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Abstract

The interaction of a number of self-heating bodies depositing heat into a common finite
heat bath and thereby influencing each other is a problem of great practical importance in
many areas including storage and transport of self-heating materials, drums of chemicals,
foodstuffs etc. Critical conditions for the complete assembly of interacting heat producers
(thermons) are derived under various assumptions and modes of ignition are identified.
These include cooperative modes as well as modes which are simply perturbations of
ignition for single thermons.

1. Introduction

Self heating is a problem of both immense practical and industrial interest and also
academic interest. It gives rise to many interesting nonlinear equations involving the
ubiquitous Arrhenius function exp(—1/u) where u is a dimensionless temperature
which is bounded away from zero. An immense amount of work has been carried out
on individual self-heating bodies placed in fixed ambient temperatures with various
forms of time independent boundary conditions. Bowes’ book [2] gives a fairly
comprehensive account of a large part of this work. A small amount of work has been
done on time dependent boundary conditions of an explicitly given functional form,
for example [6], but no attention seems to have been paid to a situation of very great
practical importance and frequent occurrence, that is, a number of self-heating bodies
(thermons) discharging heat into a common atmosphere of finite thermal capacity
({7, 8]). Practical examples of this abound — storage of charcoal containers in a
ship’s hold (see [2]) and the transport of any self-heating material in kegs, drums or
cartons, inside a container, which itself may be on a truck or inside the hold of a ship.
The essential point of interest is that an extra thermal resistance is inserted between
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FIGURE 1. Schematic diagram of a possible configuration.

the reactive self-heating material and the infinite thermal capacity thermostat (the
outside atmosphere) implied by the time independent boundary conditions. Cartons
of oxidisable food products (such as noodles) shrink-wrapped onto 1.4 m* pallets can
interact significantly in this way and Clancey [3] has drawn attention to the many
disastrous fires suspected of being caused by calcium hypochlorite (pool chlorine)
shipped in drums packed in 20 ft containers which are themselves stacked inside
ships’ holds at hold temperatures which may be as high as 40°C.

The generic mathematical problem posed is an interesting and in complete gener-
ality, an intractable one. However tractable formulations which contain the essence
of the problem and give semi-quantitative results can be found.

Reference to Figure 1 shows that in general, there are great geometrical compli-
cations. This shows a system in plan—it can be interpreted as showing a number
of drums of circular cross section in a container shaped as a rectangular brick—this
would be a common practical case. Here T, is a fixed ambient temperature—the outer
atmosphere, and T is the (generally time dependent) temperature of the air inside the
container—this is the medium through which the self-heating bodies interact. The
self-heating bodies, each with internal temperature distribution T;(r, ) will usually
be identical (we will assume this) and will usually have identical initial conditions.
Clearly a very important parameter in the problem will be the heat transfer coefficient
of the outer container wall W. In the limit as this quantity — o0 (or as the size of
the outer container — 00) the interaction between the drums — O and they behave
as single bodies placed in a heat bath at constant temperature 7,. Our task is to in-
vestigate the dependence of the initial condition for ignition (saddle-node bifurcation
locus) on the heat transfer through the outer container to the (assumed) atmospheric
heat bath and on the number of bodies inside the container. We commence this task
by examining some approximations which result in tractable, but still meaningful,
formulations of the general problem.
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2. The “well-stirred” formulation

It has proved a very useful procedure in thermal ignition theory, when investigating
a new problem such as this one, to firstly remove geometry from consideration by
following the procedure originally formulated in order to study the dynamics of
igniting systems, that is, as an initial value problem. In this section we will follow
this procedure and view the problems as a dynamical system.

