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Abstract

Using the co-categorical enhancement of mixed Hodge modules constructed by the author in a previous paper, we
explain how mixed Hodge modules canonically extend to algebraic stacks, together with all the six operations and
weights. We also prove that Drew’s approach to motivic Hodge modules gives an co-category that embeds fully
faithfully in mixed Hodge modules, and we identify the image as mixed Hodge modules of geometric origin.
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1. Introduction

Let X be a complex algebraic variety and n € N be an integer. Deligne’s work in [Del74] gives a
polarisable mixed Hodge structure on the singular cohomology H;’ing(X (©), Q) of the complex points
of X, seen as an analytic variety. M. Saito’s category of algebraic mixed Hodge modules ([Sai90b]) on X
is an Abelian category MHM (X)) modelled on perverse sheaves which is a relative version of polarisable
mixed Hodge structures. Its derived category D” (MHM(X)) is endowed with the six sheaf operations
and any complex of mixed Hodge modules K has an underlying complex rat(K) of perverse sheaves.
The mixed Hodge structure on H;’ing(X (©), Q) can be recovered as H"( f.Qx ) where

f.: D*(MHM(X)) — D”(MHM(Spec(C))) =~ D” (MHS¢)
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is the pushforward of the map f : X — Spec(C) and Qx € D?(MHM(X)) is the unit for the
tensor product, whose underlying sheaf of perverse sheaves is the constant sheaf of Q-vector spaces
Qx € Sh(X(C), Q) under Beilinson’s ([Bei87b]) isomorphism D? (Perv(X, Q)) =~ D2(X(C)®, Q). This
point of view is very powerful as the formalism of the six operations is useful to make computations
and reductions.

If X is a reasonable algebraic stack (say a global quotient stack or a stack exhausted étale locally
by such), one can construct a mixed Hodge structure on H?ing(%(@), Q) either by hyperdescent as in
[Del74, Section 6.1] or by using exhaustions as in [Dav24, Section 5.2]. One purpose of this article
(see Section 4) is to give an extension of M. Saito’s derived category, together with the six operations,
to algebraic stacks so that the above mixed Hodge structures can be recovered as H"(f.Qx) with
f : ¥ — Spec(C) the structural map:

Theorem (Theorem 4.1.1, Corollary 4.3.8 and Theorem 4.1.11). There exists a canonical extension of
the derived category of mixed Hodge modules to algebraic stacks over the complex numbers. It has the
six operations, nearby cycles and a notion of weights. Over stacks with affine stabilisers this notion of
weights gives rise to a weight structure a la Bondarko.

The proof relies on the co-categorical enhancement of mixed Hodge modules obtained in [Tub25],
and then on Liu and Zheng’s work ([L.Z17]) on extension of formalisms of six operations to stacks. The
construction of nearby cycles is based on a motivic construction of the unipotent nearby cycles functor
considered in [CHS24], who give a natural setting in which Ayoub’s construction of nearby cycles
([Ayo07b]) works. We hope that this paper will be useful as a toolbox for studying the Hodge cohomology
of stacks. It has been used by T. Kinjo in [Kin24] to prove purity statements and decomposition theorems
for the homology of stacks having a good moduli space.

There is another approach to giving a relative version of mixed Hodge structures. In [Drel8], Drew
constructs an oo-category of motivic Hodge modules DH(X) which is endowed with the six operations
as well as with a notion of weights. If X = Spec C this category embeds fully faithfully in D(IndMHMé)
the derived category of the indization of mixed Hodge modules. This construction has the advantage of
being quite straightforward: one considers the commutative algebra H in the co-category of Voevodsky
étale motives that represents Hodge cohomology, and then one takes modules over this algebra. In
comparison, M. Saito’s construction is very delicate and requires a lot of attention in order to work. The
major drawback of Drew’s construction is that there was no easy construction of a t-structure, hence one
loses access to an abelian category. The second purpose of this article is to prove that Drew’s category
gives the right thing: it is endowed with a t-structure and it embeds fully faithfully in the derived category
of mixed Hodge modules. We also identify its image.

Theorem (Theorem 3.2.5). Let X be a finite type scheme over the complex numbers. The co-category
of motivic Hodge modules on X of Drew embeds in the derived category of ind-mixed Hodge modules
on X. Its image is the category generated under shifts and colimits by objects of the form f.Qy with
f Y — X a proper morphism.

There is also an improved version of this theorem with enriched motivic Hodge modules, which
reach the co-category generated under shifts and colimits by objects of the form f,g*H with f : Y — X
proper, g : ¥ — Spec C the structural morphism and H € MHS¢ a graded polarisable rational mixed
Hodge structure over C. We refer the reader to Section 3 for more details. To prove this result, we use that
by the work of Drew and Gallauer ([DG22]) the co-categorical enhancement of mixed Hodge modules
provides a realisation functor

pu: DMg — IndD? (MHM(-))

from the presentable co-category of rational étale Voevodsky motives to the indization of the derived
category of mixed Hodge modules, that commutes with the operations and is colimit preserving. By
abstract nonsense this functor will factor through Drew’s category of mixed Hodge modules and give
a fully faithful functor DH — IndD” (MHM). The identification of the image is inspired by the proof

https://doi.org/10.1017/fms.2025.10122 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10122

Forum of Mathematics, Sigma 3

of Ayoub in the Betti case ([Ayo22, Theorem 1.98]), and relies on the semi-simplicity of smooth and
proper pushforwards of pure mixed Hodge modules.

Organisation of the paper

In the first Section 2 of this article we recall how to construct the co-categorical enhancement of the six
operations for mixed Hodge modules, and why this gives a Hodge realisation of étale motives. In the
second Section 3 we show that Drew’s construction embeds fully faithfully in mixed Hodge modules. In
the last Section 4 we explain how to extend mixed Hodge modules on stacks, finishing with a comparison
to existing constructions.

2. Recollections on co-categorical enhancements of mixed Hodge modules
2.1. Construction of the enhancement

In [Tub25], we proved that Saito’s construction of the triangulated bounded derived category of algebraic
mixed Hodge modules, together with the six operations, can be enhanced to the world of co-categories.
Let us recall how this works:

For every separated finite type C-scheme X, the bounded derived category D? (MHM (X)) of mixed
Hodge modules carries a natural standard t-structure (called the constructible t-structure in loc. cit.
but we prefer the name standard because all complexes on D?(MHM(X)) are constructible) which is
characterised by the fact that

D? (MHM(X))"s¢€l@-b] = (K ¢ DP(MHM(X)) | Vx € X closed, x*K € DI*?I(MHS¢)}

for every —oo < a < b < +o0. If we endow D? (X (C)™, Q) with its canonical t-structure induced by the
inclusion

DZ(X ()™, Q) € D(Sh(X(C)™. Q)
then the ‘underlying Q-structure functor’
rat: D’ (MHM(X)) — D5 (X(C)™, Q)

is t-exact if the left-hand side is endowed with the standard t-structure. Denote by MHMgq (X) the heart
of the standard t-structure. The crucial result in [Tub25] is the following, whose proof is adapted from
Nori’s proof ([Nor02]) of the analogous result for D2 (X (C)", Q):

Theorem 2.1.1 [Tub25, Corollary 2.19]. The canonical functor
D’ (MHMq4(X)) — D”(MHM(X))

is an equivalence.

Using this, because pullbacks f* are t-exact for the standard t-structure, it is not hard to see that they
are derived functors, hence that they canonically have a co-categorical enhancement which is functorial
in f, and the same can be said for the tensor product. The enhancements of the other operations arise by
adjunction: if an co-functor between stable co-categories has an adjoint on the homotopy triangulated
category, it has an co-categorical adjoint by [NRS20, Theorem 3.3.1].

In particular, we have a functor

D”(MHM(-)) : Sch — CAlg(St)
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taking values in the co-category of stably symmetric monoidal co-categories and symmetric monoidal
exact functors. It sends a map f : ¥ — X of finite type C-schemes (say, separated) to an co-functor
f* lifting Saito’s pullback functor on the homotopy category. For smooth f, the functor f* admits a
left adjoint fy, and moreover D? (MHM(-)) satisfies the usual axioms considered in motivic context:
Al-invariance, P'-stability, smooth base change, proper base change efc. In particular, the underlying
homotopy functor is a motivic triangulated category in the sense of [CD 19, Definition 2.4.45], it satisfies
moreover h-hyperdescent. We now consider the functor

Dy(-) := IndD” (MHM(-)) : SchY — CAlg(Pr§)

taking values in presentable co-categories. By [Tub25, Appendix A], we see that both Dy and
D?(MHM(-)) extend to not necessarily separated schemes using Zariski descent, together with all
the operations.

Remark 2.1.2. The above functor extends tautologically to a functor from diagram of schemes to
diagram of symmetric monoidal stable co-categories, hence we can evaluate Dy on a simplicial scheme
to obtain a cosimplicial diagram of co-categories. Using the fact that it is easy (see [Sai90b, Remark
before 4.6]) to compare the mixed Hodge structures on H;’ing(X (C),Q) constructed by Deligne and
Saito (under the equivalence MHM(Spec(C)) =~ MHSE) when X is a closed subset of a smooth variety,
h-hyperdescent of the derived category of mixed Hodge modules gives (using a resolution of singular-
ities, that provides a h-hypercovering made out of smooth varieties) a simple proof that in fact the two
mixed Hodge structures are the same for a general complex variety X. This result was known, but the
proof is quite involved (see [Sai00]).

