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Recently, Nagib et al. (Phys. Fluids, vol. 36, no. 7, 2024, 075145) used indicator functions
of streamwise normal stress profiles to identify the valid wall-distance and Reynolds
number ranges for two models in direct numerical sumulation (DNS) of channel and
pipe flows. Since such functions are challenging to construct from experimental data, we
propose a simpler, more robust method better suited to experiments. Applied to the two
leading models — logarithmic and power-law — for normal stresses in the ‘fitting region’
of wall-bounded flows, this method is tested on prominent experimental data sets in zero-
pressure-gradient (ZPG) boundary layers and pipe flows across a wide Reynolds number
range (Re;). Valid regions for the models appear only for Re; £ 10000, with a lower
bound y; ~ (Re;)% and yl.: Z,400. The upper bound is a fixed fraction of the boundary
layer thickness or pipe radius, independent of Re;. The power-law model is found to hold
over a broader range, up to Y ~ 0.4 in ZPG and Y ~ 0.5 in pipe flows, compared with
the logarithmic trend, which is formulated to be coincident with the classical logarithmic
region for the mean flow (¥ < 0.15). A slightly higher exponent (0.28) than that of Chen &
Sreenivasan (J. Fluid Mech. vol. 933, 2022, A20; J. Fluid Mech. vol. 976, 2023, A21)
extends the power-law model’s validity and correcting for outer intermittency in ZPG
flows further broadens it. Projections to the near-wall region of both models yield nearly
identical predictions of near-wall peak stress across the highest available Re;. These
findings, alongside results from Monkewitz & Nagib (J. Fluid Mech. vol. 967, 2023,
A15) and Baxerras et al. (J. Fluid Mech. vol. 987, 2024, R8), highlight the importance
of nonlinear eddy growth and residual viscous effects in wall-bounded flow modelling,
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informing potential refinements to the logarithmic model, such as those proposed by
Deshpande et al. (J. Fluid Mech. vol. 914, 2021, AS).

Key words: turbulent boundary layers, pipe flow

1. Introduction and data sets used

Interest in characterising the normal stress of turbulent fluctuations and its relationship
to large-scale eddies has significantly increased over the last five to ten years. Two
models have been proposed to represent the trends for normal stresses of turbulence in
wall-bounded flows, and they are the focus of recent research and publications. Nagib,
Vinuesa & Hoyas (2024) used indicator functions with carefully selected direct numerical
simulation (DNS) data for channel and pipe flows to examine the validity of both models
and their potential applicable ranges. The indicator function approach was also tried for
experimental data by Monkewitz (2023). The current work is also motivated by recent find-
ings regarding an extended overlap region of the mean velocity profile for wall-bounded
turbulent flows by Monkewitz & Nagib (2023), revealing that not all such flows exhibit a
pure logarithmic profile and a linear term of the same order should be considered. One po-
tential implication from the additional linear term in the mean flow is that it would require
eddies that do not strictly scale with their distance from the wall in this overlap region.

One model is based on the attached-eddy concept described by Marusic & Monty
(2019). Here, we will refer to this model as the ‘wall-scaled eddies model’ or simply the
‘logarithmic trend’ model. For the streamwise normal stress, the trend based on this model
is given by

(uTu™Y(Y)=B; — A1 In(Y). (L.1)

The outer-scaled distance from the wall Y is defined as y/R for the pipe flow and
as y/8 for the zero-pressure-gradient (ZPG) turbulent boundary layer data, where R is
the pipe radius and § is the boundary layer thickness. The § used here is the same as
that used by Samie er al. (2018), which was based on the composite profile proposed
by Chauhan, Monkewitz & Nagib (2009). Recently, Baxerras, Vinuesa & Nagib (2024)
compared values based on this composite profile for a wide range of favourable, adverse
and ZPG boundary layers, and consistently found &/8§99 & 1.25.

Recent publications by Chen & Sreenivasan (2022, 2023) on bounded dissipation
introduce an alternative model, which we will refer to as the ‘power trend’ model. This
model is represented by the following relation for the streamwise normal stress:

whuty(¥) =a; — g1 (V)*5. (1.2)

Both models contain two parameters and, in addition, the power trend and its exponent
are based on the bounding of dissipation near the wall at infinite Reynolds number. The
subscript ‘1’ represents the streamwise component of the normal stresses of turbulence.
Analysing velocity spectra obtained in pipe flow using direct numerical simulations,
Pirozzoli (2024) suggests that the dissipation rate of the streamwise velocity reaches a
limiting value of 0.28 for high Re.. Hence, it is worthwhile to parametrically test for the
power of the exponent in (1.2).

Agreement with the logarithmic trend is often evaluated in the literature, particularly
with comparison to experimental data, by fitting a straight line over a segment of the
normal stress data on a semi-log plot; examples are found from Marusic et al. (2013), and
more recently from Diwan & Morrison (2021) and Hwang, Hutchins & Marusic (2022).
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This approach makes it challenging to assess the accuracy and ranges of validity of the
models, particularly due to the often sparse logarithmic spacing of results in the fitting
and outer regions, as well as the limited accuracy of experimental data. For the 0.25-power
trend, agreement with data is typically tested by iteratively adjusting the two parameters
o1 and B, seeking minimum deviations over the widest possible range of distances from
the wall in a fitting region between wall- and outer-flow parts. Equations (1.1) and (1.2)
are independent of Reynolds number and Re; enters into them through the inner limit of
the fitting procedure in y*. This is the main reason we use Y = y*/Re, for distance to the
wall almost exclusively here.