We consider n identical self-heating bodies, not in direct contact with each other,
placed inside a container as in Figure 1. The bodies are not in direct contact with
the container wall. The container is placed in a constant temperature heat bath,
temperature 7,. We can write an energy conservation equation for each body in the
form

dT; E o .
vad_t =vQZexp (—ﬁ) —-xs(I'-T), TOY=T", i=1,...,n, (1)
where T; is the (spatially constant) temperature of each body, v is the volume of each
body, ¢ is the heat capacity, p is the density, Q is the heat of reaction, Z is the pre-
exponential factor and E the activation energy of the reaction. Here R is the universal
gas constant and s is the surface area of each body. The heat transfer coefficient from
the surface of the solid body to the air inside the container is given by y. We are
assuming here that the fuel concentration remains at its initial value on the time scale
under consideration. This is discussed in detail in [S]. It is worth noting at this point
that this number is much more sensitive to the physical nature of the solid surface
than it is to the nature, and thermal conductivity, of the material itself. For a smooth
surface heat transfer from the solid to the gas phase the boundary layer is important.
For heat transfer through the container wall, two such transfers must occur, that is,
air — solid followed by solid — air. If we assume the air inside the container is as
well stirred as that in the heat bath at T, then the outer heat transfer coefficient will
be approximately 0.5y, since overall the process involves two air/solid processes in
series.

The energy conservation for the container can be written down with the same
assumptions:

dT .
— _ — - 2
CPV =X §i=l:(T, T)-y¢S(T-T,), (2)

where C, P and V now refer to the air inside the container. We denote by v the heat
transfer coefficient for the series heat transfer processes container air — container
wall; container wall — ambient air and this should be approximately 0.5x. The
surface area of the container (walls assumed thin) is given by S. If V; is the volume
of the container, V = V, — nv.
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It is convenient to make these equations dimensionless and they can be written in
the form

du,' 0 .
E:exp(-l/u;)—l(ui—u), wO)=u, i=1,...,n, 3

a_ = 12(,,4, —u) — Blu—u,), u©=u’, 4

where
u;=RT,/JE, tT=ZREQ/cpE, |=xsE/vQRZ, u=RT/E,

u, =RT,/E, a=CPV/cov=CP(Vy—nv)/cpv, B=¢¥S/xs.

It is worth noting here that the requirement V; — v > 0 bounds n, assuming V; and v
given, there is no relationship between S, s and n. In many realistic cases ns > S.

The dimensionality of the problem can be reduced to two for the physically impor-
tant case u;(0) = u; = u? since this implies ¥;(z) = u; (r), T > O for all , j, that is,
all the drums behave identicaily. Many physically interesting cases arise where this is
not so, for example where one drum is initially hotter than the rest, the question as to
how much hotter it can be before it pushes the assembly over the ignition watershed
is an important one which will be addressed in a later paper. Here we will restrict
ourselves to the most important practical special case of identical initial conditions
for each self-heating body. This being two-dimensional is also of high pedagoglcal
value. Equations (3) and (4) become

= exp(—1/u;) — l(u; — u),
(5)

a-d—u =In(u, —u) —1B(u — u,).
dt

3. Special case — A two-dimensional system

Here we examine (5) using standard techniques. We just examine the singularities

satisfying
exp(—=1/u)) ~l(uy —u)=0 ©)
Inuy, — l(n+ B)u + 1Bu, =0,
from which u can be eliminated giving the bifurcation problem
l(ul - ua)
exp(—1l/u) - —————F+ = 7
p(—1/u;) A+ n/B) N

This is a familiar equation with the interaction represented by the term (1 + n/g8)~!
modifying the loss coefficient. As 8 — oo the interaction tends to zero and the

https://doi.org/10.1017/51446181100011391 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100011391

[5] Critical conditions for an assembly of interacting thermons 5

familiar problem is retained. The locus of saddle node bifurcations is obtained in the
usual way by solving (7) along with det.J = 0, where J is the Jacobian matrix. This
provides us with the condition

exp(-l/u) I

=0 8)
ui (1+n/B)
Equations (7) and (8) can be solved for «, to give the result at criticality
up = (1/2) £ (1 — 4u,)'?/2. 9
For most cases of practical interest u, < 1. Hence
uf ~1—u, —u2,
(10)

