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Abstract

The problem of the energy exponential decay rate of a Timoshenko beam with locally
distributed controls is investigated. Consider the case in which the beam is nonuniform and
the two wave speeds are different. Then, using Huang's theorem and Birkhoff's asymptotic
expansion method, it is shown that, under some locally distributed controls, the energy
exponential decay rate is identical to the supremum of the real part of the spectrum of the
closed loop system. Furthermore, explicit asymptotic locations of eigenfrequencies are
derived.

1. Introduction

The main objective of this paper is to investigate the energy exponential decay rate of
a beam with locally distributed feedback controls. It is well-known that if the cross-
section dimensions of a beam are not negligible compared with its length, then it is
necessary to consider the effect of the rotational inertia. Furthermore, if the deflection
due to shear is also not negligible, then the beam is called a Timoshenko beam and
can be described by (see [17]):

3 / dw\ 3
"• ' ' ')=o, o<x<e, t>o,

3 / _ d<p\ ( dw\ ( 1 )

) + U2(x,t) = 0, 0<x<£, t>0.
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206 ' Dong-Hua Shi and De-Xing Feng [2]

Here a nonuniform beam of length £ moves in the (w-x)-p\ane, p(x) is the mass
density, w(x, t) is the deflection of the beam from its equilibrium, and cp(x, t) is the
total rotational angle of the beam at x. For precise physical details, see [17]. The
terms Ip(x) and EI(x) are the mass moment of inertia and rigidity coefficient of
the cross section, respectively, and K(x) is the shear modulus of elasticity. Also
«! (x, t) and u2{x, t) are locally distributed controls, that is, there exists a subinterval
[a, fi] C [0, i], such that

: , 0 = 0, u2(x,t) = O, x $ [a, fi], t > 0.

In the case of a cantilever configuration, the appropriate boundary conditions are

io(O, t) = 0, <p(0, t) = 0,

(2)

where /A I (t) and fi2 (0 are the applied lateral force and moment at x = I, respectively.
To avoid lengthy calculations, which are not necessary for our purpose, one can assume
that /Ai(f) = ii2{t) = 0. Here and below, the prime and the dot are used to denote
derivatives with respect to space and time variables, respectively.

In recent years, control problems involving large flexible structures have attracted
much attention, for example, see [3, 4, 6]. In [9], the boundary feedback control
of a Timoshenko beam was considered. In [5], the locally distributed control of a
uniform Euler-Bernoulli beam was studied. Recently, the use of "smart material"
as sensors and actuators has burgeoned in applications (for more information, refer
to [1]). When the parts made of "smart materials" are boned or embedded to the
underlying structure as locally distributed damping in stabilizing the vibration of the
flexible structure, in order to obtain an optimal allocation result, it is necessary to
know whether the energy decay rate of the system is identical to the supremum of the
real part of the spectrum of the closed loop system. The purpose of this paper is to
establish the exponential stabilization of Timoshenko beam vibration by using locally
distributed feedback controls and to find the energy decay rate. As shown above, the
vibration of a Timoshenko beam is described by two coupled wave equations with
variable coefficients. Although the multiplier methods used in [7,11] are sufficient to
prove the exponential stability of a nonhomogeneous one-dimensional elastic system,
they cannot provide exact information for the energy exponential decay rate of the
system. On the other hand, the methods proposed in [10, 14] also have deficiencies,
as it is very difficult to know whether or not the eigenvalues of the system satisfy the
gap condition. This is a usual (although not a necessary) condition for establishing
the stabilization of elastic vibration.
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Huang's theorem (see [8]) gives a necessary and sufficient condition for the validity
of the spectrum-determined growth assumption of an infinite-dimensional system.
This condition has been used by many authors to investigate the exponential stability
of a system with constant coefficients (see, for example, [12]). However, it is difficult to
verify this condition for a Timoshenko beam system with variable coefficients because
no explicit formula for the resolvent is available. We use Birkhoff's asymptotic
expansion method introduced in [2] to estimate the norm of the resolvent operator.
The same method is used in [18] to estimate the locations of eigenfrequencies. We
note that the form of the asymptotic solutions obtained in this paper appears to
be rather different to that obtained in [18], because the first-order equation with a
large parameter is non-homogeneous. In Section 2, some locally distributed feedback
controls are proposed, and the well-posedness of the corresponding closed loop system
is given via semigroup theory. We consider the case in which the wave speeds are
different (this condition is, in general, satisfied, see [15]). The asymptotic solutions of
the resolvent equation are given by using Birkhoff's asymptotic expansion method. In
Section 3, asymptotic estimates of eigenvalues are derived using Rouche's theorem.
Finally in Section 4, it is shown that the spectrum-determined growth assumption
holds, and that the vibration of the beam decays exponentially by virtue of Huang's
theorem. Thus the energy exponential decay rate is identical to the supremum of the
real part of the spectrum of the closed loop system.

