced transmissibility. It is important that these multipliers are assigned
before computing the intercell transmissibilities. Altogether, approximately 6.5% of the
half-faces have reduced transmissibility.

Figure 10.25 shows results of a simulation of a scenario in which water is injected
into oil. The oil has a five times higher viscosity and hence the injected water will form
an unstable displacement with a weak displacement front similar to the case discussed in
Section 10.3.4. The main displacement takes place in the region that involves injectors I1

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.3 Simulation Examples 325

to I5 and producers P1–P3. The last two producers are located in regions that are poorly
connected to the rest of the reservoir where the injectors are placed, and hence contribute
less to the overall production. This is particularly true for producer P4, which most likely is
completely misplaced. As we have seen in previous examples, once water breaks through
in a well (primarily in P1 and P2), the oil rate decays significantly.

The main purpose of the example lies in the actual code and not in the results it produces.
Discussing the simulation results beyond this point is therefore somewhat futile since
the fluid system and the well pattern have limited relevance for the real reservoir, which
contains a three-phase oil–gas–water system that is modeled by the compressible black-
oil equations that will be discussed in the next chapter. The main takeaway message is
that the incompressible solvers can be applied to models that have the geometrical and
petrophysical complexity seen in real reservoir models.

Computer exercises

10.3.1 To get more acquainted with the multiphase incompressible solvers and see their
versatility, you should return to a few examples presented earlier in the book and
try to set them up as multiphase test cases:

• Consider the reservoir in Exercise 3.1.3 and place one injector to the south
and two producers symmetrically along the northern perimeter. Simulate the
injection of one pore volume of water into an oil.

• Consider the test case with non-rectangular reservoir geometry in Figure 5.6
on page 164 and set up a simulation that injects one pore volume from the
flux boundary. How would you compute the flux out of the pressure-controlled
boundary?

• Pick any of the faulted grids generated by the simpleGrdecl routine as shown
in Figure 3.31 on page 97 and place an injector in one fault block and a producer
in the other and simulate the injection of half a pore volume of water.

10.3.2 Consider a rectangular reservoir with two wells (see Figure 3.37) and compare
solutions computed with three different grids: a uniform coarse grid, a uniform
fine grid, and a coarse grid with radial well refinement.

10.3.3 Try to study the Norne model in more detail.

• Are the multipliers important for the simulation result?

• Is gravity important or can it be neglected?

• Can you come up with a better recovery strategy, i.e., improved placement and
control strategy for wells?

• Do you get very different solutions if you use a consistent solver? (Hint:
Although multipliers can be incorporated into these solvers, as described in
[231], this is not part of the public implementation and for this comparison you
should therefore neglect the MULTZ keyword.)

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

326 Solvers for Incompressible Immiscible Flow

10.4 Numerical Errors

There are several errors involved in the computations in the previous section. First of all,
numerical discretization errors obviously arise when approximating a continuous differen-
tial equation by a set of discrete finite-volume equations. For single-phase, incompressible
flow, errors were purely spatial. These errors will decrease with decreasing size of the
grid as long as the spatial discretization is consistent. However, as we saw in Chapter 6,
the standard two-point scheme is not consistent unless the grid is strictly K-orthogonal,
and the incompTPFA pressure solver can in general be expected to produce errors for
anisotropic permeabilities and skewed grids. When using a sequential method to solve
multiphase flow equations, there will also be temporal errors arising from three different
factors: discretization errors arising when temporal derivatives in the transport equations
are discretized by finite differences, amplifications of spatial errors with time, and errors
introduced by the operator splitting underlying the sequential solution procedure. In this
section, we briefly discuss the two last error types in more detail.

10.4.1 Splitting Errors

When using a sequential solution procedure, the total velocity is computed from the fluid
distribution at the start of each time step. This means that the effect of mobility on the
flow paths is frozen in time, and for each time step appears as if we solved a single-phase
flow problem with reduced permeability in all parts of the domain that contain more than
one fluid phase. Within a single splitting step the transport solver will thus only resolve
the dynamic effect of mobility along each flow path, but will not account for the fact that
mobility changes reduce the effective permeability along each flow path or move the flow
paths themselves. This introduces a time lag in the simulation, which may lead to signif-
icant errors in the propagation of displacement fronts if the splitting steps are chosen too
large.

