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Abstract
Using the ∞-categorical enhancement of mixed Hodge modules constructed by the author in a previous paper, we
explain how mixed Hodge modules canonically extend to algebraic stacks, together with all the six operations and
weights. We also prove that Drew’s approach to motivic Hodge modules gives an ∞-category that embeds fully
faithfully in mixed Hodge modules, and we identify the image as mixed Hodge modules of geometric origin.
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1. Introduction

Let X be a complex algebraic variety and 𝑛 ∈ N be an integer. Deligne’s work in [Del74] gives a
polarisable mixed Hodge structure on the singular cohomology H𝑛

sing (𝑋 (C),Q) of the complex points
of X, seen as an analytic variety. M. Saito’s category of algebraic mixed Hodge modules ([Sai90b]) on X
is an Abelian category MHM(𝑋) modelled on perverse sheaves which is a relative version of polarisable
mixed Hodge structures. Its derived category D𝑏 (MHM(𝑋)) is endowed with the six sheaf operations
and any complex of mixed Hodge modules K has an underlying complex rat(𝐾) of perverse sheaves.
The mixed Hodge structure on H𝑛

sing(𝑋 (C),Q) can be recovered as H𝑛 ( 𝑓∗Q𝑋 ) where

𝑓∗ : D𝑏 (MHM(𝑋)) → D𝑏 (MHM(Spec(C))) � D𝑏 (MHSC)
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2 S. Tubach

is the pushforward of the map 𝑓 : 𝑋 → Spec(C) and Q𝑋 ∈ D𝑏 (MHM(𝑋)) is the unit for the
tensor product, whose underlying sheaf of perverse sheaves is the constant sheaf of Q-vector spaces
Q𝑋 ∈ Sh(𝑋 (C),Q) under Beilinson’s ([Bei87b]) isomorphism D𝑏 (Perv(𝑋,Q)) � D𝑏

𝑐 (𝑋 (C)
an,Q). This

point of view is very powerful as the formalism of the six operations is useful to make computations
and reductions.

If 𝔛 is a reasonable algebraic stack (say a global quotient stack or a stack exhausted étale locally
by such), one can construct a mixed Hodge structure on H𝑛

sing(𝔛(C),Q) either by hyperdescent as in
[Del74, Section 6.1] or by using exhaustions as in [Dav24, Section 5.2]. One purpose of this article
(see Section 4) is to give an extension of M. Saito’s derived category, together with the six operations,
to algebraic stacks so that the above mixed Hodge structures can be recovered as H𝑛 ( 𝑓∗Q𝔛) with
𝑓 : 𝔛 → Spec(C) the structural map:
Theorem (Theorem 4.1.1, Corollary 4.3.8 and Theorem 4.1.11). There exists a canonical extension of
the derived category of mixed Hodge modules to algebraic stacks over the complex numbers. It has the
six operations, nearby cycles and a notion of weights. Over stacks with affine stabilisers this notion of
weights gives rise to a weight structure à la Bondarko.

The proof relies on the ∞-categorical enhancement of mixed Hodge modules obtained in [Tub25],
and then on Liu and Zheng’s work ([LZ17]) on extension of formalisms of six operations to stacks. The
construction of nearby cycles is based on a motivic construction of the unipotent nearby cycles functor
considered in [CHS24], who give a natural setting in which Ayoub’s construction of nearby cycles
([Ayo07b]) works. We hope that this paper will be useful as a toolbox for studying the Hodge cohomology
of stacks. It has been used by T. Kinjo in [Kin24] to prove purity statements and decomposition theorems
for the homology of stacks having a good moduli space.

There is another approach to giving a relative version of mixed Hodge structures. In [Dre18], Drew
constructs an ∞-category of motivic Hodge modules DH(𝑋) which is endowed with the six operations
as well as with a notion of weights. If 𝑋 = SpecC this category embeds fully faithfully in D(IndMHM𝑝

C
)

the derived category of the indization of mixed Hodge modules. This construction has the advantage of
being quite straightforward: one considers the commutative algebra H in the∞-category of Voevodsky
étale motives that represents Hodge cohomology, and then one takes modules over this algebra. In
comparison, M. Saito’s construction is very delicate and requires a lot of attention in order to work. The
major drawback of Drew’s construction is that there was no easy construction of a t-structure, hence one
loses access to an abelian category. The second purpose of this article is to prove that Drew’s category
gives the right thing: it is endowed with a t-structure and it embeds fully faithfully in the derived category
of mixed Hodge modules. We also identify its image.
Theorem (Theorem 3.2.5). Let X be a finite type scheme over the complex numbers. The ∞-category
of motivic Hodge modules on X of Drew embeds in the derived category of ind-mixed Hodge modules
on X. Its image is the category generated under shifts and colimits by objects of the form 𝑓∗Q𝑌 with
𝑓 : 𝑌 → 𝑋 a proper morphism.

There is also an improved version of this theorem with enriched motivic Hodge modules, which
reach the∞-category generated under shifts and colimits by objects of the form 𝑓∗𝑔

∗𝐻 with 𝑓 : 𝑌 → 𝑋
proper, 𝑔 : 𝑌 → SpecC the structural morphism and 𝐻 ∈ MHSC a graded polarisable rational mixed
Hodge structure overC. We refer the reader to Section 3 for more details. To prove this result, we use that
by the work of Drew and Gallauer ([DG22]) the ∞-categorical enhancement of mixed Hodge modules
provides a realisation functor

𝜌H : DMét → IndD𝑏 (MHM(−))

from the presentable ∞-category of rational étale Voevodsky motives to the indization of the derived
category of mixed Hodge modules, that commutes with the operations and is colimit preserving. By
abstract nonsense this functor will factor through Drew’s category of mixed Hodge modules and give
a fully faithful functor DH → IndD𝑏 (MHM). The identification of the image is inspired by the proof
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of Ayoub in the Betti case ([Ayo22, Theorem 1.98]), and relies on the semi-simplicity of smooth and
proper pushforwards of pure mixed Hodge modules.

Organisation of the paper

In the first Section 2 of this article we recall how to construct the∞-categorical enhancement of the six
operations for mixed Hodge modules, and why this gives a Hodge realisation of étale motives. In the
second Section 3 we show that Drew’s construction embeds fully faithfully in mixed Hodge modules. In
the last Section 4 we explain how to extend mixed Hodge modules on stacks, finishing with a comparison
to existing constructions.

2. Recollections on∞-categorical enhancements of mixed Hodge modules

2.1. Construction of the enhancement

In [Tub25], we proved that Saito’s construction of the triangulated bounded derived category of algebraic
mixed Hodge modules, together with the six operations, can be enhanced to the world of∞-categories.
Let us recall how this works:

For every separated finite type C-scheme X, the bounded derived category D𝑏 (MHM(𝑋)) of mixed
Hodge modules carries a natural standard t-structure (called the constructible t-structure in loc. cit.
but we prefer the name standard because all complexes on D𝑏 (MHM(𝑋)) are constructible) which is
characterised by the fact that

D𝑏 (MHM(𝑋))𝑡std∈[𝑎,𝑏] = {𝐾 ∈ D𝑏 (MHM(𝑋)) | ∀𝑥 ∈ 𝑋 closed, 𝑥∗𝐾 ∈ D[𝑎,𝑏] (MHSC)}

for every −∞ � 𝑎 � 𝑏 � +∞. If we endow D𝑏
𝑐 (𝑋 (C)

an,Q) with its canonical t-structure induced by the
inclusion

D𝑏
𝑐 (𝑋 (C)

an,Q) ⊂ D(Sh(𝑋 (C)an,Q))

then the ‘underlying Q-structure functor’

rat : D𝑏 (MHM(𝑋)) → D𝑏
𝑐 (𝑋 (C)

an,Q)

is t-exact if the left-hand side is endowed with the standard t-structure. Denote by MHMstd(𝑋) the heart
of the standard t-structure. The crucial result in [Tub25] is the following, whose proof is adapted from
Nori’s proof ([Nor02]) of the analogous result for D𝑏

𝑐 (𝑋 (C)
an,Q):

Theorem 2.1.1 [Tub25, Corollary 2.19]. The canonical functor

D𝑏 (MHMstd (𝑋)) → D𝑏 (MHM(𝑋))

is an equivalence.

Using this, because pullbacks 𝑓 ∗ are t-exact for the standard t-structure, it is not hard to see that they
are derived functors, hence that they canonically have a∞-categorical enhancement which is functorial
in f, and the same can be said for the tensor product. The enhancements of the other operations arise by
adjunction: if an ∞-functor between stable ∞-categories has an adjoint on the homotopy triangulated
category, it has an∞-categorical adjoint by [NRS20, Theorem 3.3.1].

In particular, we have a functor

D𝑏 (MHM(−)) : Schop
C
→ CAlg(St)
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4 S. Tubach

taking values in the ∞-category of stably symmetric monoidal ∞-categories and symmetric monoidal
exact functors. It sends a map 𝑓 : 𝑌 → 𝑋 of finite type C-schemes (say, separated) to an ∞-functor
𝑓 ∗ lifting Saito’s pullback functor on the homotopy category. For smooth f, the functor 𝑓 ∗ admits a
left adjoint 𝑓♯, and moreover D𝑏 (MHM(−)) satisfies the usual axioms considered in motivic context:
A1-invariance, P1-stability, smooth base change, proper base change etc. In particular, the underlying
homotopy functor is a motivic triangulated category in the sense of [CD19, Definition 2.4.45], it satisfies
moreover h-hyperdescent. We now consider the functor

DH(−) := IndD𝑏 (MHM(−)) : Schop
C
→ CAlg(Pr𝐿St)

taking values in presentable ∞-categories. By [Tub25, Appendix A], we see that both DH and
D𝑏 (MHM(−)) extend to not necessarily separated schemes using Zariski descent, together with all
the operations.

Remark 2.1.2. The above functor extends tautologically to a functor from diagram of schemes to
diagram of symmetric monoidal stable∞-categories, hence we can evaluate DH on a simplicial scheme
to obtain a cosimplicial diagram of ∞-categories. Using the fact that it is easy (see [Sai90b, Remark
before 4.6]) to compare the mixed Hodge structures on H𝑛

sing (𝑋 (C),Q) constructed by Deligne and
Saito (under the equivalence MHM(Spec(C)) � MHS𝑝

C
) when X is a closed subset of a smooth variety,

h-hyperdescent of the derived category of mixed Hodge modules gives (using a resolution of singular-
ities, that provides a h-hypercovering made out of smooth varieties) a simple proof that in fact the two
mixed Hodge structures are the same for a general complex variety X. This result was known, but the
proof is quite involved (see [Sai00]).

Remark 2.1.3. Everything we do in this article would probably hold more generally for arithmetic mixed
Hodge modules over varieties defined over a subfield k of C. They are considered in [Sai06, Examples
1.8 (ii)], and our work in [Tub25], thus the proofs of this article, would probably work verbatim in this
slightly more general context.

2.2. Hodge realisation of étale motives

The main motivation for the ∞-categorical lifting of mixed Hodge modules was that this was the only
obstruction for the existence of a realisation functor from Voevodsky motives that commutes with all the
operations. We will deal here with the étale version, with rational coefficients. Recall that the∞-category
of étale motives with rational coefficients over a scheme X is defined (see [Rob15]) as a formula by

DMét (𝑋) := Sh∧ét,A1 (Sm𝑋 ,ModQ) [Q(1)⊗−1] .

