ON THE KERNELS OF REPRESENTATIONS OF FINITE GROUPS

by SHIGEO KOSHITANI

(Received 1 November, 1979)

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1. Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (1)-(4) are equivalent:

(1) G is p-solvable of p-length 1.

(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to $N_G(P)$.

(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to $N_G(P)$.

(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to $N_G(P)$.

The purpose of the present paper is to generalize the above result. It can be stated as follows: if B is an arbitrary p-block of G with defect group D, then the following four conditions (1)-(4) are equivalent:

(1) D is contained in the intersection of the kernels of all irreducible modular representations in B.

(2) Every irreducible complex representation in B restricts irreducibly to $N_G(D)$.

(3) Every irreducible complex representation in B whose character has height zero restricts irreducibly to $N_G(D)$.

(4) Every irreducible modular representation in B restricts irreducibly to $N_G(D)$.

Since $O_{p',p}(G)$ is the intersection of the kernels of all irreducible modular representations in the principal *p*-block of *G*, our result is a generalization of the result of Isaacs and Smith.

Throughout this paper we use the following notation. For an integer *n* we write $\nu_p(n) = r$ if $p' \mid n$ and $p'^{+1} \nmid n$. We write $\operatorname{Irr}(G)$ (respectively $\operatorname{IBr}(G)$) for the set of all irreducible complex (respectively Brauer) characters of *G*. For a *p*-block *B* of *G* let us denote by $\operatorname{Irr}(B)$ (respectively $\operatorname{IBr}(B)$) the set of all elements of $\operatorname{Irr}(G)$ (respectively $\operatorname{IBr}(G)$) which belong to *B*, by k(B) the number of elements of $\operatorname{Irr}(B)$, and by $k_0(B)$ the number of elements of $\operatorname{Irr}(B)$ with height zero. When $\chi \in \operatorname{Irr}(G)$ (respectively $\phi \in \operatorname{IBr}(G)$), let Ker χ (respectively Ker ϕ) be the kernel of the irreducible complex (respectively modular) representation which corresponds to χ (respectively ϕ). Following [1, pp. 494-495] let $N_B = \bigcap \{\operatorname{Ker} \chi \mid \chi \in \operatorname{Irr}(B)\}$ and $N_B^* = \bigcap \{\operatorname{Ker} \phi \mid \phi \in \operatorname{IBr}(B)\}$ for a *p*-block *B* of *G*. We write $B_0(G)$ for the principal *p*-block of *G*. When *H* is a subgroup of *G* and *b* is a *p*-block of *H*, we use the notation b^G in the sense of [3, §57] for the case where b^G is defined. When *H* is a subgroup of *G*, for a character ψ of *G* and a character $\tilde{\psi}$ of *H*, $\psi \mid_H$ and $\tilde{\psi}^G$ denote the restriction of ψ to *H* and the induced character of $\tilde{\psi}$ to *G*, respectively.

Glasgow Math. J. 22 (1981) 151-154.

SHIGEO KOSHITANI

We write G' for the commutator subgroup of G. If S is a subset of G, $N_G(S)$ denotes the normalizer of S in G. We use the notation $O_{p'}(G)$, $O_p(G)$ and $O_{p',p}(G)$ following custom (cf. [3, p. 397]).

THEOREM. Let B be an arbitrary p-block of G with defect group D, and let $N = N_G(D)$. Then the following are equivalent.

(1) $D \subseteq N_B^*$.

(2) When \bar{b} is a p-block of N with $b^G = B$, for each $\psi \in Irr(b)$ there is some $\chi \in Irr(B)$ such that $\chi|_N = \psi$.

(3) When b is a p-block of N with $b^G = B$, for each $\psi \in Irr(b)$ with height zero there is some $\chi \in Irr(B)$ such that $\chi \mid_N = \psi$.

(4) When b is a p-block of N with $b^G = B$, for each $\psi \in Irr(b)$ with height zero there is some $\chi \in Irr(B)$ such that χ has height zero and $\chi|_N = \psi$.

(5) If $\chi \in Irr(B)$ then $\chi \mid_N \in Irr(N)$.

(6) If $\chi \in Irr(B)$ and χ has height zero then $\chi |_N \in Irr(N)$.

(7) If $\phi \in \operatorname{IBr}(B)$ then $\phi \mid_N \in \operatorname{IBr}(N)$.

Proof. (7) \Rightarrow (1). Since D is normal in N, by [3, Theorem 53.9(*ii*)], $D \subseteq \text{Ker } \tilde{\phi}$ for all $\tilde{\phi} \in \text{IBr}(N)$. Thus, (7) implies (1).