Remark 2.1.3. Everything we do in this article would probably hold more generally for arithmetic mixed
Hodge modules over varieties defined over a subfield k of C. They are considered in [Sai06, Examples
1.8 (ii)], and our work in [Tub25], thus the proofs of this article, would probably work verbatim in this
slightly more general context.

2.2. Hodge realisation of étale motives

The main motivation for the co-categorical lifting of mixed Hodge modules was that this was the only
obstruction for the existence of a realisation functor from Voevodsky motives that commutes with all the
operations. We will deal here with the étale version, with rational coefficients. Recall that the co-category
of étale motives with rational coefficients over a scheme X is defined (see [Rob15]) as a formula by

DMe(X) := Shj, ., (Smx, Modg) [Q(1)®'].

This means that to construct DM (X), one considers étale hypersheaves on smooth X-schemes
with values in Modg =~ D(Q) that are Al-invariant, and then one inverts the object Q(1) =
(M (P;)/ M (oox))[—2] for the tensor product, with M the Yoneda embedding. The formula gives an
universal property of the presentable symmetric monoidal co-category DMg(X), as proven by Robalo in
[Rob15]: any symmetric monoidal functor F on smooth X-schemes with values in a rational presentably
symmetric monoidal co-category D that satisfies étale hyperdescent, A'-invariance, and such that
F (P;() /F (cox) is a tensor invertible object factors uniquely through the functor M : Smy — DM (X).
By the work of Drew and Gallauer [DG22] in fact this universality of DM (X) induces a universal
property of the functor DMg, on schemes of finite type over some base S. Together with [CD19, Theorem
4.4.25], taking S = Spec(C) one obtains:

Theorem 2.2.1 [Tub25, Theorem 4.4]. There exists a Hodge realisation

pu: DMg — Dy
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on finite type C-schemes that commutes with the six operations. Moreover, the composition with the
functor

rat: Dy — IndDi’.(—, Q)

gives the Betti realisation.

We will use this functor in the next section to compare mixed Hodge modules with Drew’s approach,
and at the end of this article to obtain the computation of the cohomology of a quotient stack with
exhaustions in an easy way.

3. Mixed Hodge modules of geometric origin

In this section, we prove that Drew’s approach in [Drel8] to motivic Hodge modules gives a full
subcategory of the derived category of mixed Hodge modules, stable under truncation, and thus has a
t-structure.

3.1. Motivic Hodge modules

As recalled above, we have a Hodge realisation
pu: DMg — Dy

compatible with all the operations. This functor is Modg-linear. The target Dy is naturally valued
in Dy(C) = IndD? (MHSé)-linear presentable co-categories, where MHSé is the abelian category of
polarisable mixed Hodge structures over C (with rational coefficients). Thus the above realisation has a
natural enrichment

pu: DM — Dy
where DM := DMg ®Mod, Du(C) is the Dy (C)-linearisation of DMg. It can be computed as
DM(X) = DMe(X) ®Mod, Du(C),
but can also be put inside the definition:
DM(X) = Shv},  (Smx, Du(C)[Q(1)*™]

(this follows from [Vol23, Corollary 2.24] which proves that tensoring can go inside sheaves, but also
works for localisations such as A!-localisation. The commutation of tensoring with Dy (C) with inverting
the Tate twist follows from the expression of the Q(1)-tensor inverted category as a colimit (see [AI23,
1.4.12,1.3.13, 1.6.3]), and the preservation of colimits by the functor — ® Dy (C)). Thus the co-category
DM is the P'-stabilisation of the A'-invariant étale hypersheaves on Smy with values in Dy (C). In
particular, it also affords the six operations and the canonical functor DM¢ — DM commutes with
them. For each finite type C-scheme X, the functors

pH . x: DMg(X) — Du(X)
and
pu.x : DM(X) — Du(X)

are colimit preserving symmetric monoidal functors, hence they have lax symmetric monoidal right
adjoints pf X and pfl’x that create commutative algebras

Hx = p*Qx € CAlg(DMg(X))
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and
Hx = pi¥Qx € CAlg(DM(X))

in étale motives. Because the right adjoints commute with pushforwards, the counit maps induces
algebra maps

HX/C = ﬂ%?’lc - Hx
and
’HX/(C = ﬂ}%c — 'Hx,

where mx : X — SpecC is the structural map. We will show below that those maps are in fact
equivalences.

Definition 3.1.1 (Drew). The co-category of motivic Hodge modules over X is
DH(X) := Mody . (DMg(X)).

There is an enriched version, that we will call the co-category of enriched mixed Hodge modules over
X, defined as

DH(X) := Moda, . (DM(X)).

An advantage of DH(X) when compared to DH(X) is that over a point, the co-category DH(X) is the
whole derived category of graded polarisable mixed Hodge structures, whereas DH(X) only consists
of mixed Hodge structures of geometric origin. However:

Notation 3.1.2. As the reader begins to guess, both situations, motivic Hodge modules and enriched
motivic Hodge modules, are parallel. Thus from now on except for the important results we will only
deal with motivic Hodge modules, the proofs in the enriched case being the same. This is only to avoid
doubling the size of this article and the extensive use of bold.

The functor DM is in fact valued in the co-category of DM (C)-linear presentable co-categories,
and the construction DH = Mody;_,. (DMg) can be rewritten

DH = DM ®pmy (c)DH(C).

As DMg(C) and DH(C) are rigid (this means that they are indization of small symmetric monoidal
stable co-categories in which every object is dualisable: by [Ayo 14, Proposition 3.19] they are compactly
generated, by [AyoO7a, Proposition 2.2.27] the motives of smooth projective varieties generate the
compact objects, and by [Rio05, Théoreme 2.2] the motives of smooth projective varieties are strongly
dualisable), the co-functor

— @M () DH(C): Priy o) = Priy o (3.1.2.1)

sending a DM (C)-linear presentable co-category C to C ®pwm, (c) DH(C) = Mody,.(C) has an (co-2)-
categorical enhancement thanks to [HSS17, Section 4.4]. In particular any adjunction

F
—
C%D
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between DM (C)-linear presentable co-categories, such that the right adjoint G itself commutes with
colimits and is DMg (C)-linear (this is automatic if F preserves compact objects by [HSS17, Proposi-
tion 4.9] because DMg(C) and DH(C) are rigid), the image under equation (3.1.2.1) is again an internal
DH(C)-adjunction, which means that G ® DH(C) is the right adjoint to F ® DH(C). Now it turns out
that all properties of coefficients systems ([DG22]) or motivic categories ([CD19]) are properties of
functors that are part of an internal adjunction, hence are preserved by (co-2)-functors. For example, the
property of Al-invariance of such system of co-categories is expressed as the counit pyp” — 1d being
an equivalence, where p : Ag — § is the projection. Thus our functor

DH: Sch? — Pr{,

is naturally a coefficient system in the sense of Drew and Gallauer, and therefore affords the six operations
in a way that is compatible with the functor DM¢ — DH (by [Ayo07a] and [CD19]), and has A-descent
(by [CD19, Theorem 3.3.37]). A proof of this result that does not use (co-2)-categories had been given
by Drew in [Drel8, Theorem 8.10].

3.2. Embedding in mixed Hodge modules
The Hodge realisation naturally factors as

He pu
DMy —25 DH = Dy

where all functors commute with the operations and all categories are compactly generated on schemes.
Indeed one can see it in the following way:

DM — DH = Mody . (DM&) 2% Mod,, (3, , ) (DH) — Modg(DH) < DH
where the map py(H(-);c) — Q is induced by the counit of the adjunction (pu, o).
The first observation is a consequence of the commutation with the operations:

Lemma 3.2.1. For each finite type C-scheme, the functor
PH: DH — Dy
is fully faithful. Moreover the map
Hxc — Hx

is an equivalence.

Proof. The proof is the same as the proof of [Tub25, Lemma 4.14] and is originally due to Cisinski
and Déglise. We recall it here. First over Spec C the functor is fully faithful by [Drel8, Lemma 4.11],
because DM (C) is rigid and py preserves compact objects. Over a general base it suffices to prove
that the functor is fully faithful on compact objects DH®. Using that

Mapp, x) (pa(M), pu(N)) = Mapp, ¢ (Pu(Q), p«Hesz (pu(M), pu(N))),

where p: X — Spec(C) is the structural morphism, and that the same formula holds in DH, we see that
the lemma would follow from the commutation of py with pushforwards and internal homomorphisms.
Because the image of the compact preserving functor — ® H: DMy — DH generates DH, it suffices
even to prove that pg commutes with pushforwards and internal homomorphisms when restricted to the
essential image of — ® H: (DMg)® — DH®. This finishes the proof as py = py o (- ® H) and — ® H
commute with the six operations. T O

Denote by A" the cohomology functor for the standard t-structure.
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Definition 3.2.2 (Ayoub). Let X be a finite type C-scheme.