This means that to construct DMét (𝑋), one considers étale hypersheaves on smooth X-schemes
with values in ModQ � D(Q) that are A1-invariant, and then one inverts the object Q(1) =
(𝑀 (P1

𝑋 )/𝑀 (∞𝑋 )) [−2] for the tensor product, with M the Yoneda embedding. The formula gives an
universal property of the presentable symmetric monoidal∞-category DMét (𝑋), as proven by Robalo in
[Rob15]: any symmetric monoidal functor F on smooth X-schemes with values in a rational presentably
symmetric monoidal ∞-category D that satisfies étale hyperdescent, A1-invariance, and such that
𝐹 (P1

𝑋 )/𝐹 (∞𝑋 ) is a tensor invertible object factors uniquely through the functor 𝑀 : Sm𝑋 → DMét (𝑋).
By the work of Drew and Gallauer [DG22] in fact this universality of DMét (𝑋) induces a universal
property of the functor DMét on schemes of finite type over some base S. Together with [CD19, Theorem
4.4.25], taking 𝑆 = Spec(C) one obtains:

Theorem 2.2.1 [Tub25, Theorem 4.4]. There exists a Hodge realisation

𝜌H : DMét → DH
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on finite type C-schemes that commutes with the six operations. Moreover, the composition with the
functor

rat : DH → IndD𝑏
𝑐 (−,Q)

gives the Betti realisation.
We will use this functor in the next section to compare mixed Hodge modules with Drew’s approach,

and at the end of this article to obtain the computation of the cohomology of a quotient stack with
exhaustions in an easy way.

3. Mixed Hodge modules of geometric origin

In this section, we prove that Drew’s approach in [Dre18] to motivic Hodge modules gives a full
subcategory of the derived category of mixed Hodge modules, stable under truncation, and thus has a
t-structure.

3.1. Motivic Hodge modules

As recalled above, we have a Hodge realisation

𝜌H : DMét → DH

compatible with all the operations. This functor is ModQ-linear. The target DH is naturally valued
in DH(C) = IndD𝑏 (MHS𝑝

C
)-linear presentable ∞-categories, where MHS𝑝

C
is the abelian category of

polarisable mixed Hodge structures over C (with rational coefficients). Thus the above realisation has a
natural enrichment

𝝆H : 𝑫𝑴 → DH

where DM := DMét ⊗ModQDH(C) is the DH(C)-linearisation of DMét. It can be computed as

DM(𝑋) = DMét (𝑋) ⊗ModQ DH(C),

but can also be put inside the definition:

DM(𝑋) � Shv∧
A1 ,ét (Sm𝑋 ,DH(C)) [Q(1)⊗−1]

(this follows from [Vol23, Corollary 2.24] which proves that tensoring can go inside sheaves, but also
works for localisations such asA1-localisation. The commutation of tensoring with DH (C)with inverting
the Tate twist follows from the expression of the Q(1)-tensor inverted category as a colimit (see [AI23,
1.4.12, 1.3.13, 1.6.3]), and the preservation of colimits by the functor −⊗DH(C)). Thus the∞-category
DM is the P1-stabilisation of the A1-invariant étale hypersheaves on Sm𝑋 with values in DH(C). In
particular, it also affords the six operations and the canonical functor DMét → DM commutes with
them. For each finite type C-scheme X, the functors

𝜌𝐻,𝑋 : DMét (𝑋) → DH(𝑋)

and

𝜌H,𝑋 : DM(𝑋) → DH(𝑋)

are colimit preserving symmetric monoidal functors, hence they have lax symmetric monoidal right
adjoints 𝜌𝐻,𝑋

∗ and 𝜌H,𝑋
∗ that create commutative algebras

H𝑋 := 𝜌𝐻,𝑋
∗ Q𝑋 ∈ CAlg(DMét (𝑋))
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6 S. Tubach

and

H𝑋 := 𝜌H,𝑋
∗ Q𝑋 ∈ CAlg(DM(𝑋))

in étale motives. Because the right adjoints commute with pushforwards, the counit maps induces
algebra maps

H𝑋/C := 𝜋∗𝑋HC → H𝑋

and

H𝑋/C := 𝜋∗𝑋HC →H𝑋 ,

where 𝜋𝑋 : 𝑋 → SpecC is the structural map. We will show below that those maps are in fact
equivalences.

Definition 3.1.1 (Drew). The∞-category of motivic Hodge modules over X is

DH(𝑋) := ModH𝑋/C
(DMét (𝑋)).

There is an enriched version, that we will call the ∞-category of enriched mixed Hodge modules over
X, defined as

DH(𝑋) := ModH𝑋/C
(DM(𝑋)).

An advantage of DH(𝑋) when compared to DH(𝑋) is that over a point, the∞-category DH(𝑋) is the
whole derived category of graded polarisable mixed Hodge structures, whereas DH(𝑋) only consists
of mixed Hodge structures of geometric origin. However:

Notation 3.1.2. As the reader begins to guess, both situations, motivic Hodge modules and enriched
motivic Hodge modules, are parallel. Thus from now on except for the important results we will only
deal with motivic Hodge modules, the proofs in the enriched case being the same. This is only to avoid
doubling the size of this article and the extensive use of bold.

The functor DMét is in fact valued in the ∞-category of DMét (C)-linear presentable ∞-categories,
and the construction DH = ModH−/C (DMét) can be rewritten

DH = DMét ⊗DMét (C)DH(C).

As DMét (C) and DH(C) are rigid (this means that they are indization of small symmetric monoidal
stable∞-categories in which every object is dualisable: by [Ayo14, Proposition 3.19] they are compactly
generated, by [Ayo07a, Proposition 2.2.27] the motives of smooth projective varieties generate the
compact objects, and by [Rio05, Théorème 2.2] the motives of smooth projective varieties are strongly
dualisable), the∞-functor

− ⊗DMét (C) DH(C) : Pr𝐿DMét (C)
→ Pr𝐿DH(C) (3.1.2.1)

sending a DMét (C)-linear presentable∞-category C to C ⊗DMét (C) DH(C) � ModHC (C) has an (∞-2)-
categorical enhancement thanks to [HSS17, Section 4.4]. In particular any adjunction

C D
𝐹

𝐺

⊥
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between DMét (C)-linear presentable ∞-categories, such that the right adjoint G itself commutes with
colimits and is DMét (C)-linear (this is automatic if F preserves compact objects by [HSS17, Proposi-
tion 4.9] because DMét (C) and DH(C) are rigid), the image under equation (3.1.2.1) is again an internal
DH(C)-adjunction, which means that 𝐺 ⊗ DH(C) is the right adjoint to 𝐹 ⊗ DH(C). Now it turns out
that all properties of coefficients systems ([DG22]) or motivic categories ([CD19]) are properties of
functors that are part of an internal adjunction, hence are preserved by (∞-2)-functors. For example, the
property of A1-invariance of such system of ∞-categories is expressed as the counit 𝑝♯𝑝∗ → Id being
an equivalence, where 𝑝 : A1

𝑆 → 𝑆 is the projection. Thus our functor

DH: Schop
C
→ Pr𝐿St

is naturally a coefficient system in the sense of Drew and Gallauer, and therefore affords the six operations
in a way that is compatible with the functor DMét → DH (by [Ayo07a] and [CD19]), and has h-descent
(by [CD19, Theorem 3.3.37]). A proof of this result that does not use (∞-2)-categories had been given
by Drew in [Dre18, Theorem 8.10].

3.2. Embedding in mixed Hodge modules

The Hodge realisation naturally factors as

DMét
⊗HC
−−−−→ DH

𝜌H
−−→ DH

where all functors commute with the operations and all categories are compactly generated on schemes.
Indeed one can see it in the following way:

DMét → DH � ModH(−)/C (DMét)
𝜌H
−−→ Mod𝜌H (H(−)/C) (DH) → ModQ(DH) ∼←− DH

where the map 𝜌H(H(−)/C) → Q is induced by the counit of the adjunction (𝜌H, 𝜌
𝐻
∗ ).

The first observation is a consequence of the commutation with the operations:

Lemma 3.2.1. For each finite type C-scheme, the functor

𝜌H : DH→ DH

is fully faithful. Moreover the map

H𝑋/C → H𝑋

is an equivalence.

Proof. The proof is the same as the proof of [Tub25, Lemma 4.14] and is originally due to Cisinski
and Déglise. We recall it here. First over SpecC the functor is fully faithful by [Dre18, Lemma 4.11],
because DMét (C) is rigid and 𝜌H preserves compact objects. Over a general base it suffices to prove
that the functor is fully faithful on compact objects DH𝜔 . Using that

MapDH (𝑋 ) (𝜌H(𝑀), 𝜌H(𝑁)) � MapDH (C) (𝜌H(Q), 𝑝∗ℋom (𝜌H (𝑀), 𝜌H(𝑁))),

where 𝑝 : 𝑋 → Spec(C) is the structural morphism, and that the same formula holds in DH, we see that
the lemma would follow from the commutation of 𝜌H with pushforwards and internal homomorphisms.
Because the image of the compact preserving functor − ⊗ H : DMét → DH generates DH, it suffices
even to prove that 𝜌H commutes with pushforwards and internal homomorphisms when restricted to the
essential image of − ⊗H : (DMét)

𝜔 → DH𝜔 . This finishes the proof as 𝜌H = 𝜌H ◦ (− ⊗H) and − ⊗H
commute with the six operations. �

Denote by stdH𝑛 the cohomology functor for the standard t-structure.
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Definition 3.2.2 (Ayoub). Let X be a finite type C-scheme.

1. We let MHMgeo(𝑋) (resp. MHMℎ𝑜𝑑 (𝑋)) be the full subcategory of IndMHMstd(𝑋) generated under
kernels, cokernels, extensions and filtered colimits by objects of the form stdH𝑛

( 𝑓∗𝜋
∗
𝑌𝐾) (𝑚) with

𝐾 ∈ ModQ (resp. with 𝐾 ∈ DH(C)), 𝑓 : 𝑌 → 𝑋 a proper morphism, 𝜋𝑌 : 𝑌 → SpecC the structural
morphism and 𝑛, 𝑚 ∈ Z. These are Grothendieck abelian categories that we called Mixed Hodge
modules of geometric origin (resp. of Hodge origin).

2. We let D𝐻,geo (𝑋) (resp. D𝐻,hod (𝑋)) be the full subcategory of complexes 𝐾 ∈ DH(𝑋) such that for
all 𝑛 ∈ Z we have stdH𝑛

(𝐾) ∈ MHMgeo(𝑋) (resp. we have stdH𝑛
(𝐾) ∈ MHMhod(𝑋)). Those are

stable ∞-categories on which the canonical t-structure on DH(𝑋) = D(IndMHMstd(𝑋)) restricts.
Moreover they are stable under pullbacks by proper base change.

Lemma 3.2.3. The functors

𝜌H : DH→ DH

and

𝜌H : DH→ DH

land in D𝐻,geo and D𝐻,hod.

Proof. This results from the commutation with the operations and the fact that DH(𝑋) (resp. DH(𝑋))
is generated under colimits by the 𝑝∗𝜋

∗
𝑋𝐾 (𝑚) for 𝐾 ∈ ModQ (resp. 𝐾 ∈ DH(C)), thanks to [Ayo07a,

Lemme 2.2.23]. �

Proposition 3.2.4. Let 𝜂 be the generic point of an irreducible finite type C-scheme X, and consider the
functor

colim𝜂∈𝑈DH(𝑈) → colim𝜂∈𝑈 (D𝐻,geo (𝑈)) (3.2.4.1)

induced by 𝜌H, where the colimit (taken in Pr𝐿) runs over all the smooth open subsets U of X that
contain 𝜂. It is an equivalence.

Proof. Note that by [Lur09, 4.4.5.21, 5.5.7.8], the colimit is in fact computed in Pr𝐿𝜔 , the ∞-category
of compactly generated∞-categories, and we can rewrite it as

Ind
(
colim𝜂∈𝑈DH(𝑈)𝜔 → colim𝜂∈𝑈 (D𝐻,geo (𝑈))

𝜔
)

where now the colimit inside the Ind(−) is taken in Cat∞. By [HRS25, Proposition 2.1] the functor
between compact objects is fully faithful, using Lemma 3.2.1. It remains to show that it is essentially
surjective. It suffices to reach compact objects.

Denote by

D := colim𝜂∈𝑈 (D𝐻,geo (𝑈)
𝜔)

the colimit of the compact objects, computed in Cat∞.
For each U, the compact objects of D𝐻,geo (𝑈) have a standard t-structure and its heart is the category

defined in the same way as MHMstd
geo(𝑈), but allowing only direct factors instead of all filtered colimits.