 $(1) \Rightarrow (5), (7).$ Let $H = N_B^*$ and $V = N_B$. By [1, Propositions (3A) and (3D)], H is p-nilpotent and $V = O_{p'}(H)$. Let $\phi \in \operatorname{IBr}(B)$. Since $H \subseteq \operatorname{Ker} \phi$, we can consider $\phi \in \operatorname{IBr}(G/H)$, so that $\phi \in \operatorname{IBr}(\overline{B})$ for some p-block \overline{B} of G/H. By [3, Lemma 64.3(1)], $\overline{B} \subseteq B$. Hence, by [3, Lemma 64.3(2)], D contains a Sylow p-subgroup of H. Thus, (1) implies that D is a Sylow p-subgroup of H, so that H = VD. Hence, by the Frattini argument [4, I 7.8 Satz], G = HN = VN. This proves (5) since $V \subseteq \operatorname{Ker} \chi$ for all $\chi \in \operatorname{Irr}(B)$. Similarly, we get (7) since $H \subseteq \operatorname{Ker} \phi$ for all $\phi \in \operatorname{IBr}(B)$.

 $(5) \Rightarrow (6)$. Trivial.

 $(6) \Rightarrow (4)$. Let b be a p-block of N with $b^G = B$. By [3, Corollary 54.11 and Lemma 57.4], D is a defect group of b. Let $\psi \in \operatorname{Irr}(b)$ such that ψ has height zero. We can write $\psi^G = \sum_i u_i \chi_i$ where $\chi_i \in \operatorname{Irr}(G)$ and u_i is a non-negative integer for each i. Let $|D| = p^d$. If $\chi_i \in \operatorname{Irr}(B)$ and $u_i \neq 0$, then we have

$$\nu_{p}(u_{i}\chi_{i}(1)) \ge \nu_{p}(\chi_{i}(1)) \ge \nu_{p}(|G|) - d$$

= $\nu_{p}(|G:N|) + \nu_{p}(|N|) - d = \nu_{p}(|G:N|) + \nu_{p}(\psi(1)) = \nu_{p}(\psi^{G}(1))$

since ψ has height zero. Hence it follows from [2, (3A)] that there is some $\chi_i \in Irr(B)$ such that $u_i \neq 0$ and $\nu_p(u_i\chi_i(1)) = \nu_p(\psi^G(1))$. This implies that $\chi_i \in Irr(B)$ has height zero by the above inequality. By Frobenius reciprocity, ψ is a component of $\chi_i \mid_N$. Thus, (6) implies $\chi_i \mid_N = \psi$.

 $(4) \Rightarrow (3)$. Clear.

 $(5) \Rightarrow (2)$. Similar to the proof of $(6) \Rightarrow (4)$.

 $(2) \Rightarrow (3)$. Clear.

 $(3) \Rightarrow (1)$. By Brauer's first main theorem [3, Theorem 58.3], there is a p-block b of N with defect group D such that $b^G = B$. Let $R = N_b$, so that $R \subseteq O_{p'}(N)$ from [1, Proposition (3A)]. Let $\phi \in IBr(b)$. By [1, Proposition (3D)] and [3, Theorem 53.9(ii)],

FINITE GROUPS

 $RD \subseteq \text{Ker } \phi$. Hence we can consider $\phi \in \text{IBr}(b^*)$ for some *p*-block b^* of N/(RD). By [3, Lemma 64.3(1)], $b^* \subseteq b$. Let $\psi \in \text{Irr}(b^*)$. We can consider $\psi \in \text{Irr}(b)$ with $RD \subseteq \text{Ker } \psi$. Clearly, we may consider $\psi \in \text{Irr}(N/(RD'))$. Since (RD)/(RD') is an abelian normal subgroup of N/(RD'), we get from [4, V 17.10 Satz] that $\psi(1) | |N/(RD)|$. This shows that $\psi \in \text{Irr}(b)$ has height zero since D is a defect group of b. Hence, by (3) there is some $\chi \in \text{Irr}(B)$ with $\chi|_N = \psi$. This shows $RD \subseteq \text{Ker } \chi$. Hence $\{\chi \in \text{Irr}(B) | RD \subseteq \text{Ker } \chi\} \neq \emptyset$. Let $L = \bigcap \{\text{Ker } \chi \mid \chi \in \text{Irr}(B), RD' \subseteq \text{Ker } \chi\}$, so that $RD' \subseteq L \cap N$. Let $\psi_i \in \text{Irr}(b)$ with $RD' \subseteq \text{Ker } \psi_i$. As above, ψ_i has height zero. Thus, by (3) there is some $\chi_i \in \text{Irr}(B)$ with $\chi_i \mid_N = \psi_i$, so that $RD' \subseteq \text{Ker } \chi_i$. This implies $L \subseteq \bigcap_i \text{Ker } \chi_i$, so that

$$L \cap N \subseteq \bigcap \{ \operatorname{Ker} \psi \mid \psi \in \operatorname{Irr}(b), RD' \subseteq \operatorname{Ker} \psi \}.$$