Homogeneous Quarter Five-Spot

To illustrate this, we can revisit the homogeneous quarter five-spot from Section 10.3.3
and study the self-convergence of approximate solutions defined on a fixed grid as the
number of splitting steps increases. Figure 10.26 shows approximate solutions at time t =
0.6 PVI (pore volumes injected) computed with 4� steps for � = 0, . . . ,3. With a single
pressure step, the displacement front coincides with the time line from the single-phase
flow field, since the pressure computation only sees the initial oil saturation. The only
exception is a certain smearing introduced by the spatial and temporal discretizations of the
explicit scheme used to compute the transport step. The retardation effect that oil has on the
invading water is better accounted for as the number of splitting steps increases, and hence
the splitting solution gradually approaches the correct solution. Table 10.1 reports the self-
convergence towards a reference solution computed on the same grid with 256 splitting
steps. To estimate the convergence rate we assume that the error scales like O(�tr). If the

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.4 Numerical Errors 327

Table 10.1 Self-convergence for the homogeneous quarter
five-spot computed on a 128× 128 grid with n splitting steps
relative to a reference solution computed with 256 time steps after
0.6 PVI. The errors are reported in relative norms.

saturation pressure

n L1-error rate L2-error rate

1 5.574e−02 – 4.950e−03 –
2 4.368e−02 0.35 5.140e−04 3.27
4 2.778e−02 0.65 1.554e−04 1.73
8 1.445e−02 0.94 4.524e−05 1.78

16 6.389e−03 1.18 1.226e−05 1.88
32 2.394e−03 1.42 2.998e−06 2.03
64 7.869e−04 1.61 5.990e−07 2.32

1 steps 4 steps 16 steps 64 steps

Figure 10.26 Quarter five-spot solution at time 0.6 PVI computed on a uniform 128× 128 grid with
the explicit transport solver and different number of splitting steps. The solid lines are time lines at
t = 0.6a for a single-phase displacement.

solution having error E2 is computed using twice as many time steps as the solution having
error E1, the corresponding convergence rate is

r = log(E1/E2)/ log(2).

Pressure is smooth and will therefore converge faster than saturation, which is a discontin-
uous quantity and hence will have much larger errors. The convergence for high n values is
exaggerated since we are measuring self-convergence toward a solution computed with the
same method, but with a larger number of steps. The code necessary to run this experiment
is found in splittingErrorQ5hom.m in the in2p directory of the book module.

Heterogeneous Quarter Five-Spot

As pointed out earlier, the coupling between the pressure and transport equations depends
on the variation in total mobility λ(S) throughout the simulation. If variations are small and
smooth, the two equations will remain loosely coupled, and relatively large time steps can

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

328 Solvers for Incompressible Immiscible Flow

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1:10

1:1

10:1

Figure 10.27 Total mobility for three fluid models with different viscosity ratios.

256 steps2 steps 4 steps 8 steps 16 steps 32 steps 64 steps

Figure 10.28 Self convergence with an increasing number of equally spaced splitting steps to reach
time 0.5 PVI for a quarter five-spot setup on a subsample from the first layer of the SPE 10 model
for three different viscosity ratios M = μw/μn (top: M = 1/10, middle: M = 1, bottom: M = 10).
Saturation profiles are shown at a time scaled by ν(1)/ν(M), where ν(M) is the characteristic wave
speed of the displacement front with viscosity ratio M .

be allowed without seriously decaying solution accuracy. On the other hand, when λ has
large variations over the interval [0,1], pressure and transport are more tightly coupled, and
we cannot expect to be able to use large splitting steps. To illustrate this, we revisit the setup
with three different fluid models used to study viscous fingering in Section 10.3.4. From
the plot of total mobilities in Figure 10.27 it is obvious that both the unfavorable (1:10) and
the favorable (10:1) mobility cases have stronger coupling between saturation and pressure
than the case with equal viscosities.

Figure 10.28 shows the self convergence of the saturation profiles with respect to the
number of equally spaced time steps used to reach time 0.5 PVI. To isolate the effect of
splitting errors and avoid introducing excessive numerical smearing in the solutions with
few splitting steps, we have subdivided the transport steps into multiple steps so that the
implicit solver uses the same step length and hence introduces the same magnitude of

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.4 Numerical Errors 329

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Water cut for M=0.1

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Water cut for M=1.0

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Water cut for M=10.0

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

Figure 10.29 Water cut in the producer for various number of splitting steps for the heterogeneous
quarter five-spot setup from Figure 10.28.

numerical smearing in all simulations. From the figure it is clear that even with very few
splitting steps, the sequential solution method manages to capture the qualitatively correct
behavior for all viscosity ratios. As expected, the discrepancies in solutions with few and
many time steps are larger for the favorable and unfavorable cases than for unit viscosity
ratio.