As all transitions in the diagram are t-exact, the colimit D of the compact objects (which are the
compact objects of the colimit) has a bounded t-structure. Moreover, the category D is generated under
finite colimits, finite limits, extensions and truncations by images in the colimit of objects of the form
𝑔∗𝜋
∗
𝑍𝐾 (𝑛) where 𝑔 : 𝑍 → 𝑈 is a proper morphism and 𝑛 ∈ Z is an integer.

By continuity of motives [EHIK21, Lemma 5.1 (ii)] and [LurHA, Theorem 4.8.5.11], the left-
hand side of equation (3.2.4.1) is canonically equivalent to DH(𝜂) := Mod𝑢∗HC (DMét (𝜂)), where
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𝑢 : 𝜂 → SpecC is the structural morphism. Moreover, by [Ayo07a, Lemma 2.2.27], the ∞-category
DH(𝜂) is generated under colimits by the 𝑓∗𝜋

∗
𝑌𝐾 (𝑛) where 𝑓 : 𝑌 → 𝜂 is a smooth and projective

morphism, 𝑛 ∈ Z and 𝐾 ∈ ModQ. By spreading out ([Gro66, 8.10.5(xiii)], [Gro67, 17.7.8(ii)]) and
proper base change, such an object is the restriction to 𝜂 of a 𝑔∗𝜋

∗
𝑍𝐾 (𝑛) with 𝑔 : 𝑍 → 𝑈 a smooth

projective morphism, and U an open subset of X.
Now consider an object of the form 𝑔∗𝜋

∗
𝑍𝐾 (𝑛) in D, where 𝑔 : 𝑍 → 𝑈 is a proper morphism and

𝑛 ∈ Z is an integer. This object is the image by equation (3.2.4.1) of (𝑔∗𝜋∗𝑍𝐾 (𝑛))𝜂 ∈ DH(𝜂). By the
above paragraph, there exists an open subset V of U, a finite category I and a functor 𝐹 : 𝐼 → DH(𝑉)
such that for each 𝑖 ∈ 𝐼, the object 𝐹 (𝑖) is of the form ( 𝑓𝑖)∗𝜋∗𝑍𝑖

𝐾 (𝑛𝑖) for 𝑓𝑖 : 𝑍𝑖 → 𝑈 a smooth and
projective morphism and 𝑛𝑖 ∈ Z, and such that in DH(𝜂), we have

(𝑔∗𝜋
∗
𝑍𝐾 (𝑛))𝜂 � (colim𝐼𝐹 (𝑖))𝜂 .

In particular, in D, the object 𝑔∗𝜋∗𝑍𝐾 (𝑛) is isomorphic to the image in the colimit over all open subsets,
of the finite colimit colim𝐼𝐹

′(𝑖), where 𝐹 ′ is the composition of the functor F with equation (3.2.4.1),
which has the same formula for 𝐹 ′(𝑖).

This gives that the categoryD is generated under finite colimits, finite limits, direct factors, extensions
and truncations by images in the colimit of objects of the form 𝑔∗𝜋

∗
𝑍𝐾 (𝑛) with 𝑔 : 𝑍 → 𝑈 smooth and

projective. We may also assume U to be smooth.
It turns out that to prove that the functor of the proposition is essentially surjective, it suffices to

check that it reaches all objects of the heart of the compact objects. Thanks to [Ayo22, Lemma 1.6.22],
we see that it suffices to show that all subquotients of the image in the colimit of all stdH𝑛

( 𝑓∗𝜋
∗
𝑌𝐾), for

𝐾 ∈ ModQ compact and 𝑓 : 𝑌 → 𝑈 projective and smooth, are in the image. Now by dévissage we can
assume K to be pure, so that by the conservation of weights under pushforwards by proper maps, and
because U is smooth hence Y is also smooth so that 𝜋∗𝑌𝐾 is pure, the object 𝑓∗𝜋

∗
𝑌𝐾 is pure. Using the

decomposition theorem for pure complexes, we see that there is a decomposition

𝑓∗𝜋
∗
𝑌𝐾 �

⊕
𝑛

pH𝑛
( 𝑓∗𝜋

∗
𝑌𝐾) [−𝑛] .

In particular, each pH𝑛 ( 𝑓∗𝜋
∗
𝑌𝐾) lies in the image. As f is smooth and proper and 𝜋∗𝑌𝐾 is a dualisable

object coming from Spec(C), we see that (as in [Rio05, Theorem 2.2], the dual is 𝑓∗𝜋
∗
𝑌𝐾
∨(𝑑) [2𝑑]

where d is the relative dimension of f ) the complex 𝑓∗𝜋
∗
𝑌𝐾 is dualisable, so that pH𝑛 ( 𝑓∗𝜋

∗
𝑌𝐾) are local

systems. Because duality datum consists of finitely many maps, and because compact objects in the
colimit are dualisable, we see that any subquotient of the image of pH𝑛 ( 𝑓∗𝜋

∗
𝑌𝐾) in the colimit will

lift as a subquotient in the category of local systems, of the restriction of pH𝑛 ( 𝑓∗𝜋
∗
𝑌𝐾) to a smaller

open subset. Moreover, as pH𝑛 ( 𝑓∗𝜋
∗
𝑌𝐾) is lisse we have pH𝑛 ( 𝑓∗𝜋

∗
𝑌𝐾 [𝑑]) [−𝑑] �

stdH𝑛
( 𝑓∗𝜋

∗
𝑌𝐾) where

𝑑 = dim𝑈 (this is because over a smooth scheme, and for lisse complexes, the standard t-structure is the
perverse t-structure, shifted by the dimension [BBD82, proof of Proposition 2.1.3]). This proves that
any subquotient of the image of stdH𝑛

( 𝑓∗𝜋
∗
𝑌𝐾) in the colimit is in fact a subquotient in perverse sheaves

of a suitable restriction of pH𝑛 ( 𝑓∗𝜋
∗
𝑌𝐾 [𝑑]) to an open subset of U. As this object is a pure perverse

sheaf, any subquotient is in fact a direct factor, thus is in the image, and the proof is finished. �

This theorem is the same as Ayoub’s theorem for Betti sheaves, and is proved in the same way.
Theorem 3.2.5. Let X be a finite type C-scheme. The functors

𝜌H : DH(𝑋) → D𝐻,geo (𝑋)

and

𝜌H : DH(𝑋) → D𝐻,hod (𝑋)

are equivalences of categories.
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Proof. This is now a simple Noetherian induction: if 𝐾 ∈ D𝐻,geo (𝑋) is compact, we may find a
nonempty irreducible open subset U of X with generic point 𝜂 and Proposition 3.2.4 ensures that up to
reducing the size of U, the restriction 𝐾 |𝑈 of K to U is in the image, but the localisation sequence

𝑗!𝐾 |𝑈 → 𝐾 → 𝑖∗𝑖
∗𝐾

with 𝑗 : 𝑈 → 𝑋 and 𝑖 : 𝑍 → 𝑋 the complement, together with the full faithfulness and a Noetherian
induction, give that K is in the image. �

This proves that all desiderata of Drew in [Dre18, Desiderata 1.1] are fulfilled.
Remark 3.2.6. In a forthcoming work with Raphaël Ruimy, we use this point of view of motivic
Hodge modules to construct categories of mixed Hodge modules of geometric origin that have Z-linear
coefficients.

Although what we have done ensures that the goals of Drew in [Dre18, Desiderata 1.1] are achieved,
it may still seem unsatisfactory: another motivation for Drew’s work was probably to give an alternative
construction of mixed Hodge modules. Here our proof uses mixed Hodge modules hence it is not quite
right. It should be possible to prove that motivic Hodge modules afford a t-structure without comparing
them to M. Saito’s mixed Hodge modules.

4. Extension of the derived category of mixed Hodge modules to algebraic stacks

4.1. Extensions and operations

We have at hand a h-hypersheaf

DH : Schop
C
→ CAlg(Pr𝐿).

The functor DH extends (as a right Kan extension) canonically to a h-hypersheaf on all Artin stacks
over C. More explicitly, given a presentation 𝜋 : 𝑋 → 𝔛 of an algebraic stack 𝔛, that is a smooth
surjection with X a scheme, and assuming that the diagonal of 𝔛 is representable by schemes, and
denoting by

𝑋𝑛/𝔛 := 𝑋 ×𝔛 𝑋 ×𝔛 · · · 𝑋

the n-th fold of X over 𝔛 (this is a scheme as the diagonal of 𝔛 is representable), we have a limit diagram
in Pr𝐿

DH(𝔛) DH(𝑋) DH(𝑋 ×𝔛 𝑋) . . .
𝜋∗

. (4.1.0.1)

If the diagonal of 𝔛 is not representable by schemes, one has to first define DH for algebraic spaces
using the same formula as above.

Using Liu and Zheng’s gluing technique ([LZ17]) as Khan in [Kha19, Appendix A.], one can prove
that the extension of DH to (higher) Artin stacks still has the six operations. Unless mentioned otherwise,
all stacks and schemes considered will be locally of finite type over C. This subsection is more or less
book keeping of the work of Liu, Zheng and Khan. More precisely, we have:
Theorem 4.1.1 (Liu-Zheng, Khan).
1. For every Artin stack 𝔛 there is a closed symmetric monoidal structure on DH(𝔛).
2. For any morphism 𝑓 : 𝔜→ 𝔛 there is an adjunction

DH(𝔛) DH(𝔜)

𝑓 ∗

𝑓∗

⊥

with 𝑓 ∗ a symmetric monoidal functor.
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3. For any locally of finite type morphism of Artin stacks 𝑓 : 𝔛 → 𝔜 there is an adjunction (functorial
in f)

DH(𝔛) DH(𝔜)

𝑓!

𝑓 !

⊥ .

4. The operations 𝑓! satisfy base change and projection formula against 𝑔∗, and the operations 𝑓 !

satisfy base change against 𝑔∗. If f is representable by Deligne-Mumford stacks, then there is a
natural transformation 𝛼 𝑓 : 𝑓! → 𝑓∗, which is an isomorphism if f is proper and representable by
algebraic spaces (for a strengthening, see Proposition 4.2.5).

5. For any closed immersion 𝑖 : ℨ → 𝔛 of Artin stacks with 𝑗 : 𝔘 → 𝔛 the inclusion of the open
complement, we have a pullback diagram

DH(ℨ) DH(𝔛)

∗ DH(𝔘)

𝑖∗

𝑗∗ .

6. For any Artin stack 𝔛, the functor

𝜋∗ : DH(𝔛) → DH(A
1
𝔛)

is fully faithful.
7. For a smooth morphism 𝑓 : 𝔜→ 𝔛 of relative dimension d, we have a purity isomorphism

𝔭 𝑓 : 𝑓 ∗(𝑑) [2𝑑] � 𝑓 !.

8. The !-functoriality DH(−)
! is also an étale hypersheaf.

Proof. The proofs of [Kha19, Appendix A] hold for any motivic coefficient system, so that 1,2,3 and
4 are [Kha19, Theorem A.5], 5. is [Kha19, Theorem A.9], 6. is [Kha19, Proposition A.10] and 7. is
[Kha19, Theorem A.13]. The last point 8. follows from [LZ17, Proposition 4.3.5]. �

Remark 4.1.2. All results above hold more generally for higher Artin stacks, except for 4. where one
need f to be 0-truncated on top of being proper for 𝑓! to be isomorphic to 𝑓∗.
Remark 4.1.3. One could state the same result for mixed Hodge modules of geometric or Hodge origin
to stacks, and all the results we stated above and below also hold in this more restrictive setting. Note
that because the construction is a right Kan extension from the category of correspondences of schemes
to the category of correspondences of algebraic stacks, the functor DH → DH will automatically
commute with the left adjoints 𝑓 ∗, 𝑓! and ⊗, but the commutation with the right adjoints is unclear. The
commutation with internal homomorphisms and with 𝑓∗ for f a representable morphism can be checked
on a smooth atlas, but the cases of 𝑓∗ and 𝑓 ! for a general nonrepresentable morphism seems subtle. See
Proposition 4.2.6 for a result in that direction.