1. We let MHMge, (X) (resp. MHM},,4(X)) be the full subcategory of IndMHMgq(X) generated under
kernels, cokernels, extensions and filtered colimits by objects of the form S9H"( fury, K) (m) with
K € Modg (resp. with K € Dy (C)), f : Y — X a proper morphism, 7y : ¥ — Spec C the structural
morphism and n,m € Z. These are Grothendieck abelian categories that we called Mixed Hodge
modules of geometric origin (resp. of Hodge origin).

2. Welet Dy geo(X) (resp. Dy nod (X)) be the full subcategory of complexes K € Dy(X) such that for
all n € Z we have “9H"(K) € MHMg, (X) (resp. we have 4" (K) € MHMhoa(X)). Those are
stable co-categories on which the canonical t-structure on Dy(X) = D(IndMHMgy(X)) restricts.
Moreover they are stable under pullbacks by proper base change.

Lemma 3.2.3. The functors

pu: DH — Dy
and

pu: DH — Dy

land in Dy geo and Dy pod-

Proof. This results from the commutation with the operations and the fact that DH(X) (resp. DH(X))
is generated under colimits by the p.n3 K(m) for K € Modg (resp. K € Dy(C)), thanks to [Ayo(7a,
Lemme 2.2.23]. O

Proposition 3.2.4. Let i be the generic point of an irreducible finite type C-scheme X, and consider the
functor

colim,,cy DH(U) — colim,cy (D ge0(U)) (3.2.4.1)

induced by py, where the colimit (taken in Pr’) runs over all the smooth open subsets U of X that
contain n. It is an equivalence.

Proof. Note that by [Lur09, 4.4.5.21, 5.5.7.8], the colimit is in fact computed in Prl, the co-category
of compactly generated co-categories, and we can rewrite it as

Ind(colimnEUDH(U)“’ — colim,, ¢y (DH,geo(U))“’)

where now the colimit inside the Ind(—) is taken in Cat,,. By [HRS25, Proposition 2.1] the functor
between compact objects is fully faithful, using Lemma 3.2.1. It remains to show that it is essentially
surjective. It suffices to reach compact objects.

Denote by

D := colim, ey (Dy ge0 (U)“)

the colimit of the compact objects, computed in Cate,.

For each U, the compact objects of Dy g, (U) have a standard t-structure and its heart is the category
defined in the same way as MHM?SO(U ), but allowing only direct factors instead of all filtered colimits.
As all transitions in the diagram are t-exact, the colimit D of the compact objects (which are the
compact objects of the colimit) has a bounded t-structure. Moreover, the category D is generated under
finite colimits, finite limits, extensions and truncations by images in the colimit of objects of the form
g5 K(n) where g: Z — U is a proper morphism and n € Z is an integer.

By continuity of motives [EHIK21, Lemma 5.1 (ii)] and [LurHA, Theorem 4.8.5.11], the left-

hand side of equation (3.2.4.1) is canonically equivalent to DH(7) := Mod,+#.(DMg (7)), where
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u : 7 — SpecC is the structural morphism. Moreover, by [Ayo07a, Lemma 2.2.27], the co-category
DH(7) is generated under colimits by the firy, K(n) where f : ¥ — 5 is a smooth and projective
morphism, n € Z and K € Modg. By spreading out ([Gro66, 8.10.5(xiii)], [Gro67, 17.7.8(ii)]) and
proper base change, such an object is the restriction to 7 of a g.n%, K(n) with ¢ : Z — U a smooth
projective morphism, and U an open subset of X.

Now consider an object of the form g.n%, K(n) in D, where g: Z — U is a proper morphism and
n € Z is an integer. This object is the image by equation (3.2.4.1) of (g.n7,K(n)), € DH(7). By the
above paragraph, there exists an open subset V of U, a finite category I and a functor F': I — DH(V)
such that for each i € I, the object F (i) is of the form (fl-)*JT*ZiK(I’Li) for f;: Z; — U a smooth and
projective morphism and n; € Z, and such that in DH(7), we have

(g« K (n)), = (colimy F(i)),,.

In particular, in D, the object g.n7, K (n) is isomorphic to the image in the colimit over all open subsets,
of the finite colimit colimy F” (i), where F"’ is the composition of the functor F' with equation (3.2.4.1),
which has the same formula for F’(i).

This gives that the category D is generated under finite colimits, finite limits, direct factors, extensions
and truncations by images in the colimit of objects of the form g.n%, K (n) with g : Z — U smooth and
projective. We may also assume U to be smooth.

It turns out that to prove that the functor of the proposition is essentially surjective, it suffices to
check that it reaches all objects of the heart of the compact objects. Thanks to [Ayo22, Lemma 1.6.22],
we see that it suffices to show that all subquotients of the image in the colimit of all S9H"( fimy K), for
K € Modg compact and f : Y — U projective and smooth, are in the image. Now by dévissage we can
assume K to be pure, so that by the conservation of weights under pushforwards by proper maps, and
because U is smooth hence Y is also smooth so that 7}, K is pure, the object fin}, K is pure. Using the
decomposition theorem for pure complexes, we see that there is a decomposition

fry K = P PH*(fury K)[-n].

In particular, each PH"(f.7ry, K) lies in the image. As f is smooth and proper and 7}, K is a dualisable
object coming from Spec(C), we see that (as in [Rio05, Theorem 2.2], the dual is fin}, KV (d)[2d]
where d is the relative dimension of f) the complex f.7}, K is dualisable, so that PH" ( f.r}, K) are local
systems. Because duality datum consists of finitely many maps, and because compact objects in the
colimit are dualisable, we see that any subquotient of the image of PH"(f.7} K) in the colimit will
lift as a subquotient in the category of local systems, of the restriction of PH"(f.n},K) to a smaller
open subset. Moreover, as PH" ( f.7}, K) is lisse we have PH" ( fun}, K[d])[-d] = StdHn(f,,Jr;‘, K) where
d = dim U (this is because over a smooth scheme, and for lisse complexes, the standard t-structure is the
perverse t-structure, shifted by the dimension [BBD82, proof of Proposition 2.1.3]). This proves that
any subquotient of the image of 4H" ( fery, K) in the colimit is in fact a subquotient in perverse sheaves
of a suitable restriction of PH"(f,rry, K[d]) to an open subset of U. As this object is a pure perverse
sheaf, any subquotient is in fact a direct factor, thus is in the image, and the proof is finished. O

This theorem is the same as Ayoub’s theorem for Betti sheaves, and is proved in the same way.
Theorem 3.2.5. Let X be a finite type C-scheme. The functors
PH: DH(X) — Dy geo(X)
and

pH: DH(X) — Dg hoa(X)

are equivalences of categories.
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Proof. This is now a simple Noetherian induction: if K € Dy g0(X) is compact, we may find a
nonempty irreducible open subset U of X with generic point 77 and Proposition 3.2.4 ensures that up to
reducing the size of U, the restriction K|y of K to U is in the image, but the localisation sequence

JiKy = K = i.i'K

with j : U — X andi : Z — X the complement, together with the full faithfulness and a Noetherian
induction, give that K is in the image. O

This proves that all desiderata of Drew in [Drel8, Desiderata 1.1] are fulfilled.

Remark 3.2.6. In a forthcoming work with Rapha€l Ruimy, we use this point of view of motivic
Hodge modules to construct categories of mixed Hodge modules of geometric origin that have Z-linear
coeflicients.

Although what we have done ensures that the goals of Drew in [Dre 18, Desiderata 1.1] are achieved,
it may still seem unsatisfactory: another motivation for Drew’s work was probably to give an alternative
construction of mixed Hodge modules. Here our proof uses mixed Hodge modules hence it is not quite
right. It should be possible to prove that motivic Hodge modules afford a t-structure without comparing
them to M. Saito’s mixed Hodge modules.

4. Extension of the derived category of mixed Hodge modules to algebraic stacks
4.1. Extensions and operations
We have at hand a h-hypersheaf

Dy: Sch — CAlg(Pr").

The functor Dy extends (as a right Kan extension) canonically to a h-hypersheaf on all Artin stacks
over C. More explicitly, given a presentation 7 : X — X of an algebraic stack X, that is a smooth
surjection with X a scheme, and assuming that the diagonal of X is representable by schemes, and
denoting by

XE = X xy X xx--- X

the n-th fold of X over X (this is a scheme as the diagonal of X is representable), we have a limit diagram
in Prt

Di(X) —— Dy(X) = Dy (X xx X) E; o 4.1.0.1)

If the diagonal of X is not representable by schemes, one has to first define Dy for algebraic spaces
using the same formula as above.

Using Liu and Zheng’s gluing technique ([LZ17]) as Khan in [Khal9, Appendix A.], one can prove
that the extension of Dy to (higher) Artin stacks still has the six operations. Unless mentioned otherwise,
all stacks and schemes considered will be locally of finite type over C. This subsection is more or less
book keeping of the work of Liu, Zheng and Khan. More precisely, we have:

Theorem 4.1.1 (Liu-Zheng, Khan).