To investigate how the size of the splitting steps affects the quantitative behavior of
the approximate solutions, we reran the same experiments up to 1.5 PVI. Figure 10.29
reports water cut in the producer for all three fluid models. Starting with the unfavorable
case, we see that the water cut has a dent. This is a result of the secondary finger that
initially extends along the western edge, making contact with the main finger and hence
contributing to a more rapid incline in water production. All curves, except the one using
only three time steps, follow the same basic trend. The main reason is that small variations
in the saturation profile will not have a large effect on the water cut since the displacement
front is so weak. With three splitting steps only, the main dent is a result of the second
pressure update. For unit viscosity ratio, the production curves are still close, but here we
notice a significant incline in the curve computed with 12 steps after the pressure update
at 0.75 PVI. The 12-step and 48-step curves also show non-monotone behavior at 0.625
PVI and 0.69 PVI, respectively. Similar behavior can be seen for the favorable case, but
since this case has an almost piston-like displacement front, the lack of monotonicity
is significantly amplified. For comparison, we have also included a simulation with 96
splitting steps, in which the first two first steps have been replaced by ten smaller splitting

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

330 Solvers for Incompressible Immiscible Flow

steps that gradually ramp up to the constant time step. These profiles, and similar profiles
run with 48 steps, are monotone, which suggests that the inaccuracies in the evolving sat-
uration profiles are introduced early in the simulation when the profile is rapidly expanded
by high fluid velocities in the near-well region. In our experience, using such a ramp-
up is generally advisable to get more well-behaved saturation profiles. You can find the
code for this experiment in splittingErrorQ5het.m in the in2p directory of the book
module.

Capillary-dominated flow

The sequential solution procedure discussed in this chapter is as a general rule reasonably
well-behaved for two-phase scenarios where the fluid displacement is dominated by the
hyperbolic parts of the transport equation, i.e., by viscous forces (pressure gradients) and/or
gravity segregation. If the parabolic part of the solution dominates, on the other hand,
a sequential solution procedure will struggle more, in particular when computing fluid
equilibrium govern by a delicate balance between gravity and capillary forces. To illustrate
this, we revisit the computation of capillary fringe from Section 10.3.7. If you look carefully
in the accompanying code, you will see that we compute the two cases with a time step that
is ten times larger for the Gaussian case than for the case with linear permeability. The time
steps (and the initial ramp-up sequence) were chosen by trial and error and are close to what
appears to be the stability limit. If one, for instance, increases the final time steps by 150%
for the case with linear permeability, the simulation will not converge but instead ends up
predicting an oscillatory interface, as illustrated in Figure 10.30. Similar problems may
arise, e.g., when simulating structural trapping of CO2 using vertical equilibrium models,
in which gravity gives rise to a parabolic term that plays the same role as capillary pressure
in the upscaled flow equations; see e.g., [227] for more details.

10.4.2 Grid Orientation Errors

As you may recall from the discussion on page 287, the saturation-dependent mobility at
the interface between two grid blocks is usually approximated by single-point, upstream
mobility weighting. Like the TPFA method, the resulting scheme only accounts for infor-
mation on opposite sides of a cell interface and does not take any transverse transport
effects into account. It is therefore well known that this method also suffers from grid
orientation errors, especially when applied to unfavorable displacements, as we will see
in the following example. In passing, we also note that to evaluate gravity and capillary-
pressure terms, the transport solvers use two-point approximations similar to what is used
in the TPFA method. This may introduce additional errors, but we will not discuss these in
detail herein.

Homogeneous Quarter Five-Spot

When the single-point transport solver is combined with the classical TPFA pressure solver,
computed displacement fronts tend to preferentially move along the axial directions of the

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.4 Numerical Errors 331

0 1 2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Δ t = 36.50 days

Δ t = 54.75 days

Figure 10.30 Unstable solution computed by a sequential solution with too large splitting step.
The lower plot shows difference in L∞ norm between consecutive time steps – which is used as
convergence criterion by the solver – for a convergent solution with �t = 36.5 days and for a
divergent solution with �t = 54.75 days. The upper plot shows three consecutive solutions for the
divergent simulation.

grid, i.e., in the direction of the normal vectors of the cell faces. This will lead to grid
orientation effects like those discussed earlier in Chapter 6, even if the resulting grids are
K-orthogonal. To illustrate this, we compare and contrast solutions of the standard quarter
five-spot setup with a rotated setup in which the grid is aligned with the directions between
injectors and producers, as illustrated in Figure 10.31. This test problem was first suggested
by Todd et al. [290] and has later been used by many other authors to study grid orientation
errors in miscible displacements [321, 255, 279], which are particularly susceptible to this
type of truncation error. To avoid introducing too much diffusion when using few time
steps, we use the explicit transport solver. (See runQ5DiagParal for complete setup of the
two cases and gridOrientationQ5 for the following experiments.)