2. Preliminary results

We propose the following locally distributed feedback controls:

ui(x,t) = p(x)bi(x)w(x,t), u2(x,t) = Ip(x)b2(x)<p(x,t), (3)

where bj (x) e C'[0, i] for; = 1 , 2 , and

bj(x) = 0, * * [ « , / ? ]

bj(x)>0, xe[a,0] (4)

bj(x)>y>0, x € [c, d] C [a, 0].

Then the closed loop system corresponding to (1) and (2) becomes

pw - (Kw1)' + (K<p)' + pbiw(x, 0 = 0, 0 < x < £, t > 0,

Ip<p - (EI<pJ + K(<p - w') + Ipb2<p(x, 0 = 0, 0 < x < i, t > 0.

w(0, t) = 0, <p(0, 0 = 0,

K(i)[<p(e, t) - w'(i, 0] = 0, El(t)<p'(l, 0 = 0.
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Now we incorporate the closed loop system (5) into a certain function space. To this
end, we define the product Hilbert space Jf = Vo

l x L2
p(0,1) x Vo

l X L2
If (0, t), where

Vo* = {<p e Hk(0, t) | <p(0) = 0 } , A: = 1,2,

and Hk(0, £) is the usual Sobolev space of order it. The inner product in Jf? is defined
as follows:

= I K(fPi ~ u>',)fo - v)'2)dx + f EI<p\<p'2dx
Jo Jo

+ / pziZ2dx+ / Ipxlrif2dx,
Jo Jo

where Yk = [wk, Zk, <Pk, W e « ^ for k = 1, 2. We define linear operators ^ and £&
inJif:

z
<p

l(Ei<py/ip - K(<p - «,')

= {[to, z , <p, tyY V*, = 0 } ,

~u>~
z
<P

' 0 '
- b l Z

0

~w~
z
(0

iff

Let six = s? + 38. Then we can write the closed loop system (5) as a linear evolution
equation in jV:

Y(t) = s/iY(t), (6)

where Y(t) = [io(-, 0 . ">(•. 0 . VO. 0 . ^(-. 011- The energy corresponding to the
solution of the closed loop system (5) is

E{t) = ^ K\<p-w'\zdx

I p\w\2dx+ [ Ip\<p\2dx],
Jo Jo J

where Y(t) = [w(-, t), w(-, t), y(-, t), ^(-, t)]T is the solution to (6). It is easy to
verify the following result.
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LEMMA 1. The linear operator s^ defined above is skew adjoint in the Hilbert
space Jtf, and srf\ has a compact resolvent.

For the well-posedness of the closed loop system, we have the following theorem.

THEOREM 1. For any initial data Yo 6 J?, (6) has a unique weak solution Y(t)
such that Y() e C([0, oo), Jif). Moreover, if Yo € ®(srf), then Y{i) is the unique
strong solution to (6) such that Y() e C'([0, oo), Jif) n C([0, oo),

PROOF. It follows from (4) that there exists a constant c > 0 such that

t , VK € 3V. (7)

Since si is skew adjoint, Re(^i Y, Y)^> = Re(&Y, Y)^ < 0, which means that s4x

is dissipative. Moreover, from Lemma 1, we know the maximal dissipativity of s&\.
According to the Lummer-Phillips theorem [13], sf\ is an infinitesimal generator of a
Co-semigroup of contraction. Thus, by the appropriate properties of a C0-semigroup,
the desired conclusions are derived.

In general, the speeds *JK(x)/p(x) and y/EI(x)/Ip(x) of the wave are different.
For details, see [15]. For simplicity, we denote by p\{x) and P2OO the reciprocals of
the two speeds *Jp(x)/K(x) and y/Ip(x)/EI(x), respectively.