1. For every Artin stack X there is a closed symmetric monoidal structure on Dy (¥).
2. For any morphism f : 9 — X there is an adjunction

I
—
Du(X) L Du(9)
) S
f
with f* a symmetric monoidal functor.
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3. For any locally of finite type morphism of Artin stacks f : X — 9 there is an adjunction (functorial

in f)
il

—
Du(X) L Du(9).
) S

f!

4. The operations f, satisfy base change and projection formula against g*, and the operations f'
satisfy base change against g.. If f is representable by Deligne-Mumford stacks, then there is a
natural transformation ay : fi — f., which is an isomorphism if f is proper and representable by
algebraic spaces (for a strengthening, see Proposition 4.2.5).

5. For any closed immersion i : 3 — X of Artin stacks with j : W — X the inclusion of the open
complement, we have a pullback diagram

Di(3) —— Dy(X)

I

* ——— D)
6. For any Artin stack X, the functor
7* : Du(X) —> Du(Ay)

is fully faithful.
7. For a smooth morphism f : 9 — X of relative dimension d, we have a purity isomorphism

pr o fH(d)[2d] = f.
8. The \-functoriality Dy(=)' is also an étale hypersheaf.

Proof. The proofs of [Khal9, Appendix A] hold for any motivic coefficient system, so that 1,2,3 and
4 are [Khal9, Theorem A.5], 5. is [Khal9, Theorem A.9], 6. is [Khal9, Proposition A.10] and 7. is
[Khal9, Theorem A.13]. The last point 8. follows from [LZ17, Proposition 4.3.5]. O

Remark 4.1.2. All results above hold more generally for higher Artin stacks, except for 4. where one
need f to be O-truncated on top of being proper for fi to be isomorphic to f..

Remark 4.1.3. One could state the same result for mixed Hodge modules of geometric or Hodge origin
to stacks, and all the results we stated above and below also hold in this more restrictive setting. Note
that because the construction is a right Kan extension from the category of correspondences of schemes
to the category of correspondences of algebraic stacks, the functor DH — Dy will automatically
commute with the left adjoints f*, fi and ®, but the commutation with the right adjoints is unclear. The
commutation with internal homomorphisms and with f; for f a representable morphism can be checked
on a smooth atlas, but the cases of f, and f' for a general nonrepresentable morphism seems subtle. See
Proposition 4.2.6 for a result in that direction.

Now, as D? (MHM(-)) also satisfies h-descent (in fact, étale descent is sufficient by [Kha25, Corollary
3.4.7]), we can also right Kan extend it and have the same formula as equation (4.1.0.1). In particular
as limits in Cat,, are computed term wise, if one denote by Dﬁ’c (-) the extension of D? (MHM(-)) to
(higher) Artin stacks, we have a fully faithful natural transformation

t: DY (=) = Du(-).

The question of whether for a general morphism f of Artin stacks, the operations f. and f, preserve
constructibility is a bit subtle. Of course, it is false in general that f,Q is cohomologically bounded.
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For a finite type C-scheme X, the category Dy (X) = IndD? (MHM(X)) admits a t-structure by
[LurSAG, Lemma C.2.4.3]. The t-structure on Dy (X) is right complete and compatible with filtered
colimits. We will use several times that a limit of stable co-categories with t-structures and t-exact
transition functors is endowed with a canonical t-structure ([HS20, Lemma 3.2.18]).

Proposition 4.1.4. Let X be an Artin stack locally of finite type over C. The co-category Dy (¥X) admits
a t-structure such that for any smooth presentation « : X — X the conservative functor n* is t-exact up
to a shift. Moreover, the t-structure is right complete and compatible with filtered colimits. It restricts
to a t-structure on Dﬁ,c(_)‘

Proof. We have to first deal with the case where X is an algebraic space. In this case, the map 7 can be
chosen to be étale, and as the diagonal of X is representable by schemes, the limit diagram

Dy (X) — lim(X"/)

has t-exact transitions whence the limit Dy(X) has a perverse t-structure. The left separation and
compatibility with colimits can be checked after applying n*, hence hold. The right completeness is
checked exactly as in the case of stacks, which we deal with below.

We can assume that X is a connected algebraic stack. Choose a presentation 7 : X — X which is
smooth of relative dimension d for some integer d. Then all the projections

pnIXX;{XXx"-XxX—)XXx...X;{X

are also smooth of relative dimension d, so that each pj,[d] is t-exact for the perverse t-structure. As
equation (4.1.0.1) can be done with the shifts p},[d], this creates a t-structure on the limit of the Cech
nerve of 7 such that 7* is t-exact. It does not depend on 7 as one can see by taking another presentation
p:Y — X and then Y Xy X — X. The t-structure obviously restricts to DZ’C(%). For the right
completeness, we want to show that the natural functor

7.22

T>l T>3 S T>4
Dy (X) — lim ( IS D2l @) S5 DR S DR X) - )

is an equivalence. As (shifts of) pullbacks by smooth maps are t-exact, this can be checked locally on X,
hence holds. O

Definition 4.1.5. Let X be an Artin stack locally of finite type over C. The co-category of cohomologically
constructible mixed Hodge modules over X is

Di.c(¥) := {K € Du(¥) | Vn € Z,H*(K) € D}; .(¥)}.

By definition the t-structure restricts to Dy, (X), and the heart is the same as the heart of DIZ?LC (%).

For a finite type C-scheme X, the stable co-category D” (MHM(X)) also have a standard t-structure
(the t-structure for which the functor D?(MHM(X)) — D2(X®,Q) is t-exact when the target is
endowed with the t-structure whose heart is the abelian category of constructible sheaves), and in
[Tub25] (where the t-structure had the unfortunate name ‘constructible’) we proved that it is the derived
category of the constructible heart. In fact, all the considerations above about the perverse t-structure
are true for the constructible t-structure. We mention them because the standard t-structure will happen
to be handy when proving the constructibility of the operations.

Proposition 4.1.6. Let X be an Artin stack over C. The co-category Dy (¥) admits a standard t-structure
such that for any presentation n : X — X the conservative functor n* is t-exact if we endow Dy (X) with
the t-structure induced by the canonical t-structure on D? (MHMgq). Moreover, the t-structure is right
complete and compatible with filtered colimits. It restricts to a t-structure on DII’{’C (-). All pullbacks by
all morphisms of Artin stacks are t-exact for this t-structure.
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Proof. The proof is exactly the same as for Proposition 4.1.4, except that we do not need to shift the
pullback functors. O

We will denote by S9H" the cohomology objects for the standard t-structure.

Proposition 4.1.7. Let X be an Artin stack locally of finite type over C and let K € Dy(X). Then
K € Dy, (X) if and only if for all n € Z the object SAH" (K) is in Dllfl ().

Proof. Both conditions on K are local on X, hence we can assume that X is a finite type C-scheme X. If
K is bounded the result is trivial, and if not, we can reduce to the bounded case by noting the following:
7P<" preserves Dy (X)*19<", 78927 preserves Dy (X)?>0, the restriction of 772" to Dy (X)*9>" is the
identity and the restriction of 784" to Dy (X)P<" is the identity. Here 7*% and 77 are the truncation
functors for the standard and perverse t-structures, respectively. )

Theorem 4.1.8 (Liu-Zheng). Let f : 9 — X be a morphism of Artin stacks locally of finite type over
C. Then we have the following:

1. The co-category Dy . (X) is stable under tensor products, and f* restricts to a functor

J*: Due(¥) — Du,e(9).
2. The functor f, restricts to a functor
fe: D (D) — Dy (D)
and even to
f«: Du,e(9) — Du (D)

if f is representable by algebraic spaces.
3. The functor fi restricts to a functor

f1: D (9) — Dy (D)
and even to
f! . DH,c(g)) - DH,c (‘D)

if f is representable by algebraic spaces.
4. The functor f" restricts to a functor

' Due(X) = Dr.e (D).
5. The internal Hom functor restricts to a functor
Dy . (¥)°P x Dﬂ,c (%) - Dﬂ’c (X).

Proof. The proof is essentially the same as the proofs of [LZ17, 6.4.4 and 6.4.5]. The point 1. is easy. We
show how to obtain 2. by hand, for example: Take 7 : X — X a presentation of X and form the pullback

B

8
5
|
q .

N

o

3
=
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Then to show that each H" ( f1K) are constructible, we may check it locally, whence as 7* is t-exact it
suffices to show that *YH" (7* f,K) is constructible. By base change, it suffices to show that ¢H" (g,¢*K)
is constructible: we reduced to the case where X is a scheme. Now, choose a presentation r : Z — 3
of 3. Descent for !-functoriality implies that ¢*K = colima (g,)i7,q*K where (g,) is the composition
of the Cech nerve (r,,) of r with g. The spectral sequence induced by this geometric realisation reads

EPY = YH  ((gp)rpaK) = “H 7 (814°K).
Now the each ré,q*l( is cohomologically constructible by purity (7. of Theorem 4.1.1) and each g, is a
morphism of algebraic spaces, of relative dimension the sum of the relative dimensions of g and of r.
In particular, all g,, have the same cohomological amplitude thus our spectral sequence is concentrated
in a shifted quadrant: it vanishes if p < 0 and if g is smaller than some bound depending on the
cohomological amplitude of g, and of K. This implies that the spectral sequence converges and we have
that H" (g1¢*K) is constructible for all . In the case where f is representable by algebraic spaces, we
can reduce to the case of schemes where it follows from finite cohomological amplitude. The case of f.
is similar. o

Remark 4.1.9. We may have to use the same extension to stack for other systems of coefficients such
as analytic sheaves or étale motives. Because the functor between those and mixed Hodge modules
commute with all the operations on schemes, the extension to stacks will commute with ®, *-pullbacks,
I-pushforwards (by definition) and #2--.(—, —), *-pushforwards and !-pullbacks for representable mor-
phisms, by smooth base change so that it suffices to check this on an atlas (see Proposition 4.2.6). This
also applies to the Hodge realisation functor DMg — Dy, and thus implies the following corollary.