Next, we want to claim

$$\bigcap \{\operatorname{Ker} \psi \mid \psi \in \operatorname{Irr}(b), RD' \subseteq \operatorname{Ker} \psi\} = RD'.$$
^(*)

Let $I = \{\psi \in \operatorname{Irr}(b) \mid RD' \subseteq \operatorname{Ker} \psi\} = \{\psi_1, \ldots, \psi_m\}$. We have already shown $I \neq \emptyset$. Take any ψ_i with $1 \le i \le m$. Since $RD' \subseteq \operatorname{Ker} \psi_i$, we can consider $\psi_i \in \operatorname{Irr}(\bar{b}_i)$ for some p-block \bar{b}_i of N/(RD'). By [3, Lemma 64.3(1)], $\bar{b}_i \subseteq b$ for all $i = 1, \ldots, m$. Then, $I = \bigcup_{i=1}^m \operatorname{Irr}(\bar{b}_i)$. Take any \bar{b}_i with $1 \le i \le m$. By [3, Lemma 64.3(1)], there is a p-block \tilde{b}_i of N/R with $\bar{b}_i \subseteq \bar{b}_i \subseteq b$. Let $\bar{F} = \bigcup_{i=1}^m \operatorname{IBr}(\bar{b}_i)$ and $\bar{F} = \bigcup_{i=1}^m \operatorname{IBr}(\bar{b}_i)$. Take any \tilde{b}_i . Let $\phi \in \operatorname{IBr}(\bar{b}_i)$. Since (RD')/R is a normal p-subgroup of N/R, $(RD')/R \subseteq \operatorname{Ker} \phi$ from [3, Theorem 53.9(ii)]. Thus, $RD' \subseteq \operatorname{Ker} \phi$ if we consider $\phi \in \operatorname{IBr}(b)$. Then, $\phi \in \operatorname{IBr}(\bar{b})$ for some p-block \bar{b} of N/(RD'). By [3, Lemma 64.3(1)], $\bar{b} \subseteq b$. Take any $\psi \in \operatorname{Irr}(\bar{b})$, so that $\psi \in \operatorname{Irr}(b)$ with $RD' \subseteq \operatorname{Ker} \psi$. This shows $\psi \in I$. Hence $\bar{b} = \bar{b}_i$ for some j. So that $\phi \in \operatorname{IBr}(\bar{b}_i)$. Thus, we have $\tilde{F} = \bar{F}$. Then,

$$\bigcap_{i=1}^{m} N_{\overline{b}_{i}}^{*} = \bigcap_{\phi \in \overline{F}} \operatorname{Ker} \phi \cong \bigcap_{\phi \in \overline{F}} (\operatorname{Ker} \phi/((RD')/R))$$

$$= \left(\bigcap_{\phi \in \overline{F}} \operatorname{Ker} \phi \right) / ((RD')/R) = \left(\bigcap_{i=1}^{m} N_{\overline{b}_{i}}^{*} \right) / ((RD'/R).$$
(**)

Take any \tilde{b}_i . Let $\tilde{\psi} \in \operatorname{Irr}(\tilde{b}_i)$. By [1, Proposition (3B*)], $N_{\tilde{b}_i} = O_{p'}(\operatorname{Ker} \tilde{\psi})$. When we consider $\tilde{\psi} \in \operatorname{Irr}(b)$, we write ψ for $\tilde{\psi}$. Then, similarly $R = N_b = O_{p'}(\operatorname{Ker} \psi)$. Since $\operatorname{Ker} \tilde{\psi} = (\operatorname{Ker} \psi)/R$, $N_{\tilde{b}_i} = 1$. Hence, by [1, Proposition (3D)], $N_{\tilde{b}_i}^*$ is a *p*-group for all *i*. Thus, $\bigcap_{i=1}^m N_{\tilde{b}_i}^*$ is also a *p*-group from (**). Hence, by [1, Propositions (3A) and (3D)], $\bigcap_{i=1}^m N_{\tilde{b}_i} = 1$. Since $\bigcap_{i=1}^m N_{\tilde{b}_i} = (\bigcap_{\psi \in I} \operatorname{Ker} \psi)/(RD')$, we get (*).