To obtain the asymptotic solutions of the resolvent equation using Birkhoff's asymp-
totic expansion method, we assume, throughout the rest of this paper, that p(x), K(x),
EI(x), Ip(x) € C'[0,1} and that

p(x), K(x), EI(x), Ip(x) > Yi > 0, x € [0,1], (8)

Pdx)*f>2(x), Vxe[0,l]. (9)

First we need to transform the resolvent equation into a first-order system with a large
parameter.

For any K, = [wuzi,<pi, ^\Y € 3>V, let Y = [w,z,<p, irf € &(&/) such that
XY-^Y= Yu that is,

w-z = wu (k + bi)z + (K(<p - w'))'/p = zi,

<p-t=<pu {X + b2)xlr- (EI<p')'/Ip + K(<p- w')/lp = y/ru (10)

u/(0) = z(0) = <p(0) = ^r(O) = <p'(£) = 0, <p(£) = w'(£).

Eliminating z and \jr in (10), we get the following boundary value problem on w and <p:

+ — w'-^X(k + bi)w -<p'-—<p = —£(Zl + (A. +

u;(0) = <p(0) = <p\l) = 0, <p(t) = w\t).
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Let u = [w, <p, w'/k, (p'/kY- Then (11) is equivalent to

|~0 721 [ 0 Ol
u' = k\ „ «+ K "o

c
o~
0

u +
"o"
/ l

+ k-1 • ° 1 -

[6]

(12)

where /2 is the 2 x 2 identity matrix and A, B, C, D,fug{, Bu B2 are defined as

% o i „ ro %•
o

g\ =

n o o o] r o i - i o ]
1 ~ j_0 1 0 oj ' 2 ~ |_0 0 0 1J '

To diagonalise the dominant coefficient matrix [ °2 '* ], let v = Q~lu, where

o = -\A~l ~A~l] o-l = \A /21
2 L h h J ' U [-A I2\ •

Then (12) becomes

f v' = kMv + Bv + X"1 Cv + Fx + k~l Gu

| = 0, B2v(i)=0,
(13)

where

The solution of (13) can be written as

v(x) = Tc(x)@ + vp(x), (14)

where 0 = [0lt 92, 63, 94Y is a constant vector to be determined later, Tc(x) is the
fundamental solution matrix of the homogeneous equation associated with (13), and
Up (*) is a particular solution of the non-homogeneous equation (13). Also Tc(x) and
vp(x) satisfy, respectively,

(15)

(16)
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Next, applying Birkhoff's arguments given in [2] to (15), and following a procedure
similar to that given in [18], it follows that, for A. € G~ = [k | Re A. < 0, |A.| > N]
with N given large enough,

Tc(x) = (exp(M, (x))[Skj + &,• (x, A.)A})4x4 , (17)

fy + r)kj{x, A-)A})4x4, (18)

where fij (x) = /0* bj (s) ds + A. f* m.j (s) ds, bj (s) and /n, (s) are the (j, j )-entry of
matrix B and M, respectively. A simple calculation gives

El'

From [2], we know that £*, (x, A.) and r)kj (x, A.) are analytic for A. e G~ and are bounded
uniformly for A. 6 G~ and x € [0, £,].

Denote vp(x) = [pi(x), p2(x), p3(x), p4(x)]r and

vc(x) = Tc(x)& = [rt(x), r2(x), r3(x), rA{x)]z.

It is easily seen that

4

pk(x) = e"tMqk(x) + A."1 Y" fy (x, k)e*(x)qj (x), 1 < k < 4, (19)

qj (x) = I e~^s) hj
J° L

(s) + AT1 J^ nJn(s, k)ha{s)

4

ds, 1 < j < 4, (20)

rk(x) = e»>Mek + k~l J2 hi (x, k)e»w0j, 1 < * < 4, (21)

where h} = h3 = -p](w\+(bxwi + Zi) / k) and h2 = h4 = -pj((Pi+(b2<Pi + fi)/k).

3. Asymptotic distribution of eigenvalues of the system

In this section, we assume that conditions (8) and (9) are satisfied. The well-
known Rouche's theorem will be used to investigate the asymptotic behaviour of the
eigenvalues of the system (5). The method used is similar to that given in [18].