Now, as D𝑏 (MHM(−)) also satisfies h-descent (in fact, étale descent is sufficient by [Kha25, Corollary
3.4.7]), we can also right Kan extend it and have the same formula as equation (4.1.0.1). In particular
as limits in Cat∞ are computed term wise, if one denote by D𝑏

H,𝑐 (−) the extension of D𝑏 (MHM(−)) to
(higher) Artin stacks, we have a fully faithful natural transformation

𝜄 : D𝑏
H,𝑐 (−) → DH(−).

The question of whether for a general morphism f of Artin stacks, the operations 𝑓∗ and 𝑓! preserve
constructibility is a bit subtle. Of course, it is false in general that 𝑓∗Q is cohomologically bounded.
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For a finite type C-scheme X, the category DH(𝑋) = IndD𝑏 (MHM(𝑋)) admits a t-structure by
[LurSAG, Lemma C.2.4.3]. The t-structure on DH(𝑋) is right complete and compatible with filtered
colimits. We will use several times that a limit of stable ∞-categories with t-structures and t-exact
transition functors is endowed with a canonical t-structure ([HS20, Lemma 3.2.18]).

Proposition 4.1.4. Let 𝔛 be an Artin stack locally of finite type over C. The∞-category DH(𝔛) admits
a t-structure such that for any smooth presentation 𝜋 : 𝑋 → 𝔛 the conservative functor 𝜋∗ is t-exact up
to a shift. Moreover, the t-structure is right complete and compatible with filtered colimits. It restricts
to a t-structure on D𝑏

H,𝑐 (−).

Proof. We have to first deal with the case where 𝔛 is an algebraic space. In this case, the map 𝜋 can be
chosen to be étale, and as the diagonal of 𝔛 is representable by schemes, the limit diagram

DH(𝔛) → lim
Δ
(𝑋𝑛/𝑋 )

has t-exact transitions whence the limit DH(𝔛) has a perverse t-structure. The left separation and
compatibility with colimits can be checked after applying 𝜋∗, hence hold. The right completeness is
checked exactly as in the case of stacks, which we deal with below.

We can assume that 𝔛 is a connected algebraic stack. Choose a presentation 𝜋 : 𝑋 → 𝔛 which is
smooth of relative dimension d for some integer d. Then all the projections

𝑝𝑛 : 𝑋 ×𝔛 𝑋 ×𝔛 · · · ×𝔛 𝑋 → 𝑋 ×𝔛 · · · ×𝔛 𝑋

are also smooth of relative dimension d, so that each 𝑝∗𝑛 [𝑑] is t-exact for the perverse t-structure. As
equation (4.1.0.1) can be done with the shifts 𝑝∗𝑛 [𝑑], this creates a t-structure on the limit of the Čech
nerve of 𝜋 such that 𝜋∗ is t-exact. It does not depend on 𝜋 as one can see by taking another presentation
𝑝 : 𝑌 → 𝔛 and then 𝑌 ×𝔛 𝑋 → 𝔛. The t-structure obviously restricts to D𝑏

H,𝑐 (𝔛). For the right
completeness, we want to show that the natural functor

DH(𝔛) → lim
(
· · ·

𝜏�1

−−−→ D�1
H (𝔛)

𝜏�2

−−−→ D�2
H (𝔛)

𝜏�3

−−−→ D�3
H (𝔛)

𝜏�4

−−−→ · · ·
)

is an equivalence. As (shifts of) pullbacks by smooth maps are t-exact, this can be checked locally on 𝔛,
hence holds. �

Definition 4.1.5. Let𝔛 be an Artin stack locally of finite type overC. The∞-category of cohomologically
constructible mixed Hodge modules over 𝔛 is

DH,𝑐 (𝔛) := {𝐾 ∈ DH(𝔛) | ∀𝑛 ∈ Z,H𝑛 (𝐾) ∈ D𝑏
H,𝑐 (𝔛)}.

By definition the t-structure restricts to DH,𝑐 (𝔛), and the heart is the same as the heart of D𝑏
H,𝑐 (𝔛).

For a finite type C-scheme X, the stable∞-category D𝑏 (MHM(𝑋)) also have a standard t-structure
(the t-structure for which the functor D𝑏 (MHM(𝑋)) → D𝑏

𝑐 (𝑋
an,Q) is t-exact when the target is

endowed with the t-structure whose heart is the abelian category of constructible sheaves), and in
[Tub25] (where the t-structure had the unfortunate name ‘constructible’) we proved that it is the derived
category of the constructible heart. In fact, all the considerations above about the perverse t-structure
are true for the constructible t-structure. We mention them because the standard t-structure will happen
to be handy when proving the constructibility of the operations.

Proposition 4.1.6. Let𝔛 be an Artin stack overC. The∞-category DH(𝔛) admits a standard t-structure
such that for any presentation 𝜋 : 𝑋 → 𝔛 the conservative functor 𝜋∗ is t-exact if we endow DH(𝑋) with
the t-structure induced by the canonical t-structure on D𝑏 (MHMstd). Moreover, the t-structure is right
complete and compatible with filtered colimits. It restricts to a t-structure on D𝑏

H,𝑐 (−). All pullbacks by
all morphisms of Artin stacks are t-exact for this t-structure.
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Proof. The proof is exactly the same as for Proposition 4.1.4, except that we do not need to shift the
pullback functors. �

We will denote by stdH𝑛 the cohomology objects for the standard t-structure.

Proposition 4.1.7. Let 𝔛 be an Artin stack locally of finite type over C and let 𝐾 ∈ DH(𝔛). Then
𝐾 ∈ DH,𝑐 (𝔛) if and only if for all 𝑛 ∈ Z the object stdH𝑛

(𝐾) is in D𝑏
H,𝑐 (𝔛).

Proof. Both conditions on K are local on 𝔛, hence we can assume that 𝔛 is a finite type C-scheme X. If
K is bounded the result is trivial, and if not, we can reduce to the bounded case by noting the following:
𝜏𝑝�𝑛 preserves DH(𝑋)

std�𝑛, 𝜏std�𝑛 preserves DH(𝑋)
𝑝�0, the restriction of 𝜏𝑝�𝑛 to DH(𝑋)

std�𝑛 is the
identity and the restriction of 𝜏std�𝑛 to DH(𝑋)

𝑝�𝑛 is the identity. Here 𝜏std and 𝜏𝑝 are the truncation
functors for the standard and perverse t-structures, respectively. �

Theorem 4.1.8 (Liu-Zheng). Let 𝑓 : 𝔜→ 𝔛 be a morphism of Artin stacks locally of finite type over
C. Then we have the following:

1. The∞-category D−H,𝑐 (𝔛) is stable under tensor products, and 𝑓 ∗ restricts to a functor

𝑓 ∗ : DH,𝑐 (𝔛) → DH,𝑐 (𝔜).

2. The functor 𝑓∗ restricts to a functor

𝑓∗ : D+H,𝑐 (𝔜) → D+H,𝑐 (𝔜)

and even to

𝑓∗ : DH,𝑐 (𝔜) → DH,𝑐 (𝔜)

if f is representable by algebraic spaces.
3. The functor 𝑓! restricts to a functor

𝑓! : D−H,𝑐 (𝔜) → D−H,𝑐 (𝔜)

and even to

𝑓! : DH,𝑐 (𝔜) → DH,𝑐 (𝔜)

if f is representable by algebraic spaces.
4. The functor 𝑓 ! restricts to a functor

𝑓 ! : DH,𝑐 (𝔛) → DH,𝑐 (𝔜).

5. The internal Hom functor restricts to a functor

D−H,𝑐 (𝔛)
op × D+H,𝑐 (𝔛) → D+H,𝑐 (𝔛).

Proof. The proof is essentially the same as the proofs of [LZ17, 6.4.4 and 6.4.5]. The point 1. is easy. We
show how to obtain 2. by hand, for example: Take 𝜋 : 𝑋 → 𝔛 a presentation of 𝔛 and form the pullback

ℨ 𝑋

𝔜 𝔛

𝑔

𝑞
�

𝜋

𝑓

.
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Then to show that each stdH𝑛
( 𝑓!𝐾) are constructible, we may check it locally, whence as 𝜋∗ is t-exact it

suffices to show that stdH𝑛
(𝜋∗ 𝑓!𝐾) is constructible. By base change, it suffices to show that stdH𝑛

(𝑔!𝑞
∗𝐾)

is constructible: we reduced to the case where 𝔛 is a scheme. Now, choose a presentation 𝑟 : 𝑍 → ℨ
of ℨ. Descent for !-functoriality implies that 𝑞∗𝐾 = colimΔ (𝑔𝑛)!𝑟

!
𝑛𝑞
∗𝐾 where (𝑔𝑛) is the composition

of the Čech nerve (𝑟𝑛) of r with g. The spectral sequence induced by this geometric realisation reads

𝐸 𝑝,𝑞
1 = stdH−𝑞 ((𝑔𝑝)!𝑟 !

𝑝𝑞
∗𝐾) ⇒ stdH𝑝−𝑞

(𝑔!𝑞
∗𝐾).

Now the each 𝑟 !
𝑝𝑞
∗𝐾 is cohomologically constructible by purity (7. of Theorem 4.1.1) and each 𝑔𝑝 is a

morphism of algebraic spaces, of relative dimension the sum of the relative dimensions of g and of r.
In particular, all 𝑔𝑝 have the same cohomological amplitude thus our spectral sequence is concentrated
in a shifted quadrant: it vanishes if 𝑝 < 0 and if q is smaller than some bound depending on the
cohomological amplitude of 𝑔! and of K. This implies that the spectral sequence converges and we have
that H𝑛 (𝑔!𝑞

∗𝐾) is constructible for all n. In the case where f is representable by algebraic spaces, we
can reduce to the case of schemes where it follows from finite cohomological amplitude. The case of 𝑓∗
is similar. �

Remark 4.1.9. We may have to use the same extension to stack for other systems of coefficients such
as analytic sheaves or étale motives. Because the functor between those and mixed Hodge modules
commute with all the operations on schemes, the extension to stacks will commute with ⊗, ∗-pullbacks,
!-pushforwards (by definition) and ℋom (−,−), ∗-pushforwards and !-pullbacks for representable mor-
phisms, by smooth base change so that it suffices to check this on an atlas (see Proposition 4.2.6). This
also applies to the Hodge realisation functor DMét → DH, and thus implies the following corollary.

Corollary 4.1.10. Let X be an complex algebraic variety and let G be an algebraic group acting on X.
Then if X is smooth there exists a cycle class map

CH𝑖
𝐺 (𝑋) → HomDH (𝑋/𝐺) (Q,Q(𝑖) [2𝑖])

functorial in X, where the left-hand side is the equivariant Chow group constructed by Edidin and
Graham in [EG98]. For a possibly singular algeraic stack, one has to use Borel-Moore homology and
we obtain a cycle class

CH𝑖 (𝑋/𝐺) → HomDH (𝑋/𝐺) (Q(𝑖) [2𝑖], 𝜋
!
[𝑋/𝐺 ]Q(0))

where 𝜋 [𝑋/𝐺 ] : [𝑋/𝐺] → Spec(C) is the structural morphism and the left-hand side is defined by
Edidin and Graham in [EG98, Section 5.3].

Proof. Once the left-hand side has been identified with a Hom-group in DM by [KR24, Example
12.17] (or [KR24, Corollary 6.5] for the singular case), this is a consequence of the functoriality of the
realisation functor. �

4.2. Duality

We want a working Verdier duality on algebraic stacks locally of finite type over the complex numbers.

Definition 4.2.1. Let 𝔛 be an algebraic stack locally of finite type over the complex numbers. The
dualising object on 𝔛 is the object 𝜔𝔛 := 𝜋!

