
TPLP 24 (1): 157–192, 2024. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068423000376 First published online 14 December 2023

157

Human Conditional Reasoning in Answer Set
Programming

CHIAKI SAKAMA
Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan

(e-mail: sakama@wakayama-u.ac.jp)

submitted 16 December 2022; revised 31 July 2023; accepted 9 November 2023

Abstract

Given a conditional sentence “ϕ⇒ ψ” (if ϕ then ψ) and respective facts, four different types of
inferences are observed in human reasoning: Affirming the antecedent (AA) (or modus ponens)
reasons ψ from ϕ; affirming the consequent (AC) reasons ϕ from ψ; denying the antecedent (DA)
reasons ¬ψ from ¬ϕ; and denying the consequent (DC) (or modus tollens) reasons ¬ϕ from ¬ψ.
Among them, AA and DC are logically valid, while AC and DA are logically invalid and often
called logical fallacies. Nevertheless, humans often perform AC or DA as pragmatic inference in
daily life. In this paper, we realize AC, DA and DC inferences in answer set programming. Eight
different types of completion are introduced, and their semantics are given by answer sets. We
investigate formal properties and characterize human reasoning tasks in cognitive psychology.
Those completions are also applied to commonsense reasoning in AI.

KEYWORDS: answer set programming, completion, human conditional reasoning, pragmatic
inference

1 Introduction

People use conditional sentences and reason with them in everyday life. From an early

stage of artificial intelligence (AI), researchers represent conditional sentences as if-then

rules and perform deductive inference using them. Production systems or logic program-

ming are examples of this type of systems. However, human conditional reasoning is not

always logically valid. In psychology and cognitive science, it is well known that humans

are more likely to perform logically invalid but pragmatic inference. For instance, consider

the following three sentences:

S: If the team wins the first round tournament, then it advances to the final round.

P : The team wins the first round tournament.

C: The team advances to the final round.

Given the conditional sentence S and the premise P , affirming the antecedent (AA) (or

modus ponens) concludes the consequence C. Given S and the negation of the conse-

quence ¬C, denying the consequent (DC) (or modus tollens) concludes the negation of

the premise ¬P . AA and DC are logically valid. On the other hand, people often infer P

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068423000376
https://orcid.org/0000-0002-9966-3722
mailto:sakama@wakayama-u.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000376&domain=pdf
https://doi.org/10.1017/S1471068423000376

158 C. Sakama

from S and C or infer ¬C from S and ¬P . The former is called affirming the consequent

(AC), and the latter is called denying the antecedent (DA). Both AC and DA are logically

invalid and often called logical fallacies.

In the pragmatics of conditional reasoning, it is assumed that a conditional sentence

is often interpreted as bi-conditional, that is, “if ” is interpreted as “if and only if ,” and

such conditional perfection produces AC or DA as invited inference (Geis and Zwicky

1971; Horn 2000). Psychological studies empirically show that a conditional sentence