In the case of DNS data, indicator functions analogous to those used with mean velocity
profiles by Monkewitz & Nagib (2023) were identified as having the best potential for
normal stress analysis and were favoured by Nagib et al. (2024). However, just like with
mean velocity, these indicator functions require taking derivatives of the discrete normal
stress profiles. This approach is often unsuitable for most experimental data in the literature
due to limited spatial resolution and experimental accuracy, which hamper the ability to
obtain accurate derivatives of the profiles. The current work aims to develop a method
for assessing the proposed relations using two of the most well-documented and reliable
experimental results in zero-pressure-gradient boundary layers and pipe flows, as provided
by Hultmark et al. (2012) and Samie et al. (2018), respectively.

A new approach is introduced here and successfully implemented with these two
experimental data sets over a ‘fitting region’ defined for this work by the following. Using
accurate measurements with established uncertainty limits throughout the fitting region,
the method is based on a normalisation scheme that uses the respective trend relations
with adjustable parameters within defined bounds. The bounds are selected to establish a
fitting region for each model between inner and outer flow parts. To meet this criterion,
the current assessment of the streamwise normal stress primarily focuses on regions of the
flow beyond the very near wall, specifically targeting ranges of y* larger than 400, which
correspond to a nominal outer variable range in the case of ZPG of 0.004 <Y < 0.2 for the
logarithmic trend and 0.004 < Y < 0.4 for the power trend in the Re; range examined. For
the logarithmic trend of normal stresses, the traditionally used overlap region extends up
to Y of 0.1 or 0.15, which is reflected in the mean velocity profiles. We extended the range
for our examination of the data against the two models for a more thorough assessment.
The inner-scaled wall distance is defined as y* = yu. /v, where Re, is equal to u;8/v
for ZPG flows and u, R/v for pipes. The fluid kinematic viscosity v is determined from
the fluid temperature and u, is the wall friction velocity /7y /p, With t,, measured by
pressure drop in the fully developed pipe flow, and directly using oil-film interferometry
(OFTI) in the ZPG experiment. The experiments of Samie et al. (2018) included values of
u, from both the direct measurement by OFI and by the composite profile approach of
Chauhan er al. (2009). We used the results based on u, values measured with OFIL.

It is important to establish the regions of validity for each of the two models. This will be
discussed in § 5. We will focus initially on comparing the two models of (1.1) and (1.2) in
the intermediate or overlap region where nearly all the literature has evaluated them with
experimental or computational data as shown by Marusic et al. (2013), Diwan & Morrison
(2021), Hwang et al. (2022), Monkewitz (2023) and Chen & Sreenivasan (2024). For
the different wall-bounded turbulent flows, the outer part of the flow can differ a great
deal from boundary layers to duct flows such as in channels and pipes. We hope that the
approach described and tested in this work will reveal some differences among these fitting
regions, although the near-wall flow may be quite similar. For these high- Re, experiments,
the fitting region is selected to incorporate the majority of the inner part of the overlap
region between inner and outer flow parts as defined by each model, while extending to
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Figure 1. Streamwise turbulence stress versus inner-scaled wall distance for different Re, values from Marusic
et al. (2015) and Samie er al. (2018) ZPG (open symbols) data with 0.25-power parameters (9.2 £+ 0.22,
10.1 £ 0.13) and logarithmic parameters (—1.26, 1.93=£ 0.05); C; =400 and C, = 5000.

wall distances in outer variable Y to include the range of agreement between the data and
each model.

Initial evaluations for the power trend model were made with the exponent of 0.25
based on the bounded dissipation results. We also tested other exponents in the range from
0.2 to 0.32. For ZPG turbulent boundary layers, data from the Melbourne large wind tunnel
by Marusic et al. (2015) and Samie et al. (2018) were used, with emphasis on the recent
results using more advanced hot wire anemometers that provided better spatial resolution.

The earlier measurements of Marusic et al. (2015) used miniature conventional hot-wire
sensors. Similarly for the normal stress data from the Princeton Superpipe facility, the
more recent data by NSTAP hot-wire sensors with a smaller sensor length from Hultmark
et al. (2012) were used.

For the DNS results, the various channel and pipe flows data recently examined with
the indicator functions approach by Nagib et al. (2024) are used to re-evaluate both trend
models by the new method. These results were also compared with the results for higher
Re; from the two experiments examined in the next section.

2. Evaluating logarithmic and quarter-power relations

The collection of the streamwise normal stress profiles from the Melbourne ZPG
experiments and the Princeton Superpipe are plotted against the logarithm of the inner-
scale wall distance in figures 1 and 2, respectively. The logarithmic trend is represented
by solid straight lines using (1.1) with typical A; and B values for ZPG in figure 1 and
for pipe flows in figure 2; with corresponding parameter values listed in the captions of
all relevant figures in the format (A, Bjp). It is noted that in this paper, we consider the
logarithmic relation for the streamwise normal stresses at face value, as it is predominantly
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Figure 2. Streamwise turbulence stress versus inner-scaled wall distance for different Re; values from
Hultmark et al. (2012) superpipe data with 0.25-power parameters (9.3 & 0.13, 10.0 £ 0.0.06), and logarithmic
parameters (—1.26, 1.6 + 0.17); C; =400 and C, = 5000.

considered in the literature. Some potential exists to improve on the logarithmic relation
by including nonlinear scaling from the wall and viscous effects. More recent work by
Baars & Marusic (2020) and Deshpande, Monty & Marusic (2021) has shown that a pure
logarithmic relationship relies on first isolating the very-large-scale or ‘superstructure’
contributions that do not scale with their distance from the wall.