Hence, $L \cap N = RD'$. Let $K = \bigcap \{ \text{Ker } \chi \mid \chi \in \text{Irr}(B), RD \subseteq \text{Ker } \chi \}$. We get $K \cap N = RD$ as for $L \cap N$. Since $D' \subseteq L \cap D$, (LD)/L is isomorphic to a factor group of D/D', so that (LD)/L is abelian. We have shown that there is some $\chi \in \text{Irr}(B)$ with $RD \subseteq \text{Ker } \chi$. Hence $K \subseteq \text{Ker } \chi$. We can consider $\chi \in \text{Irr}(\overline{B})$ for some p-block \overline{B} of G/K, so that $\overline{B} \subseteq B$ by [3, Lemma 64.3(1)]. Then, by [3, Lemma 64.3(2)], D is a Sylow p-subgroup of K since $D \subseteq K$. Hence (LD)/L is an abelian Sylow p-subgroup of K/L. Let $M/L = N_{K/L}((LD)/L)$. By Sylow's theorem, $M = L(M \cap N)$. Hence $M \subseteq L(K \cap N) = L(RD) = LD$, so that (LD)/L = M/L. Thus, by Burnside's theorem [3, Theorem 18.7], K/L is p-nilpotent. Let $C/L = O_{p'}(K/L)$, so that $C \cap LD = L$. Hence, $C \cap D \subseteq L \cap D = L \cap N \cap D = RD' \cap D = D'$. Since D is a p-group, $D' \subseteq \Phi(D)$ where $\Phi(D)$ is the Frattini subgroup of D. Then it follows from [4, IV 4.7 Satz] that C is p-nilpotent. Hence, $C = X(C \cap D)$ where $X = O_{p'}(C)$. Since X is normal in K and since K = XD, K is also p-nilpotent. We know from [1, Proposition (3A)] that $N_B \subseteq O_{p'}(K)$. On the other hand, there exists $\chi \in Irr(B)$ with $RD \subseteq Ker \chi$. By [1, Proposition (3B^{*})], $N_B = O_{p'}(Ker \chi)$. Since $O_{p'}(K)$ is normal in Ker χ , $O_{p'}(K) \subseteq O_{p'}(Ker \chi)$. Hence $N_B = O_{p'}(K)$. Then, by [1, Proposition (3D)], we have $K/N_B \subseteq O_p(G/N_B) = N_B^*/N_B$. Hence $D \subseteq N_B^*$. This completes the proof of the theorem.

COROLLARY 1. Let G, B, D and N be as above and satisfy $D \subseteq N_B^*$. Let b be a p-block of N with $b^G = B$. Then

(i) $p \not| |G:N|$.

- (ii) $k(b) \leq k(B)$.
- (iii) $k_0(b) \le k_0(B)$.

Proof. Since there exists $\psi \in Irr(b)$ with height zero, we get (i) by Theorem (4). We have (ii) and (iii) from Theorem (2) and Theorem (4), respectively.

COROLLARY 2 (cf. [5, Theorems 2 and 4]). Let P be a Sylow p-subgroup of G, and let $N_0 = N_G(P)$, $B_0 = B_0(G)$ and $b_0 = B_0(N_0)$. Then the following are equivalent.

- (1) G is p-solvable of p-length 1.
- (2) For each $\psi \in Irr(b_0)$ there is some $\chi \in Irr(B_0)$ such that $\chi |_{N_0} = \psi$.
- (3) For each $\psi \in \operatorname{Irr}(b_0)$ with $p \not\mid \psi(1)$ there is some $\chi \in \operatorname{Irr}(B_0)$ such that $\chi \mid_{N_0} = \psi$.
- (4) If $\chi \in \operatorname{Irr}(B_0)$ then $\chi \mid_{N_0} \in \operatorname{Irr}(N_0)$.
- (5) If $\chi \in Irr(B_0)$ with $p \not\mid \chi(1)$ then $\chi \mid_{N_0} \in Irr(N_0)$.
- (6) If $\phi \in \operatorname{IBr}(B_0)$ then $\phi \mid_{N_0} \in \operatorname{IBr}(N_0)$.

Proof. Clearly, G is p-solvable of p-length 1 if and only if $P \subseteq O_{p',p}(G)$. By [3, Theorem 65.2(2)], $N_{B_0}^* = O_{p',p}(G)$. Since $p \nmid |G: N_0|$, by Brauer's third main theorem [3, Theorem 65.4], the corollary is a special case of the theorem.

REMARK. Concerning kernels of representations of finite groups there is a result of G. O. Michler [6].

REFERENCES

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489-521.

2. R. Brauer, On blocks and sections in finite groups I, Amer. J. Math. 89 (1967), 1115-1136.

3. L. Dornhoff, Group representation theory, parts A and B, (Dekker, 1971-1972).

4. B. Huppert, Endliche Gruppen I, (Springer-Verlag, 1967).

5. I. M. Isaacs and S. D. Smith, A note on groups of p-length 1, J. Algebra 38 (1976), 531-535.

6. G. O. Michler, The kernel of a block of a group algebra, Proc. Amer. Math. Soc. 37 (1973), 47-49.

DEPARTMENT OF MATHEMATICS CHIBA UNIVERSITY 1–33, YAYOI-CHO CHIBA-CITY, 280 JAPAN