Substituting v(x) = Tc(x)Q + vp(x) into the boundary conditions of (13), we get

jBjv^]± (22)
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Multiplying (22) by

Dong-Hua Shi and De-Xing Feng [8]

N=

1 0 0 0

° l ° °
0 0 l/X 0
0 0 0 1

E =

we have

where

E=

e = [0, o, o»,(€)

It is easy to see that A. 6 G~ is an eigenvalue of s/\ if and only if

(23)

- i - 1 - 1

0 1 J '

( £ , ) = 0 , (25)

where E, E{ are given by (24). In terms of the properties of the determinants, we have

det (E + k-lEi) = det E + r ' £ 0 W . (26)

Since l-y (x, X), I <k,j < 4, are analytic for A 6 G~ and are bounded uniformly for
k e G~ and* e [0,1], E0(k) is analytic and uniformly bounded for A. e G".

By a simple calculation, we get

d e t E = —

I J .

Thus we see that det E = 0 is equivalent to

gum + gnm = o or

The roots of (28) are

kjn =

= 0.

, j = 1, 2, n € Z,

(27)

(28)

where 2 is the integer set. Now, for large positive integer n, define two rectangles as
follows:

= l /v^}, 7 =1,2. (29)
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[9] Energy decay rate of a Timoshenko beam 213

To apply Rouche's theorem, we need to estimate d e t £ on Ajn for j = 1 , 2 . In the
following, we assume that

Jo ̂  ds Jo ^ ds

For simplicity, we consider only the case in which k e Aln, n € M, where N is the
set of positive integers. Other cases can be established similarly.

Set A?, = {ke G~ \Rek = Rekln±l/^i, \lm(k~kln)\ < \/</n). Ifk e A°in,
then, by a simple calculation, we obtain

= f bi(s)ds + l- f Pl(s)bds)dsT-^= I
Jo *• Jo V n Jo

Pi(s)ds, (31)

R&fi4(i) = f b4(s)ds + i / p2ds-'0j>lbldS T 4= / Pi(s)ds, (32)
J l J J d J

i4(i) = f b4(
Jo JQ pi ds

/ 4 /
o JQ pi ds wn Jo

= ±4= /VnJo

= / pibids - I P2dsj0i ±— p1ds. (34)
Jo Jo Jo pi ds V ./o

It follows from (31) and (32) that Re fj,3(l) and Re ix4(£) are uniformly bounded with
respect to n. Thus there exists a 5! > 0 such that

| « i . 05)

Using the elementary inequality

|e«+" + l | > | ^ - l | > K CTl-°; (36)
" [|a,|-cr|72, -2<a,<0,

w i t h ox = Re(fii(£.) — ix3{V]i), w e o b t a i n f r o m ( 3 3 ) tha t t h e r e ex i s t nx, S2 > 0 such
t h a t

| | (37)

provided that n > «i.
Since | exp(/*2(€) - ii4{t)) + l | > | exp(Re(^2(€) - /i4(^)) - l | and

f P2b2ds- [ P2ds f p^dsl I p, rfj) ^ 0,
^o ^o Jo \ Jo /
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as n —*• oo there exist n2,53 > 0 such that

- fi4(t)) + 11 > 83, for n > n2. (38)

Therefore, substituting (35), (37) and (38) into (27), we have

| d e t £ | > ' 2 3 Vn>n3=max{no,«, ,n2}. (39)
Pi(0)p2(0)Vn

Furthermore, it is easy to see that there exist n4, S4 > 0 such that

|X-'£0(*)| < W « , V n > n 4 . (40)

Combining (39) and (40), we get

IX-'f'oWl < |de t£ | VX € A°n, n > max{n3,n4}. (41)

On the other hand, if

X € A \ n = { X e G~

then

= I hi.s)ds + ]- f piWbtWds + ffl^Y
Jo 2 Jo \V"/

= f b4(s)ds + \ f p2ds-'0?lbidS +
Jo 2 Jo ftpids

2 fl

= ± — / Pids + (2n + \)n,
-Jn Jo

= [ P2b2ds- f p2ds^P
t
xb + C (

Jo Jo JoPids \V«

It is easy to see that there exist n5, S5 > 0 such that

sinf —̂ = /
\Vn Jo

8
> -7=, Vn > n5,

where we have used the elementary inequality |exp(cr + it) + 1| > | sinr| with
r = Im(/i.i(£) — foil)). Therefore, similar to the case of A. € A°n, we know that there
exists an n6 > 0 such that

< |det£|, Vk € A|n, n > n6. (42)
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THEOREM 2. Assume that k is an eigenvalue of the system (5). If\k\ is sufficiently
large and condition (30) holds, then there exists some n such that \k — kjn\ < l/y/n,
j = 1 or 2, where n is dependent only on k. Furthermore, k satisfies

for large n.