𝔛Q(0) ∈ DH(𝔛) with 𝜋𝔛 : 𝔛 → SpecC. The Verdier duality
functor is

D𝔛 := ℋom (−, 𝜔𝔛).
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If follows directly from the projection formula between 𝑔! and 𝑔∗, for g a morphism of algebraic
stacks, that there are natural equivalences

𝑔! ◦ D𝔛 � D𝔜 ◦ 𝑔
∗

and

𝑔∗ ◦ D𝔜 � D𝔛 ◦ 𝑔!

for any morphism 𝑔 : 𝔜→ 𝔛 between algebraic stacks locally of finite type over C.

Lemma 4.2.2. Let 𝑔 : 𝔜 → 𝔛 be a smooth morphism between algebraic stacks locally of finite type
over C. Then there is also a natural equivalence

𝑔∗ ◦ D𝔛 � D𝔜 ◦ 𝑔
!

of functors DH(𝔛) → DH(𝔜).

Proof. The smooth projection formula implies that the canonical map

𝑔∗ℋom (−, 𝜔𝑋 ) →ℋom (𝑔∗(−), 𝑔∗𝜔𝔛)

is an equivalence. Now, using the purity isomorphism twice 𝑔∗ � 𝑔!(−𝑑) [−2𝑑] we see that the right-
hand side is equivalent to ℋom (𝑔!(−), 𝑔!𝜔𝔛), and because 𝑔!𝜔𝔛 � 𝜔𝔜, the proof is finished. �

Proposition 4.2.3. Verdier duality is an anti-auto-equivalence when restricted to D𝑏
𝐻 (𝔛). It swaps !

and ∗ when they preserve D𝑏
H,𝑐 and it is perverse t-exact.

Proof. First note that duality preserves D𝑏
H,𝑐 because this can be checked locally. There is a canonical

map

Id→ D𝔛 ◦ D𝔛 .

For a given 𝑀 ∈ D𝑏
H,𝑐 (𝔛) and a presentation 𝑔 : 𝔛 → 𝑋 , it suffices to check that the map

𝑔∗𝑀 → 𝑔∗(D𝔛 ◦ D𝔛 (𝑀))

is an equivalence. But now by Lemma 4.2.2 the above map is an equivalence because it is the map

𝑔∗𝑀 → D𝑋 ◦ D𝑋 (𝑔
∗𝑀).

The remaining assertions follow from the autoduality over schemes ([Sai90b, Theorem 0.1]). �

Corollary 4.2.4. Verdier duality in fact extends to an equivalence of D+H,𝑐 (𝔛)
∼
−→ D−H,𝑐 (𝔛)

op. It swaps !
and ∗.

Proof. By the previous assertion, the functor D𝔛 is perverse t-exact, and an isomorphism on the heart.
As the perverse t-structure is left separated when restricted to D+H,𝑐 (𝔛), this implies the claim. �

We now give an amelioration of Theorem 4.1.1(4) whose proof in the ℓ-adic setting is due to Olsson
[Ols15, Corollary 5.17], see also [Kha19, Theorem A.7]:

Proposition 4.2.5. Let 𝑓 : 𝔜 → 𝔛 be a proper morphism represented by Deligne-Mumford stacks.
Then the canonical morphism 𝑓! → 𝑓∗ is an isomorphism on D+H,𝑐 (𝔜).

Proof. By Theorem 4.1.1 we know the result if f is representable by algebraic spaces. Note that if f is a
proper morphism of algebraic stacks, then the formation of 𝑓∗ is compatible with base change on D+H,c.
Indeed, using [Ols05, Theorem 1.1] the proof is the same as [LMB00, Théorème 18.5.1]: one uses the
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cohomological descent spectral sequence to reduce to the case of representable morphisms. Thus, by
choosing a smooth atlas of the target of f, we can reduce to the case where 𝔛 is a scheme and 𝔜 is a
Deligne-Mumford stack. Now by [LMB00, Théorème 16.6], there is a finite covering 𝑌 → 𝔜 with Y a
scheme, thus [Kha19, Theorem A.7.] applies. �

Proposition 4.2.6. All results above about the extension of the operations work for the category
D𝐵 := IndD𝑏

𝑐 ((−)
an,Q) of Ind-constructible complexes, the forgetful functor rat : DH → D𝐵 extends to

schemes, and commutes with the following functors:
1. − ⊗ −, ℋom (−,−), and Verdier duality D𝔛 .
2. 𝑓 ∗ for any morphism.
3. 𝑓! for any finite type morphism.
4. 𝑓∗ for any proper morphism representable by Deligne-Mumford stacks.
When restricted to D+H,c, it also commutes with:
1. Any pushforward 𝑓∗ for f a finite type morphism.
2. Any exceptional pullback 𝑓 ! for f is a finite type morphism.
Proof. As both functors on stacks are defined using the right Kan extension on the category of
correspondences (see the proof of [Man22, Proposition A.5.16]), it is clear that the map DH → D𝐵

commutes with tensor products, ∗-pullbacks and !-pushforwards. Point 4. is a direct consequence of 3.
and Proposition 4.2.5. For ℋom (−,−) and Verdier duality one can reduce to schemes directly using
that rat commutes with twists and that both functors ℋom and D𝔛 commute with 𝜋∗ for 𝜋 a smooth
morphism, up to a twist and a shift (by purity).

Now on constructibles, Verdier duality is an equivalence and swaps ∗ and !’s; thus points 1 and 2
follow from 2 and 3 of the above list. �

4.3. Weights

In this subsection we introduce weights for mixed Hodge modules on stacks. We will work only with
stacks that are of finite type over C in this section. The abelian category of mixed Hodge modules over
a scheme has a functorial and exact weight filtration. Using ideas of the PhD of Sophie Morel, for each
integer 𝑤 ∈ Z we can define a t-structure ‘𝜔 � 𝑤’ on D𝑏

H,c (𝑋), that we call the weight-t-structure
(Construction 4.3.1). It has the particularity that both its right and left sides are stable subcategories
of D𝑏

H,c (𝑋), so that the heart is zero, but the truncation functors are exact functors. This provides the
canonical extension of the weight filtration to the bounded derived category: we obtain exact functors
𝜏 (𝜔�𝑤)�0 =: 𝜔�𝑤 : D𝑏

H,c (𝑋) → D𝑏
H,c (𝑋) that are perverse t-exact, and whose restriction to the perverse

heart gives back the weight filtration of mixed Hodge modules. By indization we obtain the weight
filtration on the Ind-category. For this t-structure, all pullbacks by smooth morphisms are t-exact, so that
we can extend the weight filtration to any algebraic stack by descent (Proposition 4.3.2). In particular,
the perverse heart of DH(𝔛) is endowed with an exact weight filtration. This gives the possibility to
define punctual weights (we chose this name because this is the correct analogue of punctual weights in
the ℓ-adic setting) in Definition 4.3.3.

However, this does not quite exactly gives a weight structure à la Bondarko. Indeed, the weight
filtration may fail to have sufficiently many orthogonality properties, so that the property that a pure
perverse object is semi-simple may not be satisfied (see Remark 4.3.9). However, if 𝔛 is an algebraic
stack with affine stabilisers, then the objects that are of punctual weight 0 are indeed the heart of a
weight structure, as we show in Corollary 4.3.8.
Construction 4.3.1. Let 𝑤 ∈ Z and X be a finite type C-scheme. Recall that following [Mor08] we can
construct a weight-t-structure on D𝑏

H,𝑐 (𝑋) by setting

D𝑏
H,𝑐 (𝑋)

𝜔�𝑤 := {𝐾 ∈ D𝑏
H,𝑐 (𝑋) | ∀𝑛 ∈ Z,∀𝑚 > 𝑤, gr𝑊𝑚 ( pH𝑛

(𝐾)) = 0}
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and

D𝑏
H,𝑐 (𝑋)

𝜔�𝑤 := {𝐾 ∈ D𝑏
H,𝑐 (𝑋) | ∀𝑛 ∈ Z,∀𝑚 < 𝑤, gr𝑊𝑚 ( pH𝑛 (𝐾)) = 0},

where the gr𝑊𝑚 are the graded pieces of the weight filtration on mixed Hodge modules ([Sai89, Propo-
sition 1.5]). The pair (D𝑏

H,𝑐 (𝑋)
𝜔�𝑤 ,D𝑏

H,𝑐 (𝑋)
𝜔�𝑤+1) form a t-structure (of trivial heart) on D𝑏

H,𝑐 (𝑋),
such that the truncation functors 𝜔�𝑤 and 𝜔�𝑤+1 are exact functors, t-exact for the perverse t-structure
([Mor08, Proposition 3.1.1.]). They give a filtration (𝜔�𝑤𝐾)𝑤 on each complex K, that gives back the
weight filtration on the heart. For any smooth map 𝑓 : 𝑌 → 𝑋 of finite type C-schemes, and any integer
d, the functor 𝑓 ∗ [𝑑] is t-exact for the weight t-structures (indeed, if d is the relative dimension of f we
see that 𝑓 ∗ [𝑑] is perverse t-exact and preserves weights, thus is t-exact for the weight-t-structure. The
shift functor being weight-t-exact, this proves the claim). This induces a weight t-structure on DH(𝑋)
by indization and it has a similar description.

Proposition 4.3.2. Let 𝔛 be an Artin stack of finite type over C. Then the ∞-categories DH(𝔛) and
DH,𝑐 (𝔛) admit weight-t-structures such that for every smooth map 𝑓 : 𝑋 → 𝔛 with X a finite type
C-scheme and every integer d, the functor 𝑓 ∗ is weight-t-exact. Moreover, the weight truncation functors
are perverse t-exact. The inclusion functor DH,𝑐 (𝔛) → DH(𝔛) is weight-t-exact.

Proof. Once again assume that 𝔛 is connected, choose 𝜋 : 𝑋 → 𝔛 a presentation of 𝔛, of relative
dimension d. Then if 𝑓𝑛 is a part of the Čech nerve of 𝜋, the functors 𝑓 ∗𝑛 [𝑑] are t-exact for the weight
t-structures, thus this induces a weight t-structure on the limit as in equation (4.1.0.1) (as in the proof of
Proposition 4.1.4 we have to first deal with algebraic spaces but everything works the same). Of course,
it restricts to D𝑏

H,𝑐 (𝔛), and then to DH,𝑐 (𝔛). The perverse t-exactness of the weight truncation follows
from the fact that each 𝑓 ∗𝑛 [𝑑] is also perverse t-exact so that this follows from the same property over
schemes. �

Definition 4.3.3. Let 𝑤 ∈ Z. An object 𝐾 ∈ DH(𝔛) is of punctual weights � 𝑤 if for each 𝑖 ∈ Z, the
map pH𝑖 (𝜔�𝑤+𝑖𝐾) →

pH𝑖 (𝐾) is an equivalence (or equivalently, if pH𝑖 (𝜔�𝑤+𝑖+1𝐾) = 0). We say that
K is of punctual weights � 𝑤 if its Verdier dual D𝔛 (𝐾) is of punctual weights � −𝑤. We shall denote
by D?

H, (𝑐) (𝔛)�𝑤 and D?
H, (𝑐) (𝔛)�𝑤 the corresponding full subcategories, where ? ∈ {∅, 𝑏, +,−}.

Remark 4.3.4. The above definition differs from the weight t-structure we used to define weights.

Proposition 4.3.5. Let 𝑓 : 𝔜 → 𝔛 be a morphism of algebraic stacks of finite type over C and let
𝑤, 𝑤′ ∈ Z.

1. Verdier duality on 𝔛 swaps D+H,𝑐 (𝔛)�𝑤 and D−H,𝑐 (𝔛)�−𝑤 .
2. The pullback 𝑓 ∗ sends DH,𝑐 (𝔛)�𝑤 to DH,𝑐 (𝔜)�𝑤 and the exceptional pullback 𝑓 ! sends DH,𝑐 (𝔛)�𝑤

to DH,𝑐 (𝔜)�𝑤 . If f is smooth, the pullback functor 𝑓 ∗ preserves weights.
3. The tensor product restricts to

− ⊗ − : D−H,𝑐 (𝔛)�𝑤 × D−H,𝑐 (𝔛)�𝑤′ → D−H,𝑐 (𝔛)�𝑤+𝑤′ .