Corollary 4.1.10. Let X be an complex algebraic variety and let G be an algebraic group acting on X.
Then if X is smooth there exists a cycle class map

CHL; (X) — Homp, (x,G)(Q, Q()[2i])

functorial in X, where the left-hand side is the equivariant Chow group constructed by Edidin and
Graham in [EG98]. For a possibly singular algeraic stack, one has to use Borel-Moore homology and
we obtain a cycle class

CH;(X/G) — Hompy(x/6)(Q()[2i], 7y 16,Q(0))

where mix;G: [X/G] — Spec(C) is the structural morphism and the left-hand side is defined by
Edidin and Graham in [EG9S, Section 5.3].

Proof. Once the left-hand side has been identified with a Hom-group in DM by [KR24, Example
12.17] (or [KR24, Corollary 6.5] for the singular case), this is a consequence of the functoriality of the
realisation functor. m]

4.2. Duality
We want a working Verdier duality on algebraic stacks locally of finite type over the complex numbers.
Definition 4.2.1. Let X be an algebraic stack locally of finite type over the complex numbers. The

dualising object on X is the object wy := ﬂ;Q(O) € Dy(X) with g : X — Spec C. The Verdier duality
functor is

Dx = %m(—, a)x).
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If follows directly from the projection formula between g, and g*, for g a morphism of algebraic
stacks, that there are natural equivalences

g oDy ~Dyog*
and
g«oDg =Dy og

for any morphism g : 9 — X between algebraic stacks locally of finite type over C.

Lemma 4.2.2. Let g : 9 — X be a smooth morphism between algebraic stacks locally of finite type
over C. Then there is also a natural equivalence

g oDy =Dyog'
of functors Dy(X) — Dy (9).
Proof. The smooth projection formula implies that the canonical map
§ Hormn (=, wx) — Horrn (8" (-), g wx)

is an equivalence. Now, using the purity isomorphism twice g* ~ g'(—d)[-2d] we see that the right-
hand side is equivalent to #»2(g'(-), g'wx), and because g'wx = wy), the proof is finished. o

Proposition 4.2.3. Verdier duality is an anti-auto-equivalence when restricted to D’,’_, (X). It swaps !
and = when they preserve Dfl . and it is perverse t-exact.

Proof. First note that duality preserves Dfl . because this can be checked locally. There is a canonical
map

Id — Dy o Dg.
For a given M € DIIZLC (X) and a presentation g : X — X, it suffices to check that the map
§'M — g"(Dx o Dx(M))
is an equivalence. But now by Lemma 4.2.2 the above map is an equivalence because it is the map
g§'M — Dx oDx(g"M).
The remaining assertions follow from the autoduality over schemes ([Sai90b, Theorem 0.1]). O

Corollary 4.2.4. Verdier duality in fact extends to an equivalence of Df; .(¥) - Dy ((X)°P. It swaps !
and *.

Proof. By the previous assertion, the functor Dy is perverse t-exact, and an isomorphism on the heart.
As the perverse t-structure is left separated when restricted to D (X), this implies the claim. O

We now give an amelioration of Theorem 4.1.1(4) whose proof in the ¢-adic setting is due to Olsson
[Ols15, Corollary 5.17], see also [Khal9, Theorem A.7]:

Proposition 4.2.5. Let f : 9 — X be a proper morphism represented by Deligne-Mumford stacks.
Then the canonical morphism f; — f. is an isomorphism on Dy, (D).

Proof. By Theorem 4.1.1 we know the result if f is representable by algebraic spaces. Note that if f is a
proper morphism of algebraic stacks, then the formation of f; is compatible with base change on Dy ..
Indeed, using [Ols05, Theorem 1.1] the proof is the same as [LMBO00, Théoreme 18.5.1]: one uses the
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cohomological descent spectral sequence to reduce to the case of representable morphisms. Thus, by
choosing a smooth atlas of the target of f, we can reduce to the case where X is a scheme and 9 is a
Deligne-Mumford stack. Now by [LMBOO0, Théoréeme 16.6], there is a finite covering Y — 9 with Y a
scheme, thus [Khal9, Theorem A.7.] applies. O

Proposition 4.2.6. All results above about the extension of the operations work for the category
D3 := IndD%((-)™, Q) of Ind-constructible complexes, the forgetful functor rat: Dy — Dp extends to
schemes, and commutes with the following functors:

1. —=® —, Hose(—,—), and Verdier duality Dx.

2. f* for any morphism.

3. fi for any finite type morphism.

4. f. for any proper morphism representable by Deligne-Mumford stacks.

When restricted to Dﬁ o it also commutes with:

1. Any pushforward f. for f a finite type morphism.
2. Any exceptional pullback f' for fis a finite type morphism.

Proof. As both functors on stacks are defined using the right Kan extension on the category of
correspondences (see the proof of [Man22, Proposition A.5.16]), it is clear that the map Dy — Dp
commutes with tensor products, *-pullbacks and !-pushforwards. Point 4. is a direct consequence of 3.
and Proposition 4.2.5. For #z»-(—,—) and Verdier duality one can reduce to schemes directly using
that rat commutes with twists and that both functors #2»» and Dy commute with 7* for 7 a smooth
morphism, up to a twist and a shift (by purity).

Now on constructibles, Verdier duality is an equivalence and swaps * and !’s; thus points 1 and 2
follow from 2 and 3 of the above list. O

4.3. Weights

In this subsection we introduce weights for mixed Hodge modules on stacks. We will work only with
stacks that are of finite type over C in this section. The abelian category of mixed Hodge modules over
a scheme has a functorial and exact weight filtration. Using ideas of the PhD of Sophie Morel, for each
integer w € Z we can define a t-structure ‘w < w’ on Dﬁ,C(X), that we call the weight-t-structure
(Construction 4.3.1). It has the particularity that both its right and left sides are stable subcategories
of D]lfL C(X ), so that the heart is zero, but the truncation functors are exact functors. This provides the
canonical extension of the weight filtration to the bounded derived category: we obtain exact functors
rl@sw)<0 . () - Dﬁ’C(X ) — Dﬁ,C(X ) that are perverse t-exact, and whose restriction to the perverse
heart gives back the weight filtration of mixed Hodge modules. By indization we obtain the weight
filtration on the Ind-category. For this t-structure, all pullbacks by smooth morphisms are t-exact, so that
we can extend the weight filtration to any algebraic stack by descent (Proposition 4.3.2). In particular,
the perverse heart of Dy(X) is endowed with an exact weight filtration. This gives the possibility to
define punctual weights (we chose this name because this is the correct analogue of punctual weights in
the ¢-adic setting) in Definition 4.3.3.

However, this does not quite exactly gives a weight structure a la Bondarko. Indeed, the weight
filtration may fail to have sufficiently many orthogonality properties, so that the property that a pure
perverse object is semi-simple may not be satisfied (see Remark 4.3.9). However, if X is an algebraic
stack with affine stabilisers, then the objects that are of punctual weight O are indeed the heart of a
weight structure, as we show in Corollary 4.3.8.

Construction 4.3.1. Let w € Z and X be a finite type C-scheme. Recall that following [Mor0O8] we can
construct a weight-t-structure on Dlljl . (X) by setting

D} (X)“S" :={K € D} .(X) | Vn € Z,Ym > w, gryy (PH"(K)) = 0}
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and
D} (X)“*" = {K € D}, .(X) | Vn € Z,¥m < w, gr), (PH"(K)) = 0},

where the gr) are the graded pieces of the weight filtration on mixed Hodge modules ([Sai89, Propo-
sition 1.5]). The pair (Df’[’c (X)@sw, DIIZLC(X)“”W“) form a t-structure (of trivial heart) on DIl-)I,c (X),
such that the truncation functors wg,, and ws,,+1 are exact functors, t-exact for the perverse t-structure
([Mor08, Proposition 3.1.1.]). They give a filtration (w<,, K),, on each complex K, that gives back the
weight filtration on the heart. For any smooth map f : ¥ — X of finite type C-schemes, and any integer
d, the functor f*[d] is t-exact for the weight t-structures (indeed, if d is the relative dimension of f we
see that f*[d] is perverse t-exact and preserves weights, thus is t-exact for the weight-t-structure. The
shift functor being weight-t-exact, this proves the claim). This induces a weight t-structure on Dy (X)
by indization and it has a similar description.