- 2
Uy > ug +u,

u; referring to the ignition bifurcation in which we are most interested. Substitution
in (7) gives us an approximation for the ignition locus in parameter space as

—1/u,(1 »
I = 1+ﬁ)exP[ [ua(l + ua)] (1
B w2
A more interesting form of this equation is
n = B{lul exp[1/u (1 + u,)] — 1}. (12)

If the number of self-heating bodies exceeds this figure then ignition will occur—it is
the maximum safe number of self-heating bodies storable under the conditions defined
by the parameters [, 8 and u,.

Examination of the Jacobian matrix for the system (5) shows that Hopf bifurcations
are not possible. It is conjectured that periodic solutions of (5) do not exist.

3.1. « > 0% Asymptotics involving extreme values of the parameter ¢ give some
interesting insights when two clearly distinguished time scales occur. Recalling the
definition of @« = CP V/cpv, if the reacting bodies are separated by air and they
constitute either solid or liquid, then we can expect @« « 1. In this case we expect
motion to occur on the slow subspace according to the equations

% = exp(—1/uy) — l(u, — w), (13)
T
n ﬂua
u_(n+/3)ul+n+,3’ 14)

which reduce to

D p(—1 /) — — I5
o = exp /uy m(un—ua)- (15)
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Thus for small & and arbitrary initial conditions we expect rapid motion at constant u,
onto the slow subspace followed by evolution according to (15). Physically the rapid
variation of u represents the adjustment of the air temperature inside the container to
a value compatible with the initial temperature of the solid or liquid reacting material.

Numerical computation shows the existence of a large region in the u;, — u plane
such that initial conditions in that region lead to ignition for n = 40 but not for n = 1,
for example. At first sight this is surprising since the ignition region in parameter
space increases with n. This phenomenon occurs for relatively large u and low 8
and can easily be understood in physical terms. The energy contained in the warm
or hot air inside the container raises the temperature of the solid reactive material on
the short time scale. The greater the thermal capacity of this material (larger n) the
smaller will be the resulting temperature rise in u; and the resulting value may well
be on the lower side of the separatrix.

3.2. « — oo This case would represent bubbles or pores of reactive gas in a liquid
or solid matrix, itself in a thermostated environment. It is convenient to rewrite (5)
withe = 1/ — 0*:

%u_, = exp(—1/uy) — l(u, — u),
du (1
d—-— = el{n(ul et ll) - ﬁ(u - ua)}'

T

On the fast (r) time scale, to zeroth order, we have to deal with the transparent problem

du'®
dt‘ =exp (=1/u”) — 1 [u{” = u(©)]. (17)

Clearly if u(0), which is now to be regarded as the (fixed) ambient temperature for
the reacting gas, is above the critical value ignition will occur. The whole ignition
process occurs on the fast time scale, interaction between the bubbles playing little or
no role. A much more interesting case is where the initial value u(0) is not sufficiently
high to ignite a single bubble. We are interested in the existence of regions where
“cooperative ignition” of the bubbles can occur. If we transform to the slow time
T’ = et (16) becomes (on zeroth approximation € — 0%)

exp (—=1/u”) =1 (u{ — u®) =0, (18)

du® © ) (0)
= =1[n(u® —u®) - B (U —u)], (19)

where we are now assuming that u‘,o) is on the minimal solution branch of (18). After

elimination of u® and some rearrangement we find that the slow motion is defined by
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the single equation

o+ B (= 1) — 1 = )1+ /)
drr I—exp(—1/u”)/u(0)’

(20)

and the terms are such that this motion commences in a region of increasing 1 ”,

both numerator and denominator being positive. This slow motion proceeds until
the singularity in (20) is approached when ignition occurs and the approximation
breaks down. Numerical simulation shows this interesting highly cooperative form of
ignition very clearly. An initial rapid relaxation onto the slow manifold followed by
prolonged development along it, finally terminating in ignition.