The power trend fits, (1.2), are depicted using dotted lines in figures 1 and 2, with both
trends using colours corresponding to the data symbols for each Re;. Typical values of
o1 and B as reported in the literature are used. The format in the captions of all relevant
figures for the power trend coefficients is (81, 7). In the case of the Superpipe data, the
parameters were slightly adjusted to optimise their fit for some of the Re; cases, over the
very wide range of Reynolds numbers, and the standard deviation for each parameter is
also listed in the caption following the corresponding mean value. The green and blue bars
near the bottom of each figure represent the apparent agreement between the data and the
trend models corresponding to logarithmic and power relations, respectively. Two parts
of each bar with different shades of its colour are used to identify the apparent range of
agreement with the corresponding trend for normal stress profiles with typical lower and
higher Re; values.

The thick grey lines are used to provide a visual indication of the boundary between the
near-wall and fitting region of the flow, where the validity of the relation will be evaluated
more carefully in the following figures. Using the information in figure 6 of Nagib et al.
(2024) and identifying the fitting region as that to the right of the minimum peak in
the profiles of turbulent stress gradient divided by viscous stress gradient, the following
relation for the grey lines is used: y* = Cj(Re;/C»)%>. This relation recognises the
square root dependence observed in figure 6 of Nagib et al. (2024). A conservative value

1016 A24-5


https://doi.org/10.1017/jfm.2025.10434

https://doi.org/10.1017/jfm.2025.10434 Published online by Cambridge University Press

H. Nagib and I. Marusic

(a) )
1.20 120
Lis —~ 2788 4262 Lis - 2788 4262
10 = Vieso ~ 19680 AN = Ttk ~ 19680
w0 Perfect fit+/—2% /B Perfect fit +/— 2%
£ 1.05 1.05 | \\\
3 / \
= 1.00
3 \ - 8 =N
3 N 0.95 \ \ \\
~ 3 \
= \ 0.90 \ \ A
WS \ \ |\ \ \ 1|
s & A 0.5 b

\ 0.80

| \
\ || 0.75 ogarithmic range Re, = 10000 20000 | |‘

Re,= 10000 20000 ﬂl \ 20000 I‘
T |

Re, = 10000
1 1

10! 10 103 10% 10! 10? 10° 10*
+ +

y y

Figure 3. Streamwise turbulence stress normalised by both fitting relations versus inner-scaled wall distance
for ZPG data of Marusic et al. (2015) and Samie et al. (2018) for different Re; values: (a) using (1.1)
with logarithmic parameters (—1.26, 1.93 £ 0.05); (b) using (1.2) with 0.25-power parameters (9.2 £ 0.22,
10.1 £0.13).

of C1 =400 corresponding to C, = 5000 is used. This selects y™ = 400 as a conservative
lower limit of the fitting region for Re; = 5000.

The method introduced here is intended to have a more quantitative evaluation than
that used in figures 1 and 2, or in most of the previous attempts in the literature. For
each model, the normal stress profile measurements for a given Re; are divided at each
data point by the corresponding value from the model and plotted against inner-scaled
distance from the wall y* on a log scale or the outer-scaled distance from the wall Y
on a linear scale. To compare the two models, the resulting graphs for the logarithmic
model are always placed in panel (a) of the composite figures 3—6, while the power
model is shown in panel (b). The values of the parameters for both models (A1, B;) and
(B1, arp) are listed in the captions for each figure in this format. When various Re; cases
required slight adjustments in these parameters, the standard deviation of the full range
of Re; values is again listed after the mean value. Based on experience with the entire
experimental data sets used here and recognising the uncertainties in the measurement of
the streamwise normal stress using hot wire sensors, we selected a maximum deviation
from the exact agreement ratio of 1.0 % £2 %. In the next figures, this range of acceptable
model representation of the data is depicted with horizontal grey bands.

Figure 3 summarises the evaluation of the ZPG data using the method described in
the previous paragraph. The vertical axis represents the ratio between the measured
streamwise normal stress and the expected values based on the fitting trend relation,
(uhu™)/(utu™) fisring. Just as in figures 1 and 2, the green and blue bars near the bottom
identify the range of validity with the respective fitting trend, but more quantitatively now
with the help of the horizontal grey bars establishing agreement of the ratio of the data
to the relation at the same location of wall distance with 1.0 = 0.02. A similar evaluation
is carried out in figure 4 using the outer scaled distance Y on a linear horizontal axis.
In figures 5 and 6, the two sets of evaluations versus y* and Y are repeated for the
Superpipe data. We find from these four figures that the lower limit of fitting of validity in
inner variables for both logarithmic and power relations changes weakly for Re £ 10 000
within the scatter of the results.

Examining the minimum peak in both parts of figure 6 of Nagib er al. (2024) and relating
them to an arbitrary fractional power of Re; with an adjustable proportionality coefficient,
we find that a best fit is y© =1.5- Re%>. In the figure, this minimum peak is readily
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Figure 4. ZPG data. Same as figure 3 but with outer-scaled wall distance.
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Figure 5. Streamwise turbulence stress normalised by both fitting relations versus inner-scaled wall distance for
Superpipe data of Hultmark ef al. (2012) for different Re; values: (a) using (1.1) with logarithmic parameters
(—1.26, 1.6 £ 0.17); (b) sing (1.2) with 0.25-power parameters (9.3 & 0.13, 10.0 £ 0.06).