Proposition 4.3.2. Let X be an Artin stack of finite type over C. Then the co-categories Dy(X) and
Dy, (X) admit weight-t-structures such that for every smooth map f : X — X with X a finite type
C-scheme and every integer d, the functor f* is weight-t-exact. Moreover, the weight truncation functors
are perverse t-exact. The inclusion functor Dy . (X) — Du(X) is weight-t-exact.

Proof. Once again assume that X is connected, choose 7 : X — X a presentation of X, of relative
dimension d. Then if f, is a part of the Cech nerve of , the functors [ [d] are t-exact for the weight
t-structures, thus this induces a weight t-structure on the limit as in equation (4.1.0.1) (as in the proof of
Proposition 4.1.4 we have to first deal with algebraic spaces but everything works the same). Of course,
it restricts to DII_’LC (%), and then to Dy - (X). The perverse t-exactness of the weight truncation follows
from the fact that each f, [d] is also perverse t-exact so that this follows from the same property over
schemes. O

Definition 4.3.3. Let w € Z. An object K € Dy(X) is of punctual weights < w if for each i € Z, the
map PH'(w¢w+iK) — PH'(K) is an equivalence (or equivalently, if PH' (w5 +i+1K) = 0). We say that
K is of punctual weights > w if its Verdier dual D¢ (K) is of punctual weights < —w. We shall denote
by Dgl © (¥)<y and Dgl © (X)s,, the corresponding full subcategories, where ? € {0, b, +, —}.
Remark 4.3.4. The above definition differs from the weight t-structure we used to define weights.

Proposition 4.3.5. Let [ : Y — X be a morphism of algebraic stacks of finite type over C and let
w,w' €Z.

1. Verdier duality on X swaps D;'LC (X)<w and Dy . (¥)s—y-

2. The pullback f* sends Dy, (¥)<y t0 Dy, (D)< and the exceptional pullback f* sends Dy ¢ (¥)s

10 Du,c ()sw. If fis smooth, the pullback functor f* preserves weights.
3. The tensor product restricts to

-®—: D;[’C(x)<w X D;[,C (x)sw’ - D;[,C(x)Sw+w’-
4. The internal homomorphism functor restricts to
%am(—, _) : DI_{,c (x)éw X D;]’c (£)>w/ - DI_-[’C (x)>w/—w-

Proof. By definition, if 7 : X — X is a smooth presentation, the functor 7* is conservative and detects
weights. Thus, all results follow from the usual results over schemes (see [Sai89, Propositions 1.7
and 1.9]). m]

Proposition 4.3.6. Let X be an algebraic stack with affine stabilisers, of finite type over C. Let f : X — 9
be a finite type morphism. If K is an object of Dy(X) of punctual weights < w, then fiK has punctual
weights < w.
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Proof. By choosing a smooth presentation & of ), using proper base change, and the fact that 7*[d] is
conservative, perverse t-exact and weight-t-exact, it detects punctual weights, so we may assume that
9) =Y is a separated variety. First note that for any stack X, we have the formula

Du(¥)<,y = {K € Du(X) | Vi € Z, PH' (0" K) = 0}.

In particular, as the functors w"**! and PH! commute with filtered colimits, we see that Dy (¥)<,, is
stable under filtered colimits in Dy (X).

By [Kre99, Proposition 3.5.2 and Proposition 3.5.9] and the fact that X is of finite type over k, there
exists a finite stratification X; of X by locally closed substacks such that each X; ~ [X;/G;] is a global
quotient stack of a quasi-projective variety X; by a smooth connected algebraic group G; acting linearly
on X;. As Dy(Y)<, is closed under extensions, using the localisation triangle we see that we may
assume that X ~ [X/G] is a global quotient stack with X quasi-projective.

By [Tot99, Remark 1.4] we may find a specific increasing sequence (U,) of representations of G
(hence vector bundles on BG), called a Borel resolution, that helps compute the invariants of [X/G] as

G
follows: Let X X U, := [X/G] XpG Uy, then for any Al-invariant étale sheaf F: Sm([)g(/G] — C on the
category of schemes that are smooth over [X/G] with values in an co-category C admitting all small

limits, the canonical map
G
FU([X/G]) = lim F*(X x U,)
n

is an equivalence, where F< is the right Kan extension of F to algebraic stacks. This is [KR24,

Theorem 3.6]. Note that by [KR24, Remark 3.4], each X g U, is a quasi-projective variety.

Let K € Dy([X/G])<w. We apply the above to the functor F, opposite to the functor that sends a
smooth map g: ¥ — [X/G], with Y a variety, to 7T!Y g'K. By !-descent for the étale topology and A'-
invariance of Dy this functor F satisfies the conditions stated in the previous paragraph. Moreover, its
right Kan extension to stacks over [X/G] has the same formula, again by !-descent. In particular, we
have that the map

colim, (fp)ipLK — fiK

is an equivalence, where p,: X x% U, — [X/G] is the projection. Note that this is a filtered colimit,
so that it suffices to prove that each (fp,)p,K is of punctual weights < w. But as p,, is smooth, the
weights of p;,K are the weights of K, and the map fp,, is a map of schemes, so that we have reduced to
the case of schemes, where this is true by [Sai89, Proposition 1.7]. O

Corollary 4.3.7. Let f : 9 — X be a morphism of algebraic stacks of finite type over C. Assume that
Y has affine stabilisers. Then if K € Dy, (D) is of weights > w, the object f.K also has weights > w.

Proof. By duality, this follows from the case of f;. O

Corollary 4.3.8. Let X be an algebraic stack with affine stabilisers, of finite type over C. Then there is
a weight structure a la Bondarko on DZ (¥) whose heart consists of objects of weight O as in Definition
4.3.3. In particular, any pure object in Dﬁ(%) is the sum of its cohomology objects, and any pure object
of the perverse heart is semi-simple.

Proof. We want to use [Bon10, Theorem 4.3.2] to construct a weight structure from its heart of pure
objects of weight 0. Thus we want to prove that pure objects of weight O generated Dﬁ (%) as a thick

subcategory, and that it is negative (for us, semi-simple will be enough). Thus if K, L € D’;, (X) are
pure of weight zero, we want to show that HomDZ (x)(K, L[1]) vanishes. Let f : ¥ — Spec C be the
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structural morphism. As we have
HomDZ (%) (K7 L [ 1]) = HomDH(SpeCC) (QSpecC, f*%m(K, L) [1])7

by Corollary 4.3.7 and the usual orthogonality in the derived category of mixed Hodge structures, it
suffices to show that #»». (K, L) has weights > 0, which results from Proposition 4.3.5.

Now objects of weight O generate the co-category under finite colimits. Indeed by dévissage it
suffices to show that objects of the perverse heart which are pure are in the co-category generated by the
complexes of weight 0, but now this is only a shift. The last sentence of the corollary is now formal, see
[BBD8&2, Théoréeme 5.4.5] and [BBD82, Théoréeme 5.3.8]. m|

Remark 4.3.9. The above Corollary 4.3.8 is false for general algebraic stacks, as shown by Sun
3 (following an example that goes back to Drinfeld) in [Sun12]. Indeed one can show that the pushfor-
ward of the constant sheaf by the quotient map 7: Spec(C) — BE with BE the classifying space of an
elliptic curve is not semi-simple although 7 is smooth and proper.

4.4. Nearby cycles

Let X be an algebraic stack locally of finite type over C and let f : X — Aé be a function. We have the
following diagram:

u—! 3

S PR
l,, fl \Lf . (4.4.0.1)

Gme ——> AL +— {0}
We wish to construct a nearby cycle functor

Y¢: Du(U) — Du(3)

with good properties. We begin with the unipotent part of the nearby cycle following [CHS24], whose
authors give a wonderful interpretation of Ayoub’s unipotent nearby cycle functor (as in [AyoO7b]).

In [CHS24, Definition 2.22], Cass, van den Hove and Scholbach define a Q-linear stable co-category
Nilp (denoted by Nilpg in loc. cit.) whose objects can be interpreted as pairs (K, N) with K € Modé a
complex of graded Q-vector spaces and N : K(1) — K is alocally nilpotent map of graded complexes,
where K(1) := K®g Q(1) and Q(1) is the graded Q-vector space placed in degree —1. This co-category

is compactly generated by objects (Q(k),Q(k + 1) KN Q(k)), and if (K, N) € Nilp is compact, its
underlying complex K is compact and the operator N is nilpotent. Now for any stably presentable co-
category C with an action of Modé, one can define

Nilp C := C ®y;,4z Nilp,
Q
which has a similar description as pairs (¢, N) with ¢ € C and N : ¢(1) — ¢, which is nilpotent if ¢ is
compact.

The relation of this construction with unipotent nearby cycles Yy comes from the desire to have a
monodromy operator on Y ¢, thus a lift of Y as a functor

DH(II) g Nﬂp DH (3) .
This is made possible thanks to the following observation.
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Proposition 4.4.1. Let p : G,,,c — Spec C be the projection. Then the pushforward
p+: Dur (Gpm) — Dt (C)

exhibits the co-category Dyt (Gyy,) as Nilp Dy (C). Here we have denoted by Dy (X) the full subcat-
egory of Dy(X) of mixed Hodge Tate modules over X, that is the co-category generated under colimits
and shifts by the Q(i) fori € Z.