For the standard setup, the combination of a single-point transport solver and a two-point
pressure solver overestimates the movement into the stagnant regions along the x and y

axes and underestimates the diagonal movement in the high-flow direction between injector
and producer along the diagonal. In the rotated setup, the grid axes follow the directions
between the wells and the solvers will hence tend to overestimate flow in the high-flow
zone and underestimate flow toward the stagnant zones. The upper row in Figure 10.32
shows that this effect is pronounced for the unfavorable displacement (M = 0.1), evident
with equal viscosities (M = 1), and hardly discernible for the favorable displacement
(M = 10). For equal viscosities, the difference between the two grids can be almost

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

332 Solvers for Incompressible Immiscible Flow

Producer

Injector

Quarter five-spot

Rotated five-spot

Figure 10.31 Well setup for the quarter five-spot comparison. Displacement fronts have preferential
movement parallel to the axial directions and hence the rotated setup will predict earlier breakthrough
than the original setup.

Mobility ratio 1:10. Time: 0.3 PVI Mobility ratio 1:1. Time: 0.6 PVI Mobility ratio 10:1. Time: 0.7 PVI

Grid: 32 x 32. Steps: 1 Grid: 32 x 32. Steps: 8 Grid: 32 x 32. Steps: 64

Grid: 16 x 16. Steps: 16 Grid: 32 x 32. Steps: 16 Grid: 64 x 64. Steps: 16

Figure 10.32 Quarter five-spot solutions computed on the rotated (colors) and original (solid lines)
geometry for a 32 × 32 grid. The top row shows solutions computed with 16 steps for different
mobility ratios. The middle plot shows convergence for mobility ratio 1:10 with respect to time step
and the lower row with respect to grid resolution.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.4 Numerical Errors 333

eliminated by increasing the number of splitting steps for a fixed �x and/or by increasing
the grid resolution provided that a certain number of time steps are used. In the unfavorable
case, the plots in the middle row of Figure 10.32 show that increasing the number of
time steps changes both solutions in the same direction, but does not necessarily reduce
their difference. However, since both the original and the rotated grid are regular, the grid
orientation effects will diminish if we increase the grid resolution.

A possible remedy to the behavior we just observed is to replace the single-point
scheme by a multidimensional upwind scheme (see e.g., [155]) or a modern high-resolution
scheme. Such methods are not yet part of the public MRST release, but work is currently
in progress [190].

Symmetric Well Pattern on a Skew Grid

We have already seen several times that since the TPFA scheme cannot approximate
transverse fluxes that are parallel to grid interfaces, the incompTPFA solver will introduce
grid orientation errors for anisotropic permeabilities and grids that are not K-orthogonal.
In Chapter 6, we showed that we can significantly reduce, but not completely eliminate,
these errors if we replace TPFA by a consistent scheme. In this example, we will revisit
one of the cases discussed in Chapter 6 to investigate if we see the same reduction for
two-phase flow.

The computational setup consists of a horizontal 400 × 200 m2 sector model. Water
is injected from at the midpoint of the northern perimeter and fluids are produced from
two wells located 50 m from the southeast and southwest corners, respectively. Since the
well pattern is symmetric within a confined domain and the petrophysical parameters are
homogeneous and isotropic, the true displacement profile will also be symmetric. The
grid, however, is skewed and compressed towards the southeast corner. This will induce
a preferential flow direction towards the southeast producer. Seeing that grid orientation
effects are more pronounced for unstable displacements, we use the same configuration
as in the previous example with a viscosity ratio M = 10, which gives a very mobile,
weak displacement front that will tend to finger rapidly into the resident oil. Figure 10.33
shows a snapshot of the pressure and saturation profile after 250 days along with water
cuts and cumulative oil production over the whole 1,200-day simulation period. The flow
field computed with the incompTPFA pressure solver exhibits the same lack of symme-
try as seen in Figure 6.5 on page 187. The result is a premature breakthrough in the
southeast producer and delayed breakthrough in the southwest producer. With a mimetic
finite-difference (MFD) solver, the water-cut curves are much closer and less affected by
grid orientation errors. Moreover, since all wells operate under pressure control, we see
that the total oil production predicted by TPFA is significantly less than for the MFD
solver.