identified with a transition between the near wall flow and the overlap region over the range
1000 < Re; < 16 000 based on DNS of channel flow and, therefore, readily with y;;l.
Consistent with the analysis of Klewicki, Fife & Wei (2009) and Nagib et al. (2024),
we will thus consider y;; ~ (Re;)"?, with the provision that y; 2,400 for the ZPG and
Superpipe data. This corresponds to 0.004 < Y, < 0.04 for the range of Re; considered
here. The upper limit of fitting validity in outer variables Y,,;, for both logarithmic and
power relations, appears to be independent of Re; in the Superpipe and ZPG data; see
figures 4, 6 and 7. We find bounds for the logarithmic relation that incorporate the region
of the flow where the classical pure-logarithmic relation of the mean velocity profiles
can be identified (see region ¥ < 0.1 in figure 4 of Baxerras et al. 2024 and figure 7 of
Monkewitz & Nagib 2023), and therefore, consistent with the wall-scaled (attached) eddy
model (Marusic et al. 2013). However, it is significant to note that the upper limit of fitting
validity in outer variable Y,,,; is considerably higher for the power relation compared with
the logarithmic relation. For ZPG, Y,,; is 0.39 compared with 0.22 and for the Superpipe
data is 0.5 versus 0.27; see figures 4 and 6. The corresponding limits in y™ values are easily
obtained from the Re; conditions. For example, when Re; ~ 20 000, the logarithmic trend
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Figure 6. Superpipe data. Same as figure 5 but with outer-scaled wall distance.
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Figure 7. Streamwise turbulence stress normalised by both fitting relations versus outer-scaled wall distance for
different Re, values. (a) ZPG data of Samie et al. (2018) with 0.28-power parameters (8.9 & 0.21, 9.6 £ 0.26).
(b) ZPG data of Samie et al. (2018) with 0.22-power parameters (9.6 & 0.23, 10.6 & 0.13).

is found only up to y* =~ 5000, while the power relation extends the agreement to y™ ~
9000.

3. Power-relation exponent, intermittency effects and comparison to DNS

In figures 7 and 8, the variation of the exponent of the power model is tested. Panel (a) of
each figure displays the evaluation of the experimental data by a power relation with 0.28
exponent, while panel (b) uses an exponent of 0.22. The ZPG data are evaluated in figure 7
and the range of potential impact of the outer intermittency is indicated for reference by
a yellow bar near the top of the figure. The function developed by Chauhan et al. (2014)
is used here with all data corrected for intermittency. The function starts at a value of
1.0 from the wall, then decreases to 0.96, 0.84, 0.57, 0.24 and 0.04 near the outer scale
distances Y of 0.47, 0.55, 0.64, 0.76 and 0.89, respectively.

In contrast, for the Superpipe data shown in figure 8, no influence of intermittency
is expected and the agreement with the power relation extends to half the pipe radius.
Comparing the results from both ZPG and Superpipe data for power relations with
exponents of 0.22, 0.25 and 0.28 reveals that an exponent of 0.28 represents the data
somewhat better than the original 0.25-power relation based on the bounded dissipation
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Figure 8. Streamwise turbulence stress normalised by both fitting relations versus outer-scaled wall distance
for different Re; values. (a) Superpipe data of Hultmark et al. (2012) with 0.28-power parameters (8.6 £ 0.1,
9.10 £ 0.23). (b) Superpipe data of Hultmark et al. (2012) with 0.22-power parameters (9.8 £ 0.1, 10.5 £ 0.26).
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Figure 9. Streamwise turbulence stress normalised by both fitting relations versus outer-scaled wall distance
for different Re, values, with intermittency correction applied. (a) ZPG data of Marusic ef al. (2015) and Samie
et al. (2018) (open symbols) with logarithmic parameters (—1.26, 1.93 £ 0.05). (b) ZPG data of Marusic et al.
(2015) and Samie et al. (2018) (open symbols) with 0.28-power parameters (8.9 =+ 0.21, 9.6 £ 0.16).

model; see also figures 11 and 12. Several other exponents were tested with both data sets,
but the 0.28 appears to yield the best agreement. Applying the intermittency correction
used for figure 9 to the 0.28-power relation yields the best agreement with the measured
data including for large y™ values. The fitting range agreement with the 0.28-power model
and the intermittency correction extends to Y over 0.5, consistent with the result of the
ratio method in figure 9. A generalisation or extension of the defect power model to explain
the 0.28 power found here for channel and ZPG boundary layer flows and suggested
through analysis of spectra from pipe data by Pirozzoli (2024), instead of the 0.25 power
of bounded dissipation, appears to be most desirable.

Correcting ZPG data for outer intermittency effects using the function of Chauhan et al.
(2014) does not change Y,,,; for the logarithmic relation while extending Y,,,; for the power
relation to approximately 0.44; see figure 9. The correction is simply applied by dividing
the ratio (u™u™)/(utu™) fisring by the intermittency function that ranges from one at the
wall to zero beyond y = 8.
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Figure 10. Streamwise turbulence stress normalised by both fitting relations versus outer-scaled wall distance
for different Re; values. (a) Superpipe data of Hultmark er al. (2012) with logarithmic parameters (—1.26,
1.6 £ 0.17), ZPG data of Samie et al. (2018) (open symbols and dotted lines) and channel DNS data from
Nagib et al. (2024). (b) Superpipe data of Hultmark e al. (2012) with 0.25-power parameters (9.3 £ 0.13,
10.0 £ 0.06), ZPG data of Samie et al. (2018) and channel DNS data of Nagib ef al. (2024).

In figure 10, DNS results of pipe flow are displayed with dashed lines and channel flow
data with continuous lines. Dashed lines with experimental data points identified by solid
circles are used for Superpipe data and continuous lines with experimental data points
marked by solid circles are used for ZPG data. The colour pattern for the experimental
data for different Re; conditions are the same as in earlier figures.