Proof. This is the combination of [CHS24, Corollary 2.20 and Lemma 2.17], which we reproduce
for the reader’s convenience. First we remark that the functor p. indeed preserves Hodge Tate objects
because p.Q(n) ~ Q(n) ® Q(n + 1)[1]. Now, it is clear that p. preserves colimits as its left adjoint
p* preserves compact objects, and it is also conservative because if p.M = 0 then for each n € Z the
mapping spectra Mapp,,. () (Q(n), M) = Mapp,,.. () (Q(n), p.M) vanishes, so that M = 0. Thus,
by Barr-Beck’s theorem, the functor p. upgrades to an equivalence

Dy(Gmc) — Mod,, o(Du(C)).
There is a unique colimit preserving symmetric monoidal functor
i Modé — Dy (C)

that sends Q(1) to Q(1). The image under the Hodge realisation of [CHS24, Lemma 2.18] tells us that
p-Q is, as a commutative algebra object, the object i(A) where A is the split square zero extension
A :=Q@® Q(-1)[-1]. Thus we have that

D1 (Gme) = Mod,y,g(Dat (C)) = D7 (C) ®yoqz Moda (Modg).
and the equivalence ModA(Modé) =~ Nilp of [CHS24, Lemma 2.9] finishes the proof. O

We come back to the setup equation (4.4.0.1), and define as in [CHS24, Definition 3.1]:

Definition 4.4.2. The unipotent nearby cycle functor is the composite

Y : Dyy(2) — Mody: .o (Dyt (M) = Nilp Dyy () — Nilp Dy(3)

where the first functor is the way one can see any object K € Dy(X) as a f; p*p.Q-module with the
counit f;p*p.Q ® K — K, and the second is expressing that i* j, preserves the nilpotent structure.

In fact as they show in [CHS24, Section 3.1], there is a better way to look at the above definition.
Indeed, the construction of the operations for stacks in Theorem 4.1.1 goes by extending the functor Dy
on schemes to a lax monoidal functor

Dy : Corre — Prl§,

where Corrc is the co-category of correspondences of stacks over C: its objects are derived algebraic
stacks locally of finite type over C and its morphisms are informally diagrams

v&EzLx

of algebraic stacks locally of finite type over C. Composition is given by forming pullback squares. The
functor sends X to Dy (X), and the above morphism to

gf": Du(Y) — Du(X).

In fact, the projection formulae even allow us to have a functor with values in Modp,, (c) (Prét).
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Now, unipotent nearby cycles can be upgraded to a highly coherent natural transformation Y : Dy, —
Nilp Dy of lax monoidal functors

prsm _ PrL

Corr al o

where CorpA: ™ s the wide subcategory (so it has the same objects but fewer morphisms) of CorrAlC =

(Corrc) JAL whose morphisms are the roofs Y &z L> X over Al with g proper and f smooth,
and Prér = MOdModé (Pré‘t) is the co-category of presentable co-categories with an action of graded

complexes of vector spaces.
Here, Dp,, is the restriction of the composition

-x,1Gm D U
Dyt Corryi e Corrg,, —> Modp,,, (,,) (Pr5) — Modp,,, (c)(Prk) — P,

with U : Dy (G,,) — Dgr (C) the forgetful functor, and Dy is the restriction of the composition

-%,1{0} 1, Nilp

Dy I
Dps: CorrAg: — Corrg — Pry, — Pry;.

Theorem 3.2 in loc. cit. is:

Theorem 4.4.3 (Cass, van den Hove, Scholbach). There is a natural transformation of lax monoidal

functors Corri{;Sm — Prl

C

Y: Dy, — NilpDgy,

whose evaluation at a stack X | A" is the functor defined in Definition 4.4.2

Proof. The proof is verbatim the same as their proof in [CHS24, Section 3.3]. The only thing to check
is that over stacks, where our categories are not compactly generated (but over schemes everything is
compactly generated hence, for example, mixed Hodge Tate categories are rigid), all functors in the play
indeed preserve colimits. Only j. could be a problem, but the preservation of colimits can be checked
on a presentation and it thus follows from smooth base change. Also, Nilp Dy stays a h-sheaf because
Nilp is compactly generated, hence the functor ®y,4z Nilp commutes with limits. O

We will denote by Y : Dy(d) — Dy(J3) the functor obtained after applying Y to f : X — A%J
and forgetting the monodromy locally nilpotent operator N. The fact that Y above is a lax monoidal
natural transformation expresses the usual compatibilities of Y ¢ with proper pushforward and smooth
pullbacks, together with a natural transformation

Yﬁ X Yfz — Yf Xg
compatible with the nilpotent operators when one has two functions f;: X; — Aé.

Proposition 4.4.4. Let f : X — A(lj be a function on an algebraic stack locally of finite type over C. The
Sfunctor X y [-1] preserves Dﬁ . s perverse t-exact and commutes with the external tensor product.

Proof. The functor
rat: Dy — Dp

commutes with Y ¢ by [CHS24, Lemma 3.18] (note that in the proof only is needed right adjointability
for j* for j an open immersion which is in particular representable, so that we may use Proposition
4.2.6). On top of this, it detects constructibility and is conservative on constructible objects. Moreover,
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by taking a presentation 7 : X — X of X, it suffices to prove the proposition for Y, with f : X — Aé a
function on a scheme. Thus the proof of the proposition reduces to the case of a function of a scheme, on
analytic sheaves. The comparison [CHS24, Example 3.19] of Y in this case, with Beilinson’s unipotent
nearby cycles functor [Bei87a] imply the result, because for analytic sheaves the functor Y s [-1] is
perverse t-exact and commutes with the external tensor product. O

Proposition 4.4.5. Let f : X — A!C be a function on an algebraic stack locally of finite type over C.
There is an exact triangle

N s
Yi[-1] = Y (=D[-1] = i7j..
Proof. This is [CHS24, Proposition 3.9], shifted by —1. m]

Proposition 4.4.6. Let X be a reduced and separated finite type C-scheme and let f : X — Aé: be a
function. Then there is a natural isomorphism of functors

Yr[-1] =y

on the triangulated category D? (MHM(U)), where U = f~'(G,,) and ¥ £ .1 s the unipotent nearby
cycle defined by Saito in [Sai90Db].

Proof. As both functors are t-exact it suffices to construct an isomorphism on MHM(U). By [Sai90a,
Proposition 1.3] for K € MHM(U) there is a canonical isomorphism

colim,, PH™'i*j.(K ® f*E,) — vrak,

where E,, = Q@& ---Q(—n) € Dy(G,,). The proof of the comparison with Beilinson construction
[CHS24, Example 3.19] gives in fact that

Y ¢ (K) = colim,i*j.(K ® f*E,),
so that the compatibility with colimits of the t-structure gives the result. O

Corollary 4.4.7. On D?, o the natural map

Yy oDy (=) = Dg o Yy (=)(D[2].
is an equivalence.

Proof. The map is defined as follows: Y ¢ is lax monoidal, hence there is a canonical map

Y 0 Homn (= fyQ & Yy (=) = Yy (Zorre (-, £3,Q) ® (-))

that we can compose with the evaluation map

Ko (=, [4Q ® (=) = Y7 (f,Q)
to obtain a map
Yy o Horm (. Q) @ Yy (-) = £,,Q.
By adjunction, this provides a map

Yy 0 Horn (=, f)Q) = Horr (X5 (=), Y (f5Q)).
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Now, the commutation of Y with !-pushforwards implies that there is a exchange map
! !
Yyofy,— foo Y

and by [CHS24, Lemma 3.12] (to which we apply the Hodge realisation), we have that Yi3(Q) =~ Q.
This gives a map

Yf o %ﬂ?’/@(_, fT,IQ) - %W(Yf (_)’ fo"Q)

in which on the right-hand side we recognise (because f,- is the structural map of 3) the functor DgoY ¢
The dualising object on 2 is wy = f}]ﬂ(!ng ~ fyQ(1)[2], with 7, the structural map of Gy,. Using
that Yy commutes with Tate twists (this follows easily from the projection formula and the fact that it
commutes with p,, for p: X x P! — X), we finally have a map

Yy oDyu(-) = Dz oYy (=)()[2].

This comparison map is an isomorphism on Dﬁ because this can be checked locally hence on finite
type C-schemes, where it has been proven by Saito (alternatively, one can apply the functor to analytic
sheaves and use the result of Beilinson). ]

Now, for each n € N* we may consider m,, the elevation to the n-th power in Al and form the

cartesian square

X, 2 x

Lf,; B lf :

T

1 n s 1
AC AC

Denote by i,,: f;'({0}) — f~'({0}) the nil-immersion obtained by restricting e, (the functor (i, ). is
an equivalence). Then by functoriality of Y obtain a system of functors ((i,). o Yz, o €} )ne(u+)op, Where
we still denote by e,, the restriction of e,, to the inverse image of G,,,.

Definition 4.4.8. The total nearby cycle functor is the functor
¥y : Du(¥) — Du(3)
defined as
Yy = colimyeqmyor (in): Y7, © €},

Remark 4.4.9. This definition in the case of motives is due to Ayoub ([AyoO7b]), but its formal
description as a colimit can be found in Preis’ [Pre23].