In physical terms this situation can be very misleading and very dangerous giving
rise to extremely delayed ignition compared with the typical time scale for ignition of a
single body, at ambient temperatures somewhat lower than expected for a single body.

4. The general (unsymmetrical) case

In the general problem as described by (3) and (4), if we do not assume equal initial
conditions for all of the reacting bodies we obviously cannot achieve a reduction
in dimensionality. However this increase in dimensionality raises very interesting
questions of symmetry. We will restrict ourselves to a brief study of the singularities
of the general system and consider the defining equations for them

exp(—1/u;)) —l(u; —u)=0, i=1,...,n,
- (21
D (i —u) = Blu—u,) =0.
i=1 !

The interesting point is that for any given value of u, each of the first n equations
of (21) will have either 1, 2 or 3 solutions. The case of two solutions would be on
a bifurcation locus so we will exclude that case for the present and concentrate on
the case of three possible solutions. We would expect a series of steady states for the
assembly in which each of the individual bodies could be in any one of the possible
individual states ignoring stability considerations for the moment. Naively we might
expect an assembly of n bodies to exhibit 3" steady states all told, with a range of
stabilities. Given this possibility one then has to ask what the bifurcation diagram
would look like, and indeed what would be an appropriate norm?

Here we merely attempt to throw some light on this question by looking at asymp-
totics for 8 — 0o0. Remembering our notation, ¢ = 1/8, we assume for ¢ — 0%,

u; = ufo) + Gf,' + 0 (62) , (22)
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when the 4 are the known solutions for each noninteracting body, also known to pos-
sess three branches. Substitution of (22) into (21) gives, after the usual manipulation,

the results

n )
Zj:l uj — N,

I —exp(—1/u®)/u®’

" (23)
u~u?+e (Zui —nu,,).

j=!

u; = uEO) + €l

Clearly if the asymptotics are valid, (23) shows that there is one to one correspondence
between the assembly states with no interaction and those with weak interaction. In
(23) we have to note that each of the functions uj(.o) on the right-hand side can in fact
refer to any one of three branches. Stability questions remain to be answered. For
example in the case of two bodies, one in the lower (individually stable) state and one
in the upper (also individually stable) state, will the aggregate assembly be in a stable
(doubly degenerate) state? This question appears related to questions of stability
of spatially asymmetrical solutions of symmetrically posed problems discussed in a
combustion [1] and general [4] context.

The differential equations for the f,(t), although linear, inevitably involve the
unknown zeroth order solutions. In fact the equations are easily shown to be

df; ex (—l/ufo’) a .
i j=1

For sufficiently large t we know that u” — where #” is one of the stable steady

solutions of the unperturbed assembly. This implies that

il

exp( — l/ufo)z)
ul”

~l = —x], T—> 00, (25)

where the |A;| are constant. So for sufficiently large t, (24) assumes the form

dfi
Ti s+ I (26)
T
where p > 0 is a constant. Thus it appears likely that for large

o , €lu

u; —> ui + my T — 00, (27)

provided u® is stable. This may not hold in higher approximations. The critical
condition itself for the general case, that is, for a saddle-node bifurcation, is given by
equations (21) plus the condition

DetJ =0, (28)
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which is readily shown to give the expression
d
—[%(u) ~ Bl(u — uy)] =0, (29)
du

where Z(u) is the total chemical heat generation rate in the system. The symmetry
of J rules out the possibility of Hopf bifurcations in this system.

5. Some analytical solutions

With truncation of the Arrhenius function to simple exponential form it is well
known in the combustion literature, for example [2], that analytical solutions are
known for the infinite slab and the infinite cylinder. For a fifth power law in place of
the Arrhenius function an analytical solution is also known for the sphere and hollow
sphere. Here we will illustrate the use of the Chambré [1] solution for the infinite
cylinder in a context with interaction.