Comparing the ZPG and Superpipe experimental data with DNS data for pipe flow in
the range 2000 < Re; < 6000 and channel flow in the range2000 < Re; < 10 000, reveals
general agreement for results of both logarithmic and power relations as displayed in
figure 10. The DNS results are based on the recent work of Nagib et al. (2024) and all
the parameters of the various cases are given in tables included by them.

Figure 10 is a further demonstration that, especially near the wall, Re; £ 10000 is
required for the two proposed relations to achieve agreement with the streamwise normal
stress in the fitting region. This is in contrast to a lower value of Re; Z 5000 we find for
the indicator functions of the mean velocity profile, as demonstrated by Hoyas et al. (2024)
and figure 1 of Nagib et al. (2024).

Next, we use the Re; = 5200 DNS data of Lee & Moser (2015) for channel flow and
the indicator function for the power trend given by Nagib et al. (2024) for 0.25 power.
We focus on the streamwise normal stress and use its indicator function, ¢, defined as

d(utul) duFul)
=yt X oy XX 3.1
Cuu =Yy dy+ dy (3.1)

Finally, to examine whether the power of 1/4 is reflected in normal stress profiles,
the indicator function of the trend of the defect power, ¢,, pp, based on the bounded-

dissipation predictions of (1.1), is defined by

dutut) dutut)
_ 0.25 /. +10.75 _ 1y0.75
Cuu,Bp =4Re ™ (y™) dy+ =4Y o (3.2)
To evaluate the different values of the exponent using such an indicator function,
we use

guu,power == Fpower : {uu,BDv (33)
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Figure 11. Indicator functions of normal stress computed from DNS results of Lee & Moser (2015) for power
relations with exponent varying between 0.2 and 0.32.

and select Fpoyer for each exponent to bring the indicator functions close to the value
of —10.5 reported often in the literature for channel flow (Monkewitz 2023; Nagib et al.
2024) to achieve an optimum visual comparison with increasing value of the exponent. The
best agreement, with widest range in Y, found with the data for several values of the power
exponent is clearly the exponent of 0.28, for which we select Fy g to match the —10.5
value for &, power. The results are summarised in figure 11 for four different exponents of
the power relation. They reveal that a value of 0.28 for the exponent, instead of the 0.25
value predicted by Chen & Sreenivasan (2022, 2023), produces the widest range in wall
distance with agreement. This result is also supported by the data of Samie et al. (2018)
for ZPG boundary layers as demonstrated by figure 12, where the dashed lines are closer
to the data especially at large y™* values.

4. Projecting peak streamwise normal stress

As presented by Nagib, Monkewitz & Sreenivasan (2023) and recently discussed by Nagib
(2025), the difference in the predictions between the two models for streamwise normal
stress may not allow for confirmation of either model even at the highest achievable
Reynolds numbers that allow sufficiently accurate measurements. Since the two models
are formulated based on substantially different assumptions, with one based on inviscid
foundations and the other on viscous foundations, it is important to understand and confirm
the validity of the models with existing data. The conclusions of Nagib et al. (2023) relied
partly on DNS data. Here, we aimed at further documentation of this conclusion using the
two best experimental data sets currently available at sufficiently high Reynolds numbers.
Due to the limited overlap in Re; between accurate values of normal stress between
DNS and experiments, we also examine, to our knowledge for the first time, agreement
or correlation of predicted values of normal stress by the two models with increasing
Reynolds number.
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Figure 12. Streamwise normal stress versus Re; for ZPG data of Samie et al. (2018), comparing trends of
0.25-power with parameters (9.2 £ 0.22, 10.1 & 0.13), 0.28-power with parameters (8.9 & 0.21, 9.6 £ 0.26)
and intermittency correction of 0.28-power trend.

We start by considering possible implications of the fitted trends of the two relations,
logarithmic and defect power, on the near-wall region. The rationale for this is that
a connection or interaction between the two regions has previously been considered
(Marusic, Mathis & Hutchins 2010; Mathis et al. 2013), where the effects of the motions
in the logarithmic and outer region extend down to the wall. Therefore, here we propose
an estimation procedure for the inner peak of the streamwise normal stress, which is
usually found at y* = 15, based on data in the overlap region of the wall-bounded flow.
This will be done by both ‘extending’ or ‘projecting’ the values of the normal stress from
the fitting region with y* > 400, to obtain estimated values for each model around the
inner peak in the very near wall region. In the first approach, each model fit is simply
extended down to the near-wall region. When ‘projecting’ the trends, the values for each
Re; along the grey line of figures 1 and 2 are all offset using one accurately measured
inner peak value at a corresponding Re; and set as a benchmark. Any line similar to such
grey lines obtained with a larger C; coefficient and falling within the fitting region, where
both models represent the data within the tolerance of figures 3—10, can be used for such a
projection approach.

Careful examination of figures 1, 2, 3 and 5 suggests that the fitting region where the
two models may be applicable starts a distance from the wall y;; ~ (Re)"?; y; Z, 400
for the range of Reynolds numbers of the ZPG data. The outer limit of this fitting region
scales with outer-scaled distance Y. From figure 6 of Nagib et al. (2024) and recalling
that y© =Y - Re,, we tested several coefficients for the dependence of the lower limit of
the fitting region on (Re;)%. First, we used the best fit of each model, with the data in
the fitting region, to ‘extend’ the fit for each model down to y* =15 to obtain the two
red lines in figure 13. Extending the trends of the two models, fitted to the overlap region,
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Figure 13. Values of streamwise normal stress at peak from ZPG data of Samie et al. (2018) compared with
various projections from logarithmic and power relations, including from fitting region at positions selected
using 430 < yt =5.5(Re;)"5 < 772.

in the case of the Superpipe data to the region of the inner peak, neither model is found to
directly represent the inner peak values and the difference between them can be as much
as 30 %.