Proposition 4.4.10. Let f : X — A(!c be a function on a reduced and separated finite type C-scheme.
Then there is a natural equivalence of triangulated functors

—wS
Wpl-1] = ¥

on D?(MHM(U)), where ‘P]‘E is Saito’s nearby cycle functor. In particular, ¥y preserves constructible
objects.

Proof. First, because the t-structure is compatible with colimits and each e}, is perverse t-exact, it is
clear that W [—1] is perverse t-exact on D(IndMHM(U)). Thus, by dévissage it suffices to construct
an isomorphism W [-1] = ‘P? of exact functors on the heart MHM(U).
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By definition ([Sai06, Proposition 5.7]) together with the comparison of Proposition 4.4.6, for
M € MHM(U) we have

W5 (M) = Yy (M)[-1] =Y (M ® £, (1,).Q)[-1]

for n divisible enough, in other terms,

‘I‘ﬁ = colim, Y ¢ (= ® f, (7,):Q)[-1].

For each n € N* because e,, is proper we have (i,). Y, = Y o (e,). and now the proper projection
formula and proper base change give (e,). =~ (- ® f, (7,):Q), finishing the proof. O

Theorem 4.4.11. Let f : X — Aé be a function on an algebraic stack locally of finite type over C.
1. The functor

¥ [-1]: Du(Y) — Du(3)
preserves the full subcategory DI”{ . s perverse t-exact and lax monoidal.
2. Given another function g : ) — Aé, the natural map

Yr(-) B We(-) = Wrue(-8-)

is an equivalence.
3. On D}, .(N) the natural transformation

Yy oDy(—) = DgoW¥r(—-)(1)[2]

is an equivalence.

Proof. Thanks to the same property for Y the functor ¥ commutes with smooth pullback, hence all
those properties are local for the smooth topology and can be checked on a separated finite type
C-scheme, where they follow from the results on the underlying perverse sheaves and the comparison
with Saito’s functor. The last assertion follows from the result on the bounded category and t-exactness.

m]

We finish this section with the remark that because taking cones is functorial in the world of stable
co-categories, we have vanishing cycle functors for free:

Definition 4.4.12. Let f : X — A(lj be a function on an algebraic stack locally of finite type over C. We
define the vanishing cycle functor

@ : Du(X) — Du(3)
as the cone of the natural map i* — ¥ j*. We thus have an exact triangle

can

i — ‘Ilf]aF — d)f,
Proposition 4.4.13. The functor
@ [-1]: Du(¥) — Du(3)

preserves Dﬁ . is perverse t-exact and commutes with Verdier duality up to a twist —(1).

Proof. This can be checked on a smooth atlas, thus on schemes where this holds for in constructible
sheaves D2 (-, Q). O
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4.5. Comparison with existing constructions

In this section, we compare our construction to the construction of Achar [Achl3] that dealt with
equivariant mixed Hodge modules, as well as with Davison’s [Dav24] in which they constructed
pushforwards of the constant object under a morphism from a stack.

In Achar’s [Ach13], the construction goes as follows: G is an affine algebraic group acting on a com-
plex algebraic variety X, and he defines a triangulated category D¢ (X) of G-equivariant mixed Hodge
modules on X. This triangulated has a perverse t-structure, whose heart is indeed the abelian category
of G-equivariant mixed Hodge modules. The definition is the following: for a special Grothendieck
topology called the acyclic topology in which coverings are smooth G-equivariant morphism satisfying
some cohomological vanishing (it is asked that for some n and universally, f satisfies that <" f, f* is the
identity when restricted to the abelian category of mixed Hodge modules), it turns out that the presheaf
of triangulated categories U — hoD? (MHM(X)) is a sheaf, and as X admits a covering in the acyclic
topology by a U on which G acts freely (so that [U/G] is a scheme), this sheaf canonically extends to
G-equivariant varieties.

Proposition 4.5.1. Let X be a G-variety. Then the homotopy category of Dﬁ ([X/G]) coincides with
Achar’s category Dlé (X).

Proof. First, if G acts freely on X (for the definition of a free action, see [Ach13, Definition 6.4]), then
[X/G] is a scheme and the result is trivial. Then exactly for any n-acyclic map U — X such that the
action of G on U is free and a < b integers such that b — a < n, the same proof as [Ach13, Lemma 8.1]
implies that the functor

D ([x/G]) — D"P([U/G))
is fully faithful. Thus, the functor
hoDy; . ([X/G]) — Dg (X)

is fully faithful. It is not hard to check that the heart of DIIZI .([X/G]) is also the abelian category of
G-equivariant mixed Hodge modules (because they satisfy descent), so that this finishes the proof. O

Similarly one can check that the six operations defined by Achar coincide with ours.

We now compare the pushforward we constructed with the one considered in [Dav24]. Let X be a
smooth algebraic variety over C, and let G be an affine algebraic group acting on it. We are interested
in the perverse cohomology groups of the object p,Q, where

p:X:=[X/G] > M

is a morphism of stacks, with M an algebraic variety. Here is how Davison and Meinhardt proceed:
the construction is very similar to the construction of the compactly supported motive of a classifying
space by Totaro in [Tot16], and our proof of the comparison is inspired from the proof of [HPL21,
Proposition A.7] by Hoskins and Pépin-Lehalleur and goes back to Borel. We will denote by X/G the
quotient stacks instead of [X/G].

First, they choose an increasing family Vi c V, c --- c V; C --- of representations of G, and a
subsystem U; c U, C --- Cc U; C --- of representations on which G acts freely (this can be done by
choosing a closed embedding G ¢ GL, (C) and then setting V; = Hom¢(C?, C"), and U, is the subset
of surjective linear applications). Then U;/G is an algebraic variety, and in the case they deal with
(they ask for the group G to be special), the quotient stack (X X U;)/G is also a scheme by [EG9S,
Proposition 23] of Edidin and Graham. We denote by B; := (V; X X)/G, W; := (U; X X)/G. We have a
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commutative diagram:

Moreover the maps a;, b; and ¢; are smooth. Davison and Meinhardt prove that for a given n € Z, the
object

PH" ((pi)Qu, (—ir)[-2ir])

is independent of the choices for i and M large depending on n, and they denote by PH"(p;Qx) the
common value. We will show that indeed the canonical map

PH" ((pihQu, {-ir}) — PH"(p:Qx)

is an isomorphism in MHM (M), where we have denoted by (—){n} := (-)(n)[2n] for n € Z. In fact,
we will show better, as the result (which is classical, and see [KR24] for a vast generalisation, and
Proposition 4.3.6 for another use of this method) holds universally in motives:

Proposition 4.5.2. The natural map
colim; (p; ) Qu, {—ir} — p1Qx

is an equivalence in DMg (M, Q), where DM (M, Q) is the co-category of étale motives with rational
coefficients.

Proof. First note that the counit map
(bih(bi)'Qx — Qx

is an equivalence by A'-invariance, because b; is a vector bundle on X. As b; is smooth of relative
dimension ir, purity gives that the canonical map

(9i)Qu,{-ir} — p\Qx
is an equivalence for each i € N. Thus it suffices to prove that the map
colim; (a;):Qu; {—ir} — colim; (b;)Qy, {—ir}

on X induced by the counits (¢;)it; — Id is an equivalence, because applying p; would produce the
sought isomorphism.

Denote by 7 : X — X the projection. Recall that 7* is conservative, proper base change ensures that
it suffices to deal with the analogous situation over X

v, Liy x

A
J iT @i
/

U;
where every thing has been pulled back to X, and the map is now

colim; (a; ) Qu, {—ir} — colim; (B;)Qv, {-ir}.
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Everything is now a scheme. The family of pullbacks (x*)cex is conservative on DM (X, Q) by
localisation, thus by proper base change we reduce further to the case where X = Spec k is the spectrum
of a field, and each V; is a smooth k-scheme (in fact, a vector space). Furthermore, the codimension of
W; :=V; \ U; in V; goes to oo when i — oo, and the smoothness of @; and ; ensure that

(@i)a;Q{=ir} = (a;)ya;Q = M(U;) € DMg(k,Q),

and the same for (3;),Q{—ir} = M(V;), where for Y a smooth k-scheme, the object M (Y) is the motive
of Y. We are looking at

colim; M (U;) — colim; M (V;)
in DM (k, Q), with codimy;, (V; \ U;) 2o By [HPL21, Proposition 2.13] this is an equivalence. O
Corollary 4.5.3. In Dy(M) = IndD? (MHM(M)) the natural map

colim; (p; )1 Qy, {—ir} — p1Qx
is an equivalence. In particular, for each n € N, the natural maps

PH" ((pi)Qu,){~ir} — H? (p:Qx)
are equivalences for i big enough.

Proof. The Hodge realisation
pu: DMg — Dy

extends naturally to stacks, in a way that commutes with the operations and colimits, thus the first
statement is just the Hodge realisation applied to Proposition 4.5.2. The second statement follows from
the fact that the t-structure on Dy (M) is compatible with filtered colimits and that each PH" (p,Qx) is
constructible thus Noetherian. O
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