Let us consider n infinite cylinders (pipes) in an infinite box (conduit) which itself
is placed in a constant temperature thermostat.

If we use the traditional combustion dimensionless variables § and 8, the equation
describing the reacting medium in each pipe is (we are now looking at steady spatially
varying solutions)

d’6 1do

— 4+ —— 48" =0 30

s + S + € (30)

with boundary conditions

do

—~ =0, =0, 31

b p 3h
6 =8, p=1. (32)

Here 6 is defined with respect to the ambient temperature outside the conduit and 8, is
the spatially constant temperature in the dead space inside the conduit. We have used
the radius of the pipes (identical) as the length scale giving

" QZpr’E

e exp(=E/RT,), (33)

where Q, Z, E, T, and R are already defined and « is the thermal conductivity of the
reacting material inside each pipe, and r is the radius of each pipe.
The analytical solution inside each pipe is

. 8B

e = —8(1 n sz)z (34)
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where B is a constant. If we apply the boundary condition at p = 1, 8 = 6,, we get
¢" =8B/(5(1 + B)?) (35)

and the dimensionless heat flux from each pipe into the conduit is

do 4B
(——) = — (36)
dp/),., 1+B
The steady state equation for the conduit containing n pipes and losing heat to the

surrounding thermostat at 8 = 0 is simply then

4Bn

= 7
T+ B £6, @3 )
where .Z is the dimensionless heat transfer coefficient through the conduit. In fact
Sh
L =— (38)
2nk

where S is the surface area per unit length of the conduit and 4 is the heat transfer
coefficient through the conduit wall. For a single pipe in a concentric circular con-
duit it is possible to write down an analytical solution for the case of finite thermal
conductivity of the air space. It is a simple matter to show that the critical ambient
temperature for this case is lower than the well-stirred case discussed here, which
represents arbitrarily large thermal conductivity of the air space.

If we take exponentials of (37) and use (35) we obtain

8§ = (l_j-% exp[-4Bn/ % (1 + B)]. 39)
In the traditional way we define the critical value of § by
L) = (40)
dB
This gives us the critical value of B, B, from
g _ 4B, @)
n (1-B)(1+ B,
which gives
B.=(1+4n%/£%)"" —2n/ 2. (42)

It is most concise to regard (39) and (42) as a parametric definition of 8. so that
8B, | 4B.n 4n\'*  2n
b= ——— ——— |, B.=|14— - —. 43
(1+Bc)zexP[ $(1+Bc)] ( +.¥’2) 7z
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This tends to the well known Chambré solution for . — o0, thatis, §, =2, B, =1
and it is a trivial matter to obtain expansions for small n/.%. In fact to order (n/.%)
we have

8. ~2(1-2n/%). (44)

It is interesting that criticality depends only on the ratio of n/.% exactly.
Similar expressions can be obtained for the infinite slab and sphere without diffi-
culty.

6. Conclusions

The interaction of self-heating bodies (thermons) can be treated both from the
dynamical systems point of view and the stationary spatial distribution point of view, as
can individual thermons. Applications are widespread such as in storage and shipping
situations where drums or kegs of material are shipped inside containers which have
generally poor heat transfer characteristics and cause significant interaction. -

Also dense dust clouds in which the particles are porous may well exhibit significant
interaction between the regions of reaction. Similarly granular materials may in some
cases be more appropriately treated by the concept of interaction of thermons rather
than use of a continuum model. The model also applies to vapour phase reaction in
pores or bubbles in a liquid or solid medium, the interactions being particularly strong
if the medium has a high thermal conductivity. In this case times to ignition can show
unexpected dependence on parameter values.

Finally the treatment outlined here presents no obstacles to generalisation of the Ar-
rhenius function to other temperature dependencies, and this is particularly important
where complex chemistry is responsible for the self-heating.
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