It is clear that neither model, fitted outside of near-wall or viscous region, directly
represents the measured conditions around the inner peak values. However, when
‘projection’ of the fitted trends is based on the normal stress value from a wall distance
that varies with (Re;)? and an offset is selected to match the highest Re; data point, and
used for all Reynolds numbers, the respective projections for both models are the black
open symbols and the dotted black line. For the logarithmic model, we initially tried a
coefficient of 2.6 for the Re(r)'5 relation from the results of Klewicki ef al. (2009) based on
channel DNS data of limited Reynolds numbers that provided a range 203 < y; < 365,
which is not within the limits of the considered fitting region. We found a value of 5.5
with a larger offset to produce slightly better agreement with experimental data at higher
Reynolds numbers in ZPG boundary layers based on y; > 400. In summary, figure 13
demonstrates that the measured ZPG data of Samie et al. (2018) display a trend of the
peak of streamwise normal stress with Re; comparable to that readily projected by the
trend of the logarithmic relation and slightly faster than that of the 0.25-power trend.
Although the difference between the projection of the two models up to Re; around 20 000
is approximately 20 %, as shown by the two red lines, compensating for each of them by
a fixed amount as just described makes them agree with the data within the measurement
tolerances. We decided to limit the projections of figure 13 to no more than twice the
highest Re; value for which normal stress measurements are reported from the Superpipe;
see figure 2 for the highest value of Re; =~ 98 000.

The excellent agreement between the measured streamwise normal stress, around
y* & 15 from ZPG data of Samie et al. (2018) with projections at the same peak position,
based on data from locations at y* =5.5 (Re;)%3, which are in the range 430 < yT < 772,
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Figure 14. Lower-Re; normal stress data measured in the Superpipe and used to project the trends by both
models to higher Re; conditions achievable in facility using an offset of 4.2 for logarithmic trend and 3.8 for
power trend. ZPG data from figure 13 are included to demonstrate near wall similarity.

supports the concept of influence by the outer flow on the inner peak growth with Re.
The approach was also used to demonstrate the potential of predicting the degree of
that influence by extending the Superpipe peak measurements to higher Re, values.
Again, selecting the locations in the data to project using the same approach with data
at yt =5.5 (Re;)", which are in the range 400 < y* < 1, 800, but adjusting the offset
based on a few more reliable data points at lower Re; from the Superpipe, we obtain the
red lines of figure 14. When each model trend is anchored by experimental data using
the approach used in figure 13, the difference between the two relations at Re; of 10° is
estimated to be approximately 7.5 %, which is very challenging to accurately discriminate
by measurements, especially at such high-Re; values; see figure 14, Marusic, Baars &
Hutchins (2017) and Nagib et al. (2023).

Comparisons of experimental ZPG data of Samie er al. (2018) with DNS data for
channel flow of Lee & Moser (2015), coupled with projections for the peak normal
stress values based on ‘fitting region’ values are shown in figure 15. The results reveal
that high-Reynolds-number behaviour is only achieved at Re, of approximately 5000.
The results also indicate that at lower Re;, the projected power trend at the peak is
slightly more representative of the DNS data. For higher Re., predictions of the peak
value of streamwise normal stress by both the logarithmic and power trends are equally
representative.

5. Ranges of validity for two models
Throughout this paper, we have tested the two models considered over distances from
the wall commonly used in the literature, including those used by Marusic et al. (2013)
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Figure 15. Comparison of projections by both models of peak streamwise normal stress values based on data
from channel DNS of Lee & Moser (2015) and higher Re, data from ZPG experiments by Samie et al. (2018),
as developed in figure 13, including from the outer part of DNS using 67 < y* =5.5(Re;)*> <360 and at
yT =400and ¥ =0.1.

and Hwang er al. (2022). For the logarithmic-trend model, the recent measurements of
Deshpande et al. (2021) reveal that the only regions where linear growth of wall-scaled
eddies has been documented for Re; = 14 000 in zero-pressure-gradient (ZPG) boundary
layers are found with predominantly linear scale eddies and a small k~! spectral region up
to y* = 318. The k~! spectral region is an essential ingredient of the logarithmic model, so
is the requirement of a constant von Kdrmén coefficient. Linear scale eddies among other
outer scale coherent structures are documented only up to ¥ = 0.08, which corresponds to
yt =1025.

For the defect power law, Chen & Sreenivasan (2022, 2023) produce models for inner,
outer and intermediate regions of the wall-bounded flows. Using matched-asymptotic
analysis, Monkewitz (2023) also arrives at a power law with 0.25 exponent for an overlap
region. Figures 1, 2 and 13 demonstrate that the defect power trend does not extend to
the inner region with the same power exponent for the two flows we examined of fully
developed pipe and ZPG boundary layer flows.

It is clear, therefore, that the two models are not applicable to the same region of wall-
bounded flows and should not be compared in manners used by Marusic et al. (2013),
Smits et al. (2021), Hwang et al. (2022), Monkewitz (2023) and many others.

6. Conclusions

To extend the work of Nagib er al. (2024) to higher Re; values in wall-bounded
flows, it was necessary to develop a new method to evaluate two models with proposed
trends for streamwise normal stress using experimental results. Two of the best available
experimental data sets in ZPG boundary layers and pipe flows were identified, and
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provided a wide range of Reynolds numbers with 2500 < Re, < 20 000 in ZPG boundary
layers and 3000 < Re, < 100000 for fully developed pipe flows.