4. The internal homomorphism functor restricts to

ℋom (−,−) : D−H,𝑐 (𝔛)�𝑤 × D−H,𝑐 (𝔛)�𝑤′ → D−H,𝑐 (𝔛)�𝑤′−𝑤 .

Proof. By definition, if 𝜋 : 𝑋 → 𝔛 is a smooth presentation, the functor 𝜋∗ is conservative and detects
weights. Thus, all results follow from the usual results over schemes (see [Sai89, Propositions 1.7
and 1.9]). �

Proposition 4.3.6. Let𝔛 be an algebraic stack with affine stabilisers, of finite type overC. Let 𝑓 : 𝔛 → 𝔜
be a finite type morphism. If K is an object of DH(𝔛) of punctual weights � 𝑤, then 𝑓!𝐾 has punctual
weights � 𝑤.
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Proof. By choosing a smooth presentation 𝜋 of 𝔜, using proper base change, and the fact that 𝜋∗ [𝑑] is
conservative, perverse t-exact and weight-t-exact, it detects punctual weights, so we may assume that
𝔜 = 𝑌 is a separated variety. First note that for any stack 𝔛, we have the formula

DH(𝔛)�𝑤 = {𝐾 ∈ DH(𝔛) | ∀𝑖 ∈ Z,
pH𝑖
(𝜔𝑤+𝑖+1𝐾) = 0}.

In particular, as the functors 𝜔𝑤+𝑖+1 and pH𝑖 commute with filtered colimits, we see that DH(𝔛)�𝑤 is
stable under filtered colimits in DH(𝔛).

By [Kre99, Proposition 3.5.2 and Proposition 3.5.9] and the fact that 𝔛 is of finite type over k, there
exists a finite stratification 𝔛𝑖 of 𝔛 by locally closed substacks such that each 𝔛𝑖 � [𝑋𝑖/𝐺𝑖] is a global
quotient stack of a quasi-projective variety 𝑋𝑖 by a smooth connected algebraic group 𝐺𝑖 acting linearly
on 𝑋𝑖 . As DH(𝑌 )�𝑤 is closed under extensions, using the localisation triangle we see that we may
assume that 𝔛 � [𝑋/𝐺] is a global quotient stack with X quasi-projective.

By [Tot99, Remark 1.4] we may find a specific increasing sequence (𝑈𝑛) of representations of G
(hence vector bundles on 𝐵𝐺), called a Borel resolution, that helps compute the invariants of [𝑋/𝐺] as
follows: Let 𝑋

𝐺
×𝑈𝑛 := [𝑋/𝐺] ×𝐵𝐺 𝑈𝑛, then for any A1-invariant étale sheaf 𝐹 : Smop

[𝑋/𝐺 ]
→ C on the

category of schemes that are smooth over [𝑋/𝐺] with values in an ∞-category C admitting all small
limits, the canonical map

𝐹� ([𝑋/𝐺]) → lim
𝑛

𝐹� (𝑋
𝐺
×𝑈𝑛)

is an equivalence, where 𝐹� is the right Kan extension of F to algebraic stacks. This is [KR24,
Theorem 3.6]. Note that by [KR24, Remark 3.4], each 𝑋

𝐺
×𝑈𝑛 is a quasi-projective variety.

Let 𝐾 ∈ DH([𝑋/𝐺])�𝑤 . We apply the above to the functor F, opposite to the functor that sends a
smooth map 𝑔 : 𝑌 → [𝑋/𝐺], with Y a variety, to 𝜋𝑌! 𝑔

!𝐾 . By !-descent for the étale topology and A1-
invariance of DH this functor F satisfies the conditions stated in the previous paragraph. Moreover, its
right Kan extension to stacks over [𝑋/𝐺] has the same formula, again by !-descent. In particular, we
have that the map

colim𝑛 ( 𝑓 𝑝𝑛)!𝑝
!
𝑛𝐾 → 𝑓!𝐾

is an equivalence, where 𝑝𝑛 : 𝑋 ×𝐺 𝑈𝑛 → [𝑋/𝐺] is the projection. Note that this is a filtered colimit,
so that it suffices to prove that each ( 𝑓 𝑝𝑛)!𝑝!

𝑛𝐾 is of punctual weights � 𝑤. But as 𝑝𝑛 is smooth, the
weights of 𝑝!

𝑛𝐾 are the weights of K, and the map 𝑓 𝑝𝑛 is a map of schemes, so that we have reduced to
the case of schemes, where this is true by [Sai89, Proposition 1.7]. �

Corollary 4.3.7. Let 𝑓 : 𝔜→ 𝔛 be a morphism of algebraic stacks of finite type over C. Assume that
𝔜 has affine stabilisers. Then if 𝐾 ∈ D+H,𝑐 (𝔜) is of weights � 𝑤, the object 𝑓∗𝐾 also has weights � 𝑤.

Proof. By duality, this follows from the case of 𝑓!. �

Corollary 4.3.8. Let 𝔛 be an algebraic stack with affine stabilisers, of finite type over C. Then there is
a weight structure à la Bondarko on D𝑏

𝐻 (𝔛) whose heart consists of objects of weight 0 as in Definition
4.3.3. In particular, any pure object in D𝑏

H(𝔛) is the sum of its cohomology objects, and any pure object
of the perverse heart is semi-simple.

Proof. We want to use [Bon10, Theorem 4.3.2] to construct a weight structure from its heart of pure
objects of weight 0. Thus we want to prove that pure objects of weight 0 generated D𝑏

H,𝑐 (𝔛) as a thick
subcategory, and that it is negative (for us, semi-simple will be enough). Thus if 𝐾, 𝐿 ∈ D𝑏

𝐻 (𝔛) are
pure of weight zero, we want to show that HomD𝑏

𝐻 (𝔛)
(𝐾, 𝐿 [1]) vanishes. Let 𝑓 : 𝔛 → SpecC be the
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structural morphism. As we have

HomD𝑏
𝐻 (𝔛)
(𝐾, 𝐿 [1]) � HomDH (SpecC) (QSpecC, 𝑓∗ℋom (𝐾, 𝐿) [1]),

by Corollary 4.3.7 and the usual orthogonality in the derived category of mixed Hodge structures, it
suffices to show that ℋom (𝐾, 𝐿) has weights � 0, which results from Proposition 4.3.5.

Now objects of weight 0 generate the ∞-category under finite colimits. Indeed by dévissage it
suffices to show that objects of the perverse heart which are pure are in the∞-category generated by the
complexes of weight 0, but now this is only a shift. The last sentence of the corollary is now formal, see
[BBD82, Théorème 5.4.5] and [BBD82, Théorème 5.3.8]. �

Remark 4.3.9. The above Corollary 4.3.8 is false for general algebraic stacks, as shown by Sun
3 (following an example that goes back to Drinfeld) in [Sun12]. Indeed one can show that the pushfor-
ward of the constant sheaf by the quotient map 𝜋 : Spec(C) → B𝐸 with B𝐸 the classifying space of an
elliptic curve is not semi-simple although 𝜋 is smooth and proper.

4.4. Nearby cycles

Let 𝔛 be an algebraic stack locally of finite type over C and let 𝑓 : 𝔛 → A1
C

be a function. We have the
following diagram:

𝔘 𝔛 ℨ

G𝑚,C A1
C

{0}

𝑓𝜂

𝑗 𝑖

𝑓𝑠𝑓

𝑖𝑗

. (4.4.0.1)

We wish to construct a nearby cycle functor

Ψ 𝑓 : DH(𝔘) → DH(ℨ)

with good properties. We begin with the unipotent part of the nearby cycle following [CHS24], whose
authors give a wonderful interpretation of Ayoub’s unipotent nearby cycle functor (as in [Ayo07b]).

In [CHS24, Definition 2.22], Cass, van den Hove and Scholbach define a Q-linear stable∞-category
Nilp (denoted by NilpQ in loc. cit.) whose objects can be interpreted as pairs (𝐾, 𝑁) with 𝐾 ∈ ModZ

Q
a

complex of graded Q-vector spaces and 𝑁 : 𝐾 (1) → 𝐾 is a locally nilpotent map of graded complexes,
where 𝐾 (1) := 𝐾 ⊗Q Q(1) andQ(1) is the gradedQ-vector space placed in degree −1. This∞-category
is compactly generated by objects (Q(𝑘),Q(𝑘 + 1) 0

−→ Q(𝑘)), and if (𝐾, 𝑁) ∈ Nilp is compact, its
underlying complex K is compact and the operator N is nilpotent. Now for any stably presentable ∞-
category C with an action of ModZ

Q
, one can define

Nilp C := C ⊗ModZ
Q

Nilp,

which has a similar description as pairs (𝑐, 𝑁) with 𝑐 ∈ C and 𝑁 : 𝑐(1) → 𝑐, which is nilpotent if c is
compact.

The relation of this construction with unipotent nearby cycles Υ 𝑓 comes from the desire to have a
monodromy operator on Υ 𝑓 , thus a lift of Υ as a functor

DH(𝔘) → Nilp DH(ℨ).

This is made possible thanks to the following observation.
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Proposition 4.4.1. Let 𝑝 : G𝑚C → SpecC be the projection. Then the pushforward

𝑝∗ : D𝐻𝑇 (G𝑚) → D𝐻𝑇 (C)

exhibits the∞-category D𝐻𝑇 (G𝑚) as Nilp D𝐻𝑇 (C). Here we have denoted by D𝐻𝑇 (𝑋) the full subcat-
egory of DH(𝑋) of mixed Hodge Tate modules over X, that is the ∞-category generated under colimits
and shifts by the Q(𝑖) for 𝑖 ∈ Z.

Proof. This is the combination of [CHS24, Corollary 2.20 and Lemma 2.17], which we reproduce
for the reader’s convenience. First we remark that the functor 𝑝∗ indeed preserves Hodge Tate objects
because 𝑝∗Q(𝑛) � Q(𝑛) ⊕ Q(𝑛 + 1) [1]. Now, it is clear that 𝑝∗ preserves colimits as its left adjoint
𝑝∗ preserves compact objects, and it is also conservative because if 𝑝∗𝑀 = 0 then for each 𝑛 ∈ Z the
mapping spectra MapD𝐻𝑇 (G𝑚C)

(Q(𝑛), 𝑀) � MapD𝐻𝑇 (C)
(Q(𝑛), 𝑝∗𝑀) vanishes, so that 𝑀 = 0. Thus,

by Barr-Beck’s theorem, the functor 𝑝∗ upgrades to an equivalence

DH(G𝑚C)
∼
−→ Mod𝑝∗Q(DH(C)).

There is a unique colimit preserving symmetric monoidal functor

𝑖 : ModZ
Q
→ D𝐻𝑇 (C)

that sends Q(1) to Q(1). The image under the Hodge realisation of [CHS24, Lemma 2.18] tells us that
𝑝∗Q is, as a commutative algebra object, the object 𝑖(Λ) where Λ is the split square zero extension
Λ := Q ⊕ Q(−1) [−1]. Thus we have that

D𝐻𝑇 (G𝑚C) � Mod𝑝∗Q(D𝐻𝑇 (C)) � D𝐻𝑇 (C) ⊗ModZ
Q

ModΛ (ModZ
Q
).

and the equivalence ModΛ (ModZ
Q
) � Nilp of [CHS24, Lemma 2.9] finishes the proof. �

We come back to the setup equation (4.4.0.1), and define as in [CHS24, Definition 3.1]:

Definition 4.4.2. The unipotent nearby cycle functor is the composite

Υ 𝑓 : DH(𝔘) → Mod 𝑓 ∗𝜂 𝑝∗ 𝑝∗Q(DH(𝔘)) � Nilp DH(𝔘)
𝑖∗ 𝑗∗
−−−→ Nilp DH(ℨ)

where the first functor is the way one can see any object 𝐾 ∈ DH(𝔘) as a 𝑓 ∗𝜂 𝑝
∗𝑝∗Q-module with the

counit 𝑓 ∗𝜂 𝑝
∗𝑝∗Q ⊗ 𝐾 → 𝐾 , and the second is expressing that 𝑖∗ 𝑗∗ preserves the nilpotent structure.

