Marvin Marcus¹⁾ and Nisar A. Khan²⁾

(received January 18, 1960)

1. <u>Introduction</u>. In a recent series of papers [3, 4, 5], H. Zassenhaus considered the structure of those linear transformations T on real 4-space, R4, into itself that preserve the quadratic form $f(x) = x_1^2 + x_2^2 - x_3^2 - x_4^2$. That is,

(1.1)
$$f(T(x)) = f(x) \text{ for all } x \in \mathbb{R}_4.$$

Define a function ϕ on R_4 to the space M_2 of 2-square matrices over the complex numbers as follows:

(1.2)
$$\phi(\mathbf{x}) = \phi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \begin{pmatrix} \mathbf{x}_1 + \mathbf{i}\mathbf{x}_2 & \mathbf{x}_3 + \mathbf{i}\mathbf{x}_4 \\ \mathbf{x}_3 - \mathbf{i}\mathbf{x}_4 & \mathbf{x}_1 - \mathbf{i}\mathbf{x}_2 \end{pmatrix}$$

Let G_2 be the vector space of matrices generated by all <u>real</u> linear combinations of

$$g_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad g_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad g_4 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}.$$

It is easy to check that (i) G_2 is an algebra over the real numbers; (ii) ϕ is an isomorphism of R_4 onto the additive group of G_2 over the reals; (iii) $d(\phi(x)) = f(x)$ for each $x \in R_4$, where d denotes determinant. It is also simple to verify that

(1.3)
$$G_2 = \{A | A^* = PA^*P\}$$

 The work of this author was supported by U.S. National Science Foundation Grant, NSFG5416.

 The work of this author was completed under a National Research Council of Canada Post-doctorate Fellowship.

Can. Math. Bull. vol. 3, no. 2, May 1960

143

where A* is the conjugate transpose of A, A' is the transpose of A and P = g₃. Let \Re_2 denote the set of T satisfying (1.1). In view of (iii) it is clear that the structure of \Re_2 will be completely known if we determine the structure of those S which are linear mappings of G₂ into G₂ such that d(S(A)) = d(A)for all A ϵ G₂. In other words, if we denote this class of S by Γ_2 then $\Re_2 = \phi \Gamma_2 \phi^{-1}$.

We are thus led for general n to defining a class G_n in the space M_n of n-square matrices over the complex numbers by

(1.4)
$$G_n = \{A | A^* = PA'P\}$$

where P is the n-square matrix with 1 in positions n - j, j + 1, j = 0, ..., n - 1 and 0 elsewhere. We define Γ_n to be the set of all linear transformations on G_n to G_n satisfying

(1.5)
$$d(S(A)) = d(A)$$
 for all $A \in G_n$.

2. <u>Results</u>. Our main result is contained in the following

THEOREM. S \in ${\it \Gamma}$ $_n$ if and only if there exist U and V in G_n such that either

(2.1) $S(A) = UAV \text{ for all } A \in G_n$ or (2.2) $S(A) = UA'V \text{ for all } A \in G_n$

where d(UV) = 1.

Consider the set of matrices \mathcal{E}

$$(2.3) E_{st} + E_{n-s+1,n-t+1}, i(E_{st} - E_{n-s+1,n-t+1}), 1 \le s \le t \le n$$
$$E_{ss} + E_{n-s+1,n-s+1}, i(E_{ss} - E_{n-s+1,n-s+1}), 1 \le s \le k'$$

where k' = k if n = 2k and k' = k+1 if n = 2k + 1. It is simple to verify that the elements of \mathcal{E} are linearly independent over the complex numbers. Now let A ϵ G_n. Then, from (1.4),

$$A^* = PA'P,$$

$$\bar{a}_{st} = a_{n-s+1,n-t+1}, \quad s,t = 1,...,n$$

and we check easily that A is in the linear closure of $\mathcal E$ over the reals.

Since \mathcal{E} generates M_n over the complex numbers as well, S may be extended linearly to a linear map of M_n into itself. We denote the extended map by S also.

We next observe that

(2.4)
$$d(S(X)) = d(X)$$

for all $X \in M_n$. To see this, let z_1, \ldots, z_{n^2} be indeterminates over the complex numbers, and let e_1, \ldots, e_{n^2} be the elements of \mathcal{E} arranged in some order. Define the polynomial p by

$$p(z_1,...,z_{n^2}) = d(\sum_{t=1}^{n^2} z_t S(e_t)) - d(\sum_{t=1}^{n^2} z_t e_t)$$

Since G_n is generated over the reals by \mathcal{E} and moreover d(S(A)) = d(A) for all $A \in G_n$, we conclude that p is identically zero for all real values of z_1, \ldots, z_{n^2} . Hence p is identically zero for all complex values of z_1, \ldots, z_{n^2} . However, M_n is the linear closure of \mathcal{E} over the complex numbers and (2.4) follows.