We find that to establish a significant region of validity by either relation, Re, < 10 000.
The two parameters for both models of (1.1) and (1.2) are found to be similar for the two
flows, and using the same parameters for the full range of Re; in each flow results in a
lower limit of wall distance independent of Reynolds number. For both flows and models,
the lower limit in distance to the wall is y;" Z 400, which corresponds to 0.004 S Y;, <
0.04 for the range of Reynolds numbers for both measurements in the ZPG boundary layer
and the Superpipe examined here. However, the outer limit of validity for the power trend
is nearly double that of the logarithmic trend, and is identified at Y,,,,; & 0.39 versus ~ (.22
for ZPG and Y,,; = 0.5 versus & 0.27 for Superpipe data. Both models are not valid
outside of this fitting region identified between y; and Y,,;. The power trend, which is
based on Chen & Sreenivasan (2021), has an explicit formulation of the inner region, but
that is not the subject of this paper. We also find that the standard deviation from the mean
values of the two parameters for each of the proposed relations was quite small for all the
data analysed and did not exceed 2.5 % of the mean values of the respective parameters;
see captions of figures 1-10.

Interestingly, a somewhat larger exponent for the power law of streamwise normal stress
equal to 0.28, instead of 0.25 obtained by the bounded dissipation assumption of Chen &
Sreenivasan (2022) and Chen & Sreenivasan (2023), is found to extend its range of validity.
This finding is in agreement with the recent DNS results in pipe flow by Pirozzoli (2024).
Also, recognising that the outer part of boundary layers is intermittent between laminar
and turbulent conditions, a correction to the normal stress is applied by dividing it by the
intermittency factor as representative of the fraction of time the flow is turbulent. The
resulting validity of the power trend is extended from Y,,; & 0.4 to approximately half the
boundary layer thickness.

While it was not part of the initial objectives of the work, we attempted to project
the expected normal stress at the inner peak around y* A 15 using normal stress values
from within the fitting region to the right of the curved grey line of figures 1 and 2.
This approach can be beneficial as it leverages more easily and accurately measured
normal stress values in wall-bounded flows. We relied on both models examined here,
using the parameters established for each, and successfully tested the approach in the
ZPG boundary layers. Although the work of Chen & Sreenivasan (2023) on the power
model provides separate inner, outer and intermediate trends, the inner trend is not readily
accessible from the intermediate trend without separate benchmark data from the near-
wall region. Applying this approach to the limited range of inner-peak measurements from
the Superpipe, we project the expected peak normal stress up to Re; = 200 000, covering
nearly the full range of available conditions in the facility, as shown in figure 14. The
differences between the projections by the two models are small over the available range
of data, as pointed out by Nagib et al. (2023). When the trends of the models are anchored
by experimental data, even at the higher Re,; conditions typical of neutral atmospheric
boundary layers around Re; = 10°, the two relations provide projected values with a
relative difference approximately equal to 7.5 %. Therefore, to differentiate in favour of
either would require measurement accuracy beyond our reach.

The excellent comparison of channel DNS data of Lee & Moser (2015) up to
Re; =5200 and the higher Reynolds numbers data in ZPG boundary layers by Samie
et al. (2018) for the peak streamwise normal stress, along with projections by both
models, in figure 15 is encouraging. Such comparison was also performed by Chen &
Sreenivasan (2021), but not using the more rigorous technique developed and applied
here. These results are supportive of the recommendations by Hoyas et al. (2024) and
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Nagib et al. (2024), that well-resolved and converged DNS data in fully developed duct
flows with adequate domain size up to approximately Re,; = 5000 may be sufficient and
more valuable to obtain accurate mean flow and turbulence statistics. DNS at higher
Reynolds numbers may only be required for studies of structure and scales of turbulence,
but they also need to be well resolved and converged and in long domains. The smooth
continuation between the channel DNS data and the experimental ZPG boundary layer
measurements for the peak of the normal stresses in figure 15 is further confirmation of the
universality of the near-wall region across different wall-bounded flows (pipes, channels,
boundary layers, etc.). The channel DNS data at ¥ =0.1 for the lowest two Re, values
reflect the very-low-Reynolds-number conditions of 182 and 543 where an overlap is not
sufficiently established as for Re; Z 1000.

Finally, while both models may be used to represent the general trends of the streamwise
normal-stress data, the power relation conforms to the experimental data more closely
throughout its wider range of validity as demonstrated in figures 1 and 2. The current
results and those of Monkewitz & Nagib (2023) and Baxerras et al. (2024) on the mean
flow, revealing a linear term of the same order as the logarithmic term in the fitting region
of the mean velocity profile, suggest that beyond the inner flow, y* 2 400, consideration
of nonlinear scale growth from the wall and accounting for some viscous effects are
important for modelling overlap/inertial region of wall-bounded flows. Such effects also
apply to potential refinements of the logarithmic trend along ideas advanced by Deshpande
et al. (2021).

Acknowledgement. H.N. acknowledges the support of the Rettaliata Chair Professorship at ILLINOIS
TECH and accommodations provided by University of Melbourne during a short sabbatical period when the
authors worked to complete this work.

Funding. .M. received financial support from the Office of Naval Research (ONR) through ONR global
grant: N62909-23-1-2068. The support of the King Abdullah University of Science and Technology, Saudi
Arabia, is also acknowledged for organising a three-day workshop at KAUST on ‘Outstanding challenges in
wall turbulence and lessons to be learned from pipes’, from Monday 26 to Wednesday 28 February 2024, where
the interaction between the authors on this topic was energised and led to the work included here.

Declaration of interests. The authors report no conflict of interest.

Data availability. The data used for this paper can be obtained by contacting H. Nagib at
nagib@illinoistech.edu.