In fact as they show in [CHS24, Section 3.1], there is a better way to look at the above definition.
Indeed, the construction of the operations for stacks in Theorem 4.1.1 goes by extending the functor DH
on schemes to a lax monoidal functor

D𝐻 : CorrC → Pr𝐿St,

where CorrC is the ∞-category of correspondences of stacks over C: its objects are derived algebraic
stacks locally of finite type over C and its morphisms are informally diagrams

𝑌
𝑔
←− 𝑍

𝑓
−→ 𝑋

of algebraic stacks locally of finite type over C. Composition is given by forming pullback squares. The
functor sends X to DH(𝑋), and the above morphism to

𝑔! 𝑓
∗ : DH(𝑌 ) → DH(𝑋).

In fact, the projection formulae even allow us to have a functor with values in ModD𝐻 (C) (Pr𝐿St).
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Now, unipotent nearby cycles can be upgraded to a highly coherent natural transformationΥ : D𝐻𝜂 →

Nilp D𝐻𝑠 of lax monoidal functors

Corrpr,sm
A1
C

→ Pr𝐿gr,

where Corpr,sm
A1
C

is the wide subcategory (so it has the same objects but fewer morphisms) of CorrA1
C
=

(CorrC)/A1
C

whose morphisms are the roofs 𝑌
𝑔
←− 𝑍

𝑓
−→ 𝑋 over A1 with g proper and f smooth,

and Pr𝐿gr := ModModZ
Q
(Pr𝐿St) is the ∞-category of presentable ∞-categories with an action of graded

complexes of vector spaces.
Here, D𝐻𝜂 is the restriction of the composition

D𝐻𝜂 : CorrA1
−×
A1G𝑚

−−−−−−−→ CorrG𝑚

DH
−−→ ModD𝐻𝑇 (G𝑚C) (Pr𝐿St)

𝑈
−→ ModD𝐻𝑇 (C) (Pr𝐿St) → Pr𝐿gr

with 𝑈 : D𝐻𝑇 (G𝑚) → D𝐻𝑇 (C) the forgetful functor, and D𝐻𝑠 is the restriction of the composition

D𝐻𝑠 : CorrA1
C

−×
A1 {0}

−−−−−−−→ CorrC
DH
−−→ Pr𝐿gr

Nilp
−−−→ Pr𝐿gr.

Theorem 3.2 in loc. cit. is:

Theorem 4.4.3 (Cass, van den Hove, Scholbach). There is a natural transformation of lax monoidal
functors Corrpr,sm

A1
C

→ Pr𝐿gr

Υ : D𝐻𝜂 → Nilp D𝐻𝑠 ,

whose evaluation at a stack 𝑋/A1 is the functor defined in Definition 4.4.2

Proof. The proof is verbatim the same as their proof in [CHS24, Section 3.3]. The only thing to check
is that over stacks, where our categories are not compactly generated (but over schemes everything is
compactly generated hence, for example, mixed Hodge Tate categories are rigid), all functors in the play
indeed preserve colimits. Only 𝑗∗ could be a problem, but the preservation of colimits can be checked
on a presentation and it thus follows from smooth base change. Also, Nilp D𝐻𝑠 stays a h-sheaf because
Nilp is compactly generated, hence the functor ⊗ModZ

Q
Nilp commutes with limits. �

We will denote by Υ 𝑓 : DH(𝔘) → DH(ℨ) the functor obtained after applying Υ to 𝑓 : 𝔛 → A1
C

and forgetting the monodromy locally nilpotent operator N. The fact that Υ above is a lax monoidal
natural transformation expresses the usual compatibilities of Υ 𝑓 with proper pushforward and smooth
pullbacks, together with a natural transformation

Υ 𝑓1 � Υ 𝑓2 → Υ 𝑓 ×𝑔

compatible with the nilpotent operators when one has two functions 𝑓𝑖 : 𝔛𝑖 → A
1
C

.

Proposition 4.4.4. Let 𝑓 : 𝔛 → A1
C

be a function on an algebraic stack locally of finite type over C. The
functor Υ 𝑓 [−1] preserves D𝑏

H,𝑐 , is perverse t-exact and commutes with the external tensor product.

Proof. The functor

rat : DH → D𝐵

commutes with Υ 𝑓 by [CHS24, Lemma 3.18] (note that in the proof only is needed right adjointability
for 𝑗∗ for j an open immersion which is in particular representable, so that we may use Proposition
4.2.6). On top of this, it detects constructibility and is conservative on constructible objects. Moreover,

https://doi.org/10.1017/fms.2025.10122 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10122


22 S. Tubach

by taking a presentation 𝜋 : 𝑋 → 𝔛 of 𝔛, it suffices to prove the proposition for Υ 𝑓 with 𝑓 : 𝑋 → A1
C

a
function on a scheme. Thus the proof of the proposition reduces to the case of a function of a scheme, on
analytic sheaves. The comparison [CHS24, Example 3.19] of Υ in this case, with Beilinson’s unipotent
nearby cycles functor [Bei87a] imply the result, because for analytic sheaves the functor Υ 𝑓 [−1] is
perverse t-exact and commutes with the external tensor product. �

Proposition 4.4.5. Let 𝑓 : 𝔛 → A1
C

be a function on an algebraic stack locally of finite type over C.
There is an exact triangle

Υ 𝑓 [−1] 𝑁
−→ Υ 𝑓 (−1) [−1] → 𝑖∗ 𝑗∗.

Proof. This is [CHS24, Proposition 3.9], shifted by −1. �

Proposition 4.4.6. Let X be a reduced and separated finite type C-scheme and let 𝑓 : 𝑋 → A1
C

be a
function. Then there is a natural isomorphism of functors

Υ 𝑓 [−1] � 𝜓 𝑓 ,1

on the triangulated category D𝑏 (MHM(𝑈)), where 𝑈 = 𝑓 −1(G𝑚) and 𝜓 𝑓 ,1 is the unipotent nearby
cycle defined by Saito in [Sai90b].

Proof. As both functors are t-exact it suffices to construct an isomorphism on MHM(𝑈). By [Sai90a,
Proposition 1.3] for 𝐾 ∈ MHM(𝑈) there is a canonical isomorphism

colim𝑛
pH−1𝑖∗ 𝑗∗(𝐾 ⊗ 𝑓 ∗𝐸𝑛)

∼
−→ 𝜓 𝑓 ,1𝐾,

where 𝐸𝑛 = Q ⊕ · · ·Q(−𝑛) ∈ DH(G𝑚). The proof of the comparison with Beilinson construction
[CHS24, Example 3.19] gives in fact that

Υ 𝑓 (𝐾) � colim𝑛𝑖
∗ 𝑗∗(𝐾 ⊗ 𝑓 ∗𝐸𝑛),

so that the compatibility with colimits of the t-structure gives the result. �

Corollary 4.4.7. On D𝑏
H,𝑐 , the natural map

Υ 𝑓 ◦ D𝔘 (−) → Dℨ ◦ Υ 𝑓 (−)(1) [2] .

is an equivalence.

Proof. The map is defined as follows: Υ 𝑓 is lax monoidal, hence there is a canonical map

Υ 𝑓 ◦ℋom (−, 𝑓 !
𝜂Q) ⊗ Υ 𝑓 (−) → Υ 𝑓 (ℋom (−, 𝑓 !

𝜂Q) ⊗ (−))

that we can compose with the evaluation map

ℋom (−, 𝑓 !
𝜂Q) ⊗ (−) → Υ 𝑓 ( 𝑓

!
𝜂Q)

to obtain a map

Υ 𝑓 ◦ℋom (−, 𝑓 !
𝜂Q) ⊗ Υ 𝑓 (−) → 𝑓 !

𝜂Q.

By adjunction, this provides a map

Υ 𝑓 ◦ℋom (−, 𝑓 !
𝜂Q) →ℋom (Υ 𝑓 (−),Υ 𝑓 ( 𝑓

!
𝜂Q)).
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Now, the commutation of Υ with !-pushforwards implies that there is a exchange map

Υ 𝑓 ◦ 𝑓 !
𝜂 → 𝑓 !

𝜎 ◦ ΥId,

and by [CHS24, Lemma 3.12] (to which we apply the Hodge realisation), we have that ΥId (Q) � Q.
This gives a map

Υ 𝑓 ◦ℋom (−, 𝑓 !
𝜂Q) →ℋom (Υ 𝑓 (−), 𝑓

!
𝜎Q)

in which on the right-hand side we recognise (because 𝑓𝜎 is the structural map ofℨ) the functorDℨ◦Υ 𝑓 .
The dualising object on 𝔘 is 𝜔𝔘 = 𝑓 !

𝜂𝜋
!
G𝑚
Q � 𝑓 !

𝜂Q(1) [2], with 𝜋G𝑚 the structural map of G𝑚. Using
that Υ 𝑓 commutes with Tate twists (this follows easily from the projection formula and the fact that it
commutes with 𝑝!, for 𝑝 : 𝔛 × P1 → 𝔛), we finally have a map

Υ 𝑓 ◦ D𝔘 (−) → Dℨ ◦ Υ 𝑓 (−)(1) [2] .

This comparison map is an isomorphism on D𝑏
H because this can be checked locally hence on finite

type C-schemes, where it has been proven by Saito (alternatively, one can apply the functor to analytic
sheaves and use the result of Beilinson). �

Now, for each 𝑛 ∈ N∗ we may consider 𝜋𝑛 the elevation to the n-th power in A1
C

, and form the
cartesian square

𝔛𝑛 𝔛

A1
C

A1
C

𝑒𝑛

𝑓𝑛
�

𝑓

𝜋𝑛

.

Denote by 𝑖𝑛 : 𝑓 −1
𝑛 ({0}) → 𝑓 −1({0}) the nil-immersion obtained by restricting 𝑒𝑛 (the functor (𝑖𝑛)∗ is

an equivalence). Then by functoriality of Υ obtain a system of functors ((𝑖𝑛)∗ ◦Υ 𝑓𝑛 ◦ 𝑒
∗
𝑛)𝑛∈(N∗)op , where

we still denote by 𝑒𝑛 the restriction of 𝑒𝑛 to the inverse image of G𝑚.

Definition 4.4.8. The total nearby cycle functor is the functor

Ψ 𝑓 : DH(𝔘) → DH(ℨ)

defined as

Ψ 𝑓 := colim𝑛∈(N∗)op (𝑖𝑛)∗Υ 𝑓𝑛 ◦ 𝑒
∗
𝑛.

Remark 4.4.9. This definition in the case of motives is due to Ayoub ([Ayo07b]), but its formal
description as a colimit can be found in Preis’ [Pre23].

Proposition 4.4.10. Let 𝑓 : 𝑋 → A1
C

be a function on a reduced and separated finite type C-scheme.
Then there is a natural equivalence of triangulated functors

Ψ 𝑓 [−1] � Ψ𝑆
𝑓

on D𝑏 (MHM(𝑈)), where Ψ𝑆
𝑓 is Saito’s nearby cycle functor. In particular, Ψ 𝑓 preserves constructible

objects.

Proof. First, because the t-structure is compatible with colimits and each 𝑒∗𝑛 is perverse t-exact, it is
clear that Ψ 𝑓 [−1] is perverse t-exact on D(IndMHM(𝑈)). Thus, by dévissage it suffices to construct
an isomorphism Ψ 𝑓 [−1] � Ψ𝑆

𝑓 of exact functors on the heart MHM(𝑈).
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By definition ([Sai06, Proposition 5.7]) together with the comparison of Proposition 4.4.6, for
𝑀 ∈ MHM(𝑈) we have

Ψ𝑆
𝑓 (𝑀) = Υ 𝑓 (𝑀) [−1] = Υ 𝑓 (𝑀 ⊗ 𝑓 ∗𝑛 (𝜋𝑛)∗Q) [−1]

for n divisible enough, in other terms,

Ψ𝑆
𝑓 = colim𝑛Υ 𝑓 (− ⊗ 𝑓 ∗𝑛 (𝜋𝑛)∗Q) [−1] .