Proceeding to the proof of the theorem we use a result in [1] or [2] that states that if T is any linear transformation on M_n to M_n such that d(T(X)) = d(X) for all $X \in M_n$ then T(X) = UXV or T(X) = UX'V where d(UV) = 1. Actually, Dieudonné [1] shows that if T is assumed to be non-singular as well this result follows. But the non-singularity of T is a consequence of the fact that T is linear and preserves all determinants as shown in [2]. The theorem then follows from the

LEMMA. If UAV ϵ G_n for all A ϵ G_n and U and V are non-singular, then non-singular U₁ and V₁ may be chosen in G_n such that

(2.5)
$$UXV = U_1XV_1 \text{ for all } X \in M_n$$
.

A similar statement holds if UA'V ϵ G_n for all A ϵ G_n.

Proof. We have that

$$(UAV)* = P(UAV)'P$$
 for all A ϵ G_n

$$(V')^{-1}PV*A*U*P(U')^{-1} = A'$$
,

(2.6)
$$[(V')^{-1}PV*P] A' [PU*P(U')^{-1}] = A'$$

for all A ϵ G_n. Since A ϵ G_n if and only if A' ϵ G_n, we conclude from (2.6) that CAD = A for all A ϵ G_n, C = (V')⁻¹PV*P, D = PU*P(U')⁻¹. It follows that CXD = X for all X ϵ M_n and thus C = λ I, D = λ^{-1} I, where I is the n-square identity matrix.

Thus

(2.7)
$$V^* = \lambda P V'P, \quad U^* = \lambda^{-1} P U'P.$$

From (2.7) and the fact that V is non-singular, we have $\lambda = \overline{d(V)}/d(V)$ and thus $\lambda = e^{i\theta}$, $0 \le \theta < 2\pi$. Now choose a complex number ω such that $|\omega| = 1$ and $\overline{\omega}/\omega = e^{-i\theta}$ and set $V_1 = \omega V$, $U_1 = \overline{\omega} U$. Then $UAV = |\omega|^{-2} U_1 A V_1 = U_1 A V_1$ and moreover

$$V_{1}^{*} = \overline{\omega} V^{*} = \overline{\omega} / \omega e^{i\theta} PV_{1}'P = PV_{1}'P,$$
$$U_{1}^{*} = \omega U^{*} = \omega / \overline{\omega} e^{-i\theta} PU_{1}'P = PU_{1}'P$$

and the proof of the lemma is complete.

We remark that the transformation S(A) = UAV has the matrix representation $U \otimes V'$ with respect to the doubly lexicographically ordered basis E_{ij} in M_n , and the matrix representation of $\sigma(A) = A'$ with respect to this ordered basis is the n^2 -square matrix σ_1 whose (i, j) n-square block is E_{ji} for i, $j = 1, \ldots, n$. Here \otimes indicates Kronecker product.

Hence we have

COROLLARY 1. If S $\epsilon \sqcap_n$ then there exists a basis of M_n such that the matrix representation of S is either

U 🛛 V

or

$$(U \otimes V) \sigma_1$$

where U and V are in G_n .

COROLLARY 2. If S $\epsilon \sqcap_n$ then there exists a basis of M_n such that the matrix representation of S with respect to this basis is in $G_n 2$.

Proof. From corollary 1 it suffices to show that if U and V are in G_n then $U \otimes V \in G_{n^2}$ and $\sigma_1 \in G_{n^2}$ (since G_{n^2} is closed under multiplication). We note first that the n²-square matrix Q with 1 in the position n² - j, j + 1, j = 0,...,n² - 1 and 0 elsewhere is given by

$$Q = P \otimes P$$
.

Then

 $(U \otimes V)^* = U^* \otimes V^* = (PU'P) \otimes (PV'P)$ $= (P \otimes P)(U' \otimes V')(P \otimes P)$ $= Q(U \otimes V)'Q,$

and hence (U \otimes V) \in G_{n²}. Now $\sigma_1 \in$ G_{n²} if it commutes with Q. To see this without multiplying matrices simply note that Q is the matrix representation with respect to the E_{ij} basis of the transformation R defined by

$$R(A) = PAP.$$

Then, since σ_1 is the matrix representation of σ with respect to the same basis, it suffices to show that $R\sigma = \sigma R$. But

$$R \sigma(A) = PA'P = (PAP)' = \sigma R(A),$$

and the proof is complete.

REFERENCES

- J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math. 1 (1949), 282-287.
- 2. M. Marcus and B.N. Moyls, Linear transformations on algebras of matrices I, Canad. J. Math. 11 (1959), 61-66.
- 3. H.J. Zassenhaus, On a normal form of the orthogonal transformation I, Canad. Math. Bull. 1 (1958), 31-39.

147

- 4. On a normal form of the orthogonal transformation II, Canad. Math. Bull. 1 (1958), 101-111.
- 5. On a normal form of the orthogonal transformation III, Canad. Math. Bull. 1 (1958), 183-191.

The University of British Columbia

Muslim University, Aligarh, India