REFERENCES

BAARS, W.J. & MARUSIC, 1. 2020 Data-driven decomposition of the streamwise turbulence kinetic energy in
boundary layers. Part 2. Integrated energy and A;. J. Fluid Mech. 882, A26.

BAXERRES, V., VINUESA, R. & NAGIB, H. 2024 Evidence of quasiequilibrium in pressure-gradient turbulent
boundary layers. J. Fluid Mech. 987, R8.

CHAUHAN, K., MONKEWITZ, P. & NAGIB, H. 2009 Criteria for assessing experiments in zero pressure
gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.

CHAUHAN, K., PHILIP, J., DE SILVA, C.M., HUTCHINS, N. & MARUSIC, I. 2014 The turbulent/non-turbulent
interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119-151.

CHEN, X. & SREENIVASAN, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall
flows. J. Fluid Mech. 908, R3.

CHEN, X. & SREENIVASAN, K.R. 2022 Law of bounded dissipation and its consequences in turbulent wall
flows. J. Fluid Mech. 933, A20.

CHEN, X. & SREENIVASAN, K.R. 2023 Reynolds number asymptotics of wall-turbulence fluctuations. J. Fluid
Mech. 976, A21.

CHEN, X. & SREENIVASAN, K.R. 2024 Bounded asymptotics for high-order moments in wall turbulence.
arXiv: 2406.18711v1.

1016 A24-17


https://arxiv.org/abs/2406.18711v1
https://doi.org/10.1017/jfm.2025.10434

https://doi.org/10.1017/jfm.2025.10434 Published online by Cambridge University Press

H. Nagib and I. Marusic

DESHPANDE, R., MONTY, J.P. & MARUSIC, I. 2021 Active and inactive components of the streamwise
velocity in wall-bounded turbulence. J. Fluid Mech. 914, AS.

DIWAN, S.S. & MORRISON, J.F. 2021 Intermediate scaling and logarithmic invariance in turbulent pipe flow.
J. Fluid Mech. 913, R1.

HovAs S., VINUESA R., SCHMID P. & NAGIB H. 2024 Sensitivity study of resolution and convergence
requirements for the extended overlap region in wall-bounded turbulence. Phys. Rev. Lett. 9 (8), L082601.

HULTMARK, M., VALLIKIVI, M., BAILEY, S.C.C. & SMITS, A.J. 2012 Turbulent pipe flow at extreme
Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.

HWANG, Y., HUTCHINS, N. & MARUSIC, 1. 2022 The logarithmic variance of streamwise velocity and k-1
conundrum in wall turbulence. J. Fluid Mech. 933, A8.

KLEWICKI, J., FIFE, P. & WEI, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 71-93.

LEE, M. & MOSER, R. 2015 Direct numerical simulation of turbulent channel flow up to Re; = 5200. J. Fluid
Mech. 774, 395-415.

MARUSIC, 1., BAARS, W.J. & HUTCHINS, N. 2017 Scaling of the streamwise turbulence intensity in the
context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.

MARUSIC, 1., CHAUHAN, K., KULANDAIVELU, V. & HUTCHINS, N. 2015 Evolution of zero-pressure-
gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379-411.

MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010 Predictive model for wall-bounded turbulent flow. Science
329 (5988), 193-196.

MARUSIC, I. & MONTY, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1),
49-74.

MARUSIC, 1., MONTY, J.P.,, HULTMARK, M. & SMITS, A.J. 2013 On the logarithmic region in wall
turbulence. J. Fluid Mech. 716, R3.

MATHIS, R., MARUSIC, 1., CHERNYSHENKO, S.I. & HUTCHINS, N. 2013 Estimating wall-shear-stress
fluctuations given an outer region input. J. Fluid Mech. 715, 163-180.

MONKEWITZ, P. 2023 Reynolds number scaling and inner-outer overlap of stream-wise Reynolds stress in wall
turbulence. arXiv: 2307.00612v3.

MONKEWITZ, P.A. & NAGIB, H.M. 2023 The hunt for the Karman ‘constant’ revisited. J. Fluid Mech.
967, Al5.

NAGIB, H. 2025 Reconsiderations about inner layer of wall-bounded flows. arXiv: 2505.18718v1.

NAGIB, H., MONKEWITZ, P. & SREENIVASAN, K.R. 2023 Reynolds number required to accurately
discriminate between proposed trends of skin friction and normal stress in wall turbulence. arXiv:
2312.01184.

NAGIB H., VINUESA R. & HovAs S. 2024 Utilizing indicator functions with computational data to
confirm nature of overlap in normal turbulent stresses: logarithmic or quarter-power. Phys. Fluids 36 (7),
075145-367.

PIrROZZOLI, S. 2024 On the streamwise velocity variance in the near-wall region of turbulent flows. J. Fluid
Mech. 989, AS.

SAMIE, M., MARUSIC, 1., HUTCHINS, N., Fu, M.K., FAN, Y., HULTMARK, M. & SMITS, A.J. 2018 Fully
resolved measurements of turbulent boundary layer flows up to Re; =20 000. J. Fluid Mech. 851, 391-415.

SMITS, A.J., HULTMARK, M., LEE, M., PIROZZOLI, S. & WU, X. 2021 Reynolds stress scaling in the near-
wall region of wall-bounded flows. J. Fluid Mech. 926, A36.

1016 A24-18


https://arxiv.org/abs/2505.18718v1
https://arxiv.org/abs/2312.01184
https://doi.org/10.1017/jfm.2025.10434

	1. Introduction and data sets used
	2. Evaluating logarithmic and quarter-power relations
	3. Power-relation exponent, intermittency effects and comparison to DNS
	4. Projecting peak streamwise normal stress
	5. Ranges of validity for two models
	6. Conclusions
	References

