ON SOME SOLUTIONS OF SECOND ORDER HYPERBOLIC
DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
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1. If we seek solutions of the hyperbolic differential equation

2":————+k2u——=0 (k =0) | 1)

n 2
which depend only on the variables ¢ and r = [E x?] , we see that these solutions must
i=1

be even in r and satisfy the differential equation

(n (n—-1)ou, , u
—+k'u-—=0. 2
r Or " or @)
The object of this paper is to show that some recent results in the fractional calculus
can be used to prove the following theorem.

T [u(r, )] =

THEOREM. For odd values of n=3 and arbitrary functions ¢ with continuous
derivatives up to the order n — 1, the functions

1
u(r, t)= Tf,"':’)’ZU Jo{krv(1 = E®)}¢(t + &r) d&] 3)
-1
are solutions of the differential equation

T [u(r, )] =0. ) 4)

A corresponding result for the n-dimensional wave equation with rotational
symmetry (i.e. equation (2) with k = 0) is given in [1].

2. In what follows we shall make use of the generalized Erdélyi—-Kober operator of
fractional integration 3, (7, &) which is defined in [2] by

S, @)f(r) = 2K [ (2 - 2R V(P - D)) v, (9)

0

where r>0, >0, k=0 and J,_, 1s the Bessel function of the first kind.
A useful result connecting the above operator with the singular differential operator

L+

L
n= 8r r  or

(6)
is contained in the following lemma [2].
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Lemma. If @ >0, f(r) e C¥0, b) for some b >0, r*"*'f(r) is integrable at the origin
and r*"™'f'(r) > 0 as r —> 0+, then

Se(n, )Lyf(r) = (Ly+a + K)Se(n, ) (r). ™)
3. Adopting the notation of (6) we see that the one-dimensional wave equation
*w
L_1/2W - ? = O (8)
with the conditions
3
W(O, t) = 2¢(t): 5 W(O, t) =0 (9)
has the solution
w(r, t)=¢@+r)+ ¢(t—r), (10)

for arbitrary differentiable functions ¢.
We now introduce the function

wa(r, 1) = r(g(‘*)z)

and apply the operator [['(3))™'T'(& + ) (—3, @) to equations (8), (9) and (10). In this
way, on using the result (7) of the lemma, we find that the solution of the differential
equation

Sk(=2, a)w(r, 1) (¢>0) (11)

Bl D120 (&>0) 1)
with the conditions
w0.0=200), = w(0,0=0 (13)
is given by
e, =S 8-, @lot-+n) +0-1)
ey [ g @ mas a9

where p = krV(1 - §%).
With the above results we can write

7;l[ww(rr t)] = Ea+1[Wa(r, t)] + (n—_z-a/—_—l)agr W,
1 (15)
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and from equations (14) and (15) we find that

J@+d)(n—2a0-1)
r@)

+ (k)= [ 8= B, ()6 (0 + ) . (16)

T,[wa(r, )] =2 {~k(gry== [ a-2u 0+ g ae

On performing an integration by parts on the last integral in the above equation we
get

r 2 20— ' 2yar2 " 2
({‘f(; ) o 2 1= o0+ &) - Ko+ 8] e

17)

Tu[wa(r, )] =27

and with the aid of this result we can now prove the theorem.

4. Proof of the theorem. When o =1 the solution of equations (12) and (13) is
given by

min 0= [ oot + ) de, (19)

where p = krV/(1 - &2).
Using the result (17) we have

Lot 0 =2 [ G-I+ 8- Ko+ EldE (19

and repeated applications of the formula (17) yield the expression

n=3)(n-5)...(n—2m-—
(kr)”

T7m(r 0] = D[ -t ds @)

when n=2m +1,
Out-+8)= 3 (177 9@+ ) e

and ¢ is any function with continuous derivatives up to order 2m.
In this way we find that, for odd values of n =3,

TE= 20w (r, )] = T TS mr, 6)]) =0 (22)

and this proves the theorem.
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5. In order to construct a simple example we take ¢(¢) = ¢’ and in this case we see
that equation (18) gives

wl(r, t) = fl Jo{kr\/(l _ Ez)}eip(ﬁsr) d&

1
=2e# f Jo{krV(1 — E%)}cos(EBr) d&
0
= geinSiN@). (23)
ar
where a = V(8% + k?) and the integral has been evaluated by a result given in [3].

Using the theorem we have that, for odd values of n =3, the functions

Vu(r, ) =TL~»7 [Ze‘ﬂ' %] (24)
r

satisfy the differential equation
T.[v.(r, )] =0. (25)

As two special cases it can easily be shown that when n =5,

3

vs(r, ) = 4eiﬂ¢[9&2‘l")_ a Sir;(rar)]

and when n =7,

e[ 3sin(ar) 3cos(ar) asin(ar)
vilr, 1) = 16e &[ arr P ]’

which are even functions of the variable r.
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