As a second example, we use the same grid to describe a vertical cross-section, in which
we inject water from two horizontal injectors at the bottom of the reservoir and produce
fluids from a horizontal producer at the top of the reservoir. Producers and injectors operate
under the same pressure control as for the horizontal reservoir section. Figure 10.34 shows

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

334 Solvers for Incompressible Immiscible Flow

0 100 200 300 400
0

50

100
TPFA: 250 days

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100
Mimetic: 250 days

0 100 200 300 400
0

50

100

100

150

200

0

0.5

1

200 400 600 800 1,000 1,200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [Days]

Water cut

P1 (TPFA)

P2 (TPFA)

P1 (MFD)

P2 (MFD)

200 400 600 800 1,000 1,200
0

500

1000

1500

2000

Time [Days]

Cumulative oil production [m
3
]

P1 (TPFA)

P2 (TPFA)

P1 (MFD)

P2 (MFD)

Figure 10.33 Simulation of a symmetric flow problem in a horizontal, homogeneous domain
represented on a skew grid.

simulation results with the TPFA and MFD solvers. The density difference between the
injected and resident fluids is 150 kg/m3, and hence gravity tends to oppose the imbibing
water front in a way that accentuates the grid orientation effects for both solvers. For com-
parison, Figure 10.35 reports the simulations performed on a regular Cartesian grid. Both
schemes produce symmetric, but slightly different displacement profiles and the match in
production profiles is largely improved compared with the skew grid.

Altogether, the two examples presented in this section hopefully show you that you not
only need to take care when designing your grid, but should also be skeptic to simulations
performed by a single method or a single choice of time steps. A good piece of advice is
to conduct simulations with more than one scheme, different time-step selection, and, to
the extent possible, different grid types to get an idea of how numerical errors influence
your results. To further investigate grid orientation effects, consider any of the following
computer exercises.

Computer exercises

10.4.1 Repeat the test case with the original/rotated quarter five-spot using one of the
consistent solvers from Chapter 6 to compute the pressure. Do you see any differ-
ences?

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

10.4 Numerical Errors 335

0 100 200 300 400
0

50

100
TPFA: 500 days

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100
Mimetic: 500 days

0 100 200 300 400
0

50

100

100

150

200

0

0.5

1

200 400 600 800 1,000 1,200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [Days]

Water cut

P (TPFA)

P (MFD)

200 400 600 800 1,000 1,200
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Time [Days]

Cumulative oil production [m
3
]

P (TPFA)

P (MFD)

Figure 10.34 Simulation of a symmetric flow problem in a vertical, homogeneous domain repre-
sented on a skew grid with two horizontal injectors at the bottom and a horizontal producer at the
top.

0 100 200 300 400
0

50

100
TPFA: 500 days

0 100 200 300 400
0

50

100
Mimetic: 500 days

0

0.5

1

200 400 600 800 1,000 1,200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [Days]

Water cut

P (TPFA)

P (MFD)

200 400 600 800 1,000 1,200
0

500

1000

1500

2000

2500

3000

3500

Time [Days]

Cumulative oil production [m
3
]

P (TPFA)

P (MFD)

Figure 10.35 Simulation of a symmetric flow problem in a vertical, homogeneous domain computed
on a regular Cartesian grid.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

336 Solvers for Incompressible Immiscible Flow

10.4.2 Set up a flow problem to compare solutions computed on the extruded Delaunay
or Voronoi grids shown in Figure 3.32 on page 97.

10.4.3 Set up a quarter five-spot test using the grids shown in Figure 3.44 on page 108.
10.4.4 The CaseB4 test case shown in Figure 3.20 on page 80 represents the same geology

with two different grid formats, using either a deviated pillar grid or a stair-stepped
grid. Both grids are sampled at two different resolutions. Set up a flow problem
with four wells, two injectors and two producers, one in each corner of the reser-
voir. Run simulations on all four grids and compare production curves. You can
either use homogeneous permeability or a layered permeability with homogeneous
properties within each layer.

10.4.5 Pick any of the models in the bedModels1 or bedModel2 data sets and run two-
phase simulations injecting one pore volume from south to north and from west to
east. Investigate splitting and grid orientation effects.

https://doi.org/10.1017/9781108591416.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.014