PROOF. From (41) and (42), we obtain

|det(£ + A.~1£1)-det£| < |det£ | , VA e Ajn = A°nUAJn, j = 1,2,

provided that n is large enough. Since det(£ + k~xE{) and detE are analytic for
k € Ayn, n > n0, j = 1, 2, it follows from Rouche's theorem that det(£' + k^Et)
and det E have the same number of zeros inside the rectangle Ayn. On the other hand,
it is easy to prove that there are no zeros of det(£ + k~lEt) outside Aln U A2n when
n is large enough. Thus the desired result is obtained.

REMARK 1. If fi Plbi ds/ fi Pl ds = £ pibtds/ fi puts and ff Plds/fi tods
is an irrational number, then by a well-known result of number theory (see [16,
Theorem 7.9]),

inf |A.ln -k2m\ = inf i(2n + l)n i(2m = 0,

which means that there is no gap between the zeros of det E. In this case, we cannot
use Rouche's theorem to obtain the explicit asymptotic expressions for the eigenvalues
as for the case given in Theorem 2.

4. Energy exponential decay rate of the closed loop system

In the following discussion, we denote by s(£/) and o)(sf) the spectrum bound of
st/ and the growth bound of the semigroup T(t) generated by si, respectively.

In [8], it is shown that for a uniformly bounded Co-semigroup T(t) on a Hilbert
space Jff, the spectrum-determined growth assumption holds, that is, s{s/) =
and T(t) is exponentially stable if and only if

[ico | w e K ) C p{af), (43)
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and for every a0 e (s(s/), 0],

Ki = sup {||(A. - s/)~l\\ I ReA € [CT0, 0]} < oo, (44)

where sf is the infinitesimal generator of T{t). To verify the spectrum-determined
growth assumption and the exponential stability of the semigroup T(t) generated
by s/t, it is sufficient to show that (43) and (44) hold, because the semigroup T(t)
generated by sft is uniformly bounded in terms of Theorem 1.

LEMMA 2. The imaginary axis is a subset of the resolvent set ofs/\, p(s/i), that is,
[ico | a € R } C

PROOF. Otherwise there exists an COQ £ 0 (because 0 € p {&?{)) such that icoQ £
) . Since si has a compact resolvent, we have ico0 € ap(s/\). Thus 3Y0 =

[w0, Zo, <Po, foY e @(s/i) with 70 ^ 0, satisfying

Re(s/Y0, Yo) + Re(^y0, Yo) = Re(iwo)||ioll^ = 0.

Hence R e ( ^ y 0 , l o ) ^ = 0. It follows from (7) that 38 Yo = 0, which, in turn, implies
that s/Y0 = icooYo, that is,

Zo = io)0w0,

-(K((p0 - w'o))' - itoopzo,

yfr0 = icoo<p0, (45)

(EI<p'o)' -K(ff>o- w'o) = iwolrfo,

(Pod) = w'0(l), <p'0(i) = 0,

and Zo(x) = ir^x) = 0 VJC € [c, d]. From the first and third equations of (45), it
follows that wo(x) = <po(x) = 0 Vx e [c, d]. Thus (45) has only the zero solution,
which contradicts Yo ^ 0. The proof is complete.

Next we proceed to show that (44) holds for s4\ with the help of the asymptotic
solutions of the resolvent equation obtained in Section 2.