For each 𝑛 ∈ N∗ because 𝑒𝑛 is proper we have (𝑖𝑛)∗Υ 𝑓𝑛 � Υ 𝑓 ◦ (𝑒𝑛)∗ and now the proper projection
formula and proper base change give (𝑒𝑛)∗ � (− ⊗ 𝑓 ∗𝑛 (𝜋𝑛)∗Q), finishing the proof. �

Theorem 4.4.11. Let 𝑓 : 𝔛 → A1
C

be a function on an algebraic stack locally of finite type over C.

1. The functor

Ψ 𝑓 [−1] : DH(𝔘) → DH(ℨ)

preserves the full subcategory D𝑏
H,𝑐 , is perverse t-exact and lax monoidal.

2. Given another function 𝑔 : 𝔜→ A1
C

, the natural map

Ψ 𝑓 (−) � Ψ𝑔 (−) → Ψ 𝑓 ×𝑔 (− � −)

is an equivalence.
3. On D+H,𝑐 (𝔘) the natural transformation

Ψ 𝑓 ◦ D𝔘 (−) → Dℨ ◦ Ψ 𝑓 (−)(1) [2]

is an equivalence.

Proof. Thanks to the same property for Υ the functor Ψ commutes with smooth pullback, hence all
those properties are local for the smooth topology and can be checked on a separated finite type
C-scheme, where they follow from the results on the underlying perverse sheaves and the comparison
with Saito’s functor. The last assertion follows from the result on the bounded category and t-exactness.

�

We finish this section with the remark that because taking cones is functorial in the world of stable
∞-categories, we have vanishing cycle functors for free:

Definition 4.4.12. Let 𝑓 : 𝔛 → A1
C

be a function on an algebraic stack locally of finite type over C. We
define the vanishing cycle functor

Φ 𝑓 : DH(𝔛) → DH(ℨ)

as the cone of the natural map 𝑖∗ → Ψ 𝑓 𝑗
∗. We thus have an exact triangle

𝑖∗ → Ψ 𝑓 𝑗
∗ can
−−→ Φ 𝑓 .

Proposition 4.4.13. The functor

Φ 𝑓 [−1] : DH(𝔛) → DH(ℨ)

preserves D𝑏
H,𝑐 , is perverse t-exact and commutes with Verdier duality up to a twist −(1).

Proof. This can be checked on a smooth atlas, thus on schemes where this holds for in constructible
sheaves D𝑏

𝑐 (−,Q). �
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4.5. Comparison with existing constructions

In this section, we compare our construction to the construction of Achar [Ach13] that dealt with
equivariant mixed Hodge modules, as well as with Davison’s [Dav24] in which they constructed
pushforwards of the constant object under a morphism from a stack.

In Achar’s [Ach13], the construction goes as follows: G is an affine algebraic group acting on a com-
plex algebraic variety X, and he defines a triangulated category D𝐺 (𝑋) of G-equivariant mixed Hodge
modules on X. This triangulated has a perverse t-structure, whose heart is indeed the abelian category
of G-equivariant mixed Hodge modules. The definition is the following: for a special Grothendieck
topology called the acyclic topology in which coverings are smooth G-equivariant morphism satisfying
some cohomological vanishing (it is asked that for some n and universally, f satisfies that 𝜏�𝑛 𝑓∗ 𝑓 ∗ is the
identity when restricted to the abelian category of mixed Hodge modules), it turns out that the presheaf
of triangulated categories 𝑈 ↦→ hoD𝑏 (MHM(𝑋)) is a sheaf, and as X admits a covering in the acyclic
topology by a U on which G acts freely (so that [𝑈/𝐺] is a scheme), this sheaf canonically extends to
G-equivariant varieties.

Proposition 4.5.1. Let X be a G-variety. Then the homotopy category of D𝑏
H,𝑐 ([𝑋/𝐺]) coincides with

Achar’s category D𝑏
𝐺 (𝑋).

Proof. First, if G acts freely on X (for the definition of a free action, see [Ach13, Definition 6.4]), then
[𝑋/𝐺] is a scheme and the result is trivial. Then exactly for any n-acyclic map 𝑈 → 𝑋 such that the
action of G on U is free and 𝑎 � 𝑏 integers such that 𝑏 − 𝑎 < 𝑛, the same proof as [Ach13, Lemma 8.1]
implies that the functor

D[𝑎,𝑏]H ([𝑋/𝐺]) → D[𝑎,𝑏]H ([𝑈/𝐺])

is fully faithful. Thus, the functor

hoD𝑏
H,𝑐 ([𝑋/𝐺]) → D𝐺 (𝑋)

is fully faithful. It is not hard to check that the heart of D𝑏
H,𝑐 ([𝑋/𝐺]) is also the abelian category of

G-equivariant mixed Hodge modules (because they satisfy descent), so that this finishes the proof. �

Similarly one can check that the six operations defined by Achar coincide with ours.
We now compare the pushforward we constructed with the one considered in [Dav24]. Let X be a

smooth algebraic variety over C, and let G be an affine algebraic group acting on it. We are interested
in the perverse cohomology groups of the object 𝑝!Q, where

𝑝 : 𝔛 := [𝑋/𝐺] →M

is a morphism of stacks, with M an algebraic variety. Here is how Davison and Meinhardt proceed:
the construction is very similar to the construction of the compactly supported motive of a classifying
space by Totaro in [Tot16], and our proof of the comparison is inspired from the proof of [HPL21,
Proposition A.7] by Hoskins and Pépin-Lehalleur and goes back to Borel. We will denote by 𝑋/𝐺 the
quotient stacks instead of [𝑋/𝐺].

First, they choose an increasing family 𝑉1 ⊂ 𝑉2 ⊂ · · · ⊂ 𝑉𝑖 ⊂ · · · of representations of G, and a
subsystem 𝑈1 ⊂ 𝑈2 ⊂ · · · ⊂ 𝑈𝑖 ⊂ · · · of representations on which G acts freely (this can be done by
choosing a closed embedding 𝐺 ⊂ GL𝑟 (C) and then setting 𝑉𝑖 = HomC (C𝑖 ,C𝑟 ), and 𝑈𝑖 is the subset
of surjective linear applications). Then 𝑈𝑖/𝐺 is an algebraic variety, and in the case they deal with
(they ask for the group G to be special), the quotient stack (𝑋 × 𝑈𝑖)/𝐺 is also a scheme by [EG98,
Proposition 23] of Edidin and Graham. We denote by 𝔙𝑖 := (𝑉𝑖 × 𝑋)/𝐺, 𝔘𝑖 := (𝑈𝑖 × 𝑋)/𝐺. We have a
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commutative diagram:

𝔙𝑖 𝔛 M

𝔘𝑖

𝑏𝑖

𝜄𝑖 𝑎𝑖

𝑝

𝑝𝑖

𝑞𝑖

Moreover the maps 𝑎𝑖 , 𝑏𝑖 and 𝜄𝑖 are smooth. Davison and Meinhardt prove that for a given 𝑛 ∈ Z, the
object

pH𝑛
((𝑝𝑖)!Q𝔘𝑖

(−𝑖𝑟) [−2𝑖𝑟])

is independent of the choices for i and M large depending on n, and they denote by pH𝑛 (𝑝!Q𝔛) the
common value. We will show that indeed the canonical map

pH𝑛
((𝑝𝑖)!Q𝔘𝑖

{−𝑖𝑟}) → pH𝑛
(𝑝!Q𝔛)

is an isomorphism in MHM(M), where we have denoted by (−){𝑛} := (−)(𝑛) [2𝑛] for 𝑛 ∈ Z. In fact,
we will show better, as the result (which is classical, and see [KR24] for a vast generalisation, and
Proposition 4.3.6 for another use of this method) holds universally in motives:

Proposition 4.5.2. The natural map

colim𝑖 (𝑝𝑖)!Q𝔘𝑖
{−𝑖𝑟} → 𝑝!Q𝔛

is an equivalence in DMét (M,Q), where DMét (M,Q) is the∞-category of étale motives with rational
coefficients.

Proof. First note that the counit map

(𝑏𝑖)!(𝑏𝑖)
!Q𝔛 → Q𝔛

is an equivalence by A1-invariance, because 𝑏𝑖 is a vector bundle on 𝔛. As 𝑏𝑖 is smooth of relative
dimension 𝑖𝑟 , purity gives that the canonical map

(𝑞𝑖)!Q𝔙𝑖 {−𝑖𝑟} → 𝑝!Q𝔛

is an equivalence for each 𝑖 ∈ N. Thus it suffices to prove that the map

colim𝑖 (𝑎𝑖)!Q𝔘𝑖
{−𝑖𝑟} → colim𝑖 (𝑏𝑖)!Q𝔙𝑖 {−𝑖𝑟}

on 𝔛 induced by the counits (𝜄𝑖)!𝜄∗𝑖 → Id is an equivalence, because applying 𝑝! would produce the
sought isomorphism.

Denote by 𝜋 : 𝑋 → 𝔛 the projection. Recall that 𝜋∗ is conservative, proper base change ensures that
it suffices to deal with the analogous situation over X

𝑉𝑖 𝑋

𝑈𝑖

𝛽𝑖

𝑗𝑖 𝛼𝑖

where every thing has been pulled back to X, and the map is now

colim𝑖 (𝛼𝑖)!Q𝑈𝑖 {−𝑖𝑟} → colim𝑖 (𝛽𝑖)!Q𝑉𝑖 {−𝑖𝑟}.
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Everything is now a scheme. The family of pullbacks (𝑥∗)𝑥∈𝑋 is conservative on DMét(𝑋,Q) by
localisation, thus by proper base change we reduce further to the case where 𝑋 = Spec 𝑘 is the spectrum
of a field, and each 𝑉𝑖 is a smooth k-scheme (in fact, a vector space). Furthermore, the codimension of
𝑊𝑖 := 𝑉𝑖 \𝑈𝑖 in 𝑉𝑖 goes to∞ when 𝑖 →∞, and the smoothness of 𝛼𝑖 and 𝛽𝑖 ensure that

(𝛼𝑖)!𝛼
∗
𝑖Q{−𝑖𝑟} � (𝛼𝑖)♯𝛼

∗
𝑖Q � 𝑀 (𝑈𝑖) ∈ DMét (𝑘,Q),

and the same for (𝛽𝑖)!Q{−𝑖𝑟} = 𝑀 (𝑉𝑖), where for Y a smooth k-scheme, the object 𝑀 (𝑌 ) is the motive
of Y. We are looking at

colim𝑖𝑀 (𝑈𝑖) → colim𝑖𝑀 (𝑉𝑖)

in DMét (𝑘,Q), with codim𝑉𝑖 (𝑉𝑖 \𝑈𝑖) −→
𝑖→∞
∞. By [HPL21, Proposition 2.13] this is an equivalence. �

Corollary 4.5.3. In DH(M) = IndD𝑏 (MHM(M)) the natural map

colim𝑖 (𝑝𝑖)!Q𝔘𝑖
{−𝑖𝑟} → 𝑝!Q𝔛

is an equivalence. In particular, for each 𝑛 ∈ N, the natural maps

pH𝑛 ((𝑝𝑖)!Q𝔘𝑖
){−𝑖𝑟} → H𝑝 (𝑝!Q𝔛)

are equivalences for i big enough.

Proof. The Hodge realisation

𝜌H : DMét → DH

extends naturally to stacks, in a way that commutes with the operations and colimits, thus the first
statement is just the Hodge realisation applied to Proposition 4.5.2. The second statement follows from
the fact that the t-structure on DH(M) is compatible with filtered colimits and that each pH𝑛 (𝑝!Q𝔛) is
constructible thus Noetherian. �
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