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1. Introduction. In a recent series of papers [3, 4, 5],
H. Zassenhaus considered the structure of those linear trans-
formations T on real 4- sgace R.4, into itself that preserve
the quadratic form f(x) = x] + XZ - x3 - xﬁ . That is,

(1.1) f(T(x)) = {(x) for all x ¢ Ry4.

Define a function ¢ on R4 to the space M) of 2-square matrices
over the complex numbers as follows:
X+ ixp %3+ ixy
" (1.2) ?(X) = ¢(X1,X2,X3,X4) = ( }'
x3 - ixg %) - ix,

Let G, be the vector space of matrices generated by all real
linear combinations of

1 0 i 0 0 1 0 i
glz ( , gZ: N g3: 5 g4= ( ).
\0 1 0 -i 1 0 -i 0

It is easy to check that (i) G, is an algebra over the real num-
bers; (ii) ¢ is an isomorphism of R4 onto the additive group of
Gp over the reals; (iii) d( ¢ (%)) = {(x) for each x € R4, where
d denotes determinant. It is also simple to verify that

(1.3) G, = {A| A* = PA'P]

b The work of this author was supported by U.S. National
Science Foundation Grant, NSFG5416.

2 , .
) The work of this author was completed under a National

Research Council of Canada Post-doctorate Fellowship.

Can. Math. Bull. vol. 3, no. 2, May 1960

143

https://doi.org/10.4153/CMB-1960-017-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-017-4

where A% is the conjugaté transpose of A, A' is the transpose

of Aand P = g3. Let §1, denote the set of T satisfying (1.1).
In view of (iii) it is clear that the structure of &1, will be
completely known if we determine the structure of those S which
are linear mappings of G into G, such that d(S(A)) = d(A)
for all A € C‘Z' In other words, if we denote this class of S

by I,then Sl,= ¢, ¢,

We are thus led for general n to defirﬁng a class Gp in
the space Mp of n-square matrices over the complex numbers

by

(1.4) Gn = {Alax= PA'P}

where P 1is the n-square matrix with 1 in positions n - j,
j+1,j=0,..., n-1and 0 elsewhere. We define [ , to be
the set of all linear transformations on G, to Gp satisfying
(1.5) d(S(A)) = d(A) for all A e G .

2. Results. Our main result is contained in the following

THEOREM. S ¢ [, if and only if there exist U and V
in Gp such that either

(2.1) S(A) = UAV for all A ¢ Gp,
or
(2.2) S(A) = UA'V for all A e Gp

where d(UV) =1,
Consider the set of matrices £
(2.3) Egt + Enos+l,n-t+1» i(Egt - En_s+1,n-t+1)s l<s<tsn

Ege * En-s+1,n-s+1' (Egg - En—s+1,n-s+1)’ l<s<k!

where k! = kif n = 2k and k' = k+1 if n = 2k + 1. It is simple to
verify that the elements of £ are linearly independent over
the complex numbers. Now-let A ¢ Gy. Then, from (1.4),

A% = PA'P,
3st ¥ 2n-s+1,n-t+lr  S:t=lie..,m,
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and we check easily that A is in the linear closure of & over
the reals.

Since €& generates M, over the complex numbers as well,
S may be extended linearly to a linear map of M, into itself.
We denote the extended map by S also.

We next observe that
(2.4) d(S(X)) = d(X)

for all X ¢ Mp. To see this, let z)  z,, be indeterminates
over the complex numbers, and let ey,...,e 2 be the elements
of & arranged in some order. Define the polynomial p by

2 n?
Plz]seeeszga) =d( ) 21:1 z,S(ey)) - d( ) R

Since G, is generated over the reals by £ and moreover
d(S(A)) = d(A) for all A € Gp, we conclude that p is identically
zero for all real values of zy,...,z,2. Hence p is identically
zero for all complex values of Zjses+s2n2. However, Mp is

the linear closure of & over the complex numbers and (2.4)
follows.

Proceeding to the proof of the theorem we use a result
in [1] or [2] that states that if T is any linear transforma-
tion on My to Mp suchthat 4d(T(X)) = d(X) for all X e Mp
then T(X) = UXV or T(X) = UX'V where d(UV) = 1. Actually,
Dieudonné [1] shows that if T is assumed to be non-singular
as well this result follows, But the non-singularity of T is a
consequence of the fact that T is linear and preserves all
determinants as shown in [2] . The theorem then follows from
the

LEMMA. IfUAV € G forall A e Gy and U and V
are non-singular, then non-singular U; and V] may be
chosen in Gp such that
(2.5) , UXV = U XV forall X ¢ M, .

A similar statement holds if UA'V € Gj for all A € Gy .

Proof. We have that

(UAV)* = P(UAV)'P for all A € G
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and hence
(viy-lpvx axuspun-l = A',
(2.6) ~ [(vh-lpveplar [PU*P(UN-] = A

for all A € G,. Since A e G if and only if A' € G, we con-
clude from (2.6) that CAD = A for all A ¢ Gp, C=(V")-1PV*P,
D = PU*P(U')-1. It follows that CXD = X for all X ¢ My and
thus C= XI, D= A.‘ll, where 1 is the n-square identity
matrix.

Thus
(2.7 v#= APV'P, Ux= i-lpup.
From (2.7) and the fact that V is non-singular, we have
A =d(V)/d(V) and thus A=¢el®, 0 <0 <27 . Now choose a
complex number w such that |w} =1 and &/w = e~i0 and

set V] = wV, Uy = SU. Then UAV = |w! “2UjAV] = UJAV,
and moreover
V= gVs = o/w el PV{P = PV|P,

U

Lk N 3

= wU%= /& e-ib PU\P = PU{P
and the proof of the lemma is complete.

We remark that the transformation S(A) = UAV has the
matrix representation U ® V' with respect to the doubly
lexicographically ordered basis E;; in My, and the matrix
representation of ¢ (A) = A' with respect to this ordered basis
is the n2-square matrix @1 whose (i, j) n-square block is
Eji fori, j=1,...,n., Here ® indicates Kronecker product,

Hence we have

COROLLARY 1. If S e [, thenthere exists a basis
of My such that the matrix representation of S is either

U®YV
or
(U®V)°'1

where U and V arein Gg-
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COROLLARY 2. If S e [, thenthere exists a basis
of M, such that the matrix representation of S with respect
to this basis is in Gp2.

Proof. From corollary 1 it suffices to show that if U
and V arein Gpthen U ®V ¢ Gpz and o) ¢ G, (since G,
is closed under multiplication). We note first that the nZ-square
matrix Q with 1 in the position n2 - j, j+ 1, j = 0,...,n% -1
and O elsewhere is given by

Q=P ® P.
Then

(U ® V)*

U* ® V¥ = (PU'P) ® (PV'P)

(P® P)(U'® V')(P ® P)

QU ® V)'Q,

and hence (U ® V) € Gpz2. Now o ¢ Gp, if it commutes
with Q. To see this without multiplying matrices simply note
that Q is the matrix representation with respect to the Ejj
basis of the transformation R defined by

R(A) = PAP.

Then, since ¢; is the matrix representation of o with respect
to the same basis, it suffices to show that Rae = ¢« R. But

Ro(A) = PA'P = (PAP)' = ¢R(A),

and the proof is complete,
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