Let ck be a positive constant for k = 1, 2 , . . . and define H = (L2[0, £])4. For
every a0 € (s(sf{), 0], let A. = a + ico for a real number co and a e [crQ, 0]. It follows
from (10) that for Yx = [wu zi, (Pi,^iY € Jf,

f re re

= / # |?>-u/ | 2 r f ; t+ /
Jo Jo
+ I p\kw-wi\2dx+ /

Jo Jo
p\kw-wi\2dx+ / Ip\k<p - <pi\2 dx

J
(46)
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[13] Energy decay rate of a Timoshenko beam 217

where u is determined by (12) with k = a + ico.
On the other hand, by virtue of the triangle inequality, we have

\\ku\\2
H = \\XQv\\l < c2 [J2 {\\kpk\\L,m] + \\krk\\L2m])) , \k\ > N. (47)

If the following estimates for large |A| are satisfied,

(48)

(49)

then by taking into account the continuity of || (A.—s/t) ~
1 \\ # with respect to X e p (s4\),

it follows from (46) and (47) that (44) holds.
Note that there exist Mo, Mx > 0 such that for a e [CT0, 0] and 1 < j < 4,

<M0,

sup

(50)

(51)

First, we verify (48) for |A.| > Â . For this, we prove (48) only for k = 1 and the
proofs for other cases are similar. Using (19) and the triangle inequality, we obtain

l/2

a' , \ 1 / 2 ' / / • '
\ke»>M

qi(x)\ dx) , J2 = T(
Similarly, it follows from (20) that 7, < MO(JU + Jn), where

dx
\ 1/2

\ .

dx\\ ,

f 1m(s,
2 \ '/2

dx) .

Then, by the definition of hn and the triangle inequality, we have

2 \ ' / 2

dx)

+zi)ds
2 \ I/*

dx) . (52)
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Integrating by parts yields

where

G,(x

Jo

, s) = f X«-"'
Js

= [ Gdx,s)(p2
lwl)'(s)ds,

J

[14]

(53)

dt = f --—
Js P\dt

Pi(O

dt

, 0 < • * < * < £ .

Then it follows from (8) and (50) that Gk (x, s) is uniformly bounded, that is, 3M2 > 0,
such that \Gx(x,s)\ < M2 provided that 0 < s < x < i and X = a + ico with
CT e [cr0, 0]. Hence, by Schwarz's inequality, we get

\[ < c4(||u;'I||z.J[o,q

Substituting (54) into (52), and again using Schwarz's inequality, we obtain

Similarly, we obtain

Thus it follows from (20), (50), (51) and the triangle inequality that

J2 < CtWYJU.

4 , f t v 1/2

y\ I \hn(s)\2ds) <
=i VJo /

(54)

(55)

(56)

(57)

Combining (55)-(57), we conclude that (48) holds.
Now we turn to verifying (49) for large |X|. By the proof of Theorem 2, we get

a0

Thus using (36) with <7i =

f
max { -

foPjbjds

itfpjds

, we obtain

= 1 . 2 .

> e ^ ( s M s N p,ft, ds + 2CT0 / Pi ds) > 0. (58)

By a similar argument, we have

> ^8 , (1 ) * f f ^ d s + 2ao f > 0. (59)
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Thus it follows from (27), (58) and (59) that | det E\ > c8 > 0, and hence E~x exists.
So (23) can be written as (/4 + A T ' E ^ E , ) © = £ - ' 0 . Since the entries of E and Ex

are uniformly bounded with respect to A. 6 G~and|det£| > c8, the entries of E~l and
E~lEi are also uniformly bounded with respect to X e G~. Hence (/4 + A."1 E~lEi)
exists provided that \X\ is sufficiently large, and

@ = (l4 + \-iE-lEl)~
XE-i©. (60)

Thus it follows from (60) that there exists an Ni > 0, such that
4 4

£>0t|<c9£>p*|, M>Ni. (61)
k=\ k=l

Using (19), (50) and (51), we obtain

< M0\Xqk(i)\ + M0M, £ I* (01, 1 < * < 4. (62)
j=i

Using (53) and (54) with x = £ and Schwarz's inequality, we have

(63)

Substituting (63) into (62), we get

\*Pk(Q\ < cMWje, for \k\>Nu I < k < 4. (64)

Therefore it follows from (21), (50) and (51) that
1/2 4

VZ TYiY (65)a t

Finally, by substituting (64) into (61) and then into (65), we obtain (49). Thus we
prove the main result of this paper.

THEOREM 3. With the assumptions (4), ($)and(9), the spectrum-determined growth
assumption for the closed loop system (5) holds, that is, s(s#{) = cu(^). Furthermore,
the Co-semigroup T(t) generated by srfx is exponentially stable.

REMARK 2. By using the frequency domain multiplier method, we can prove that
the closed loop system is exponentially stable without the assumption of different
wave speeds, which will be reported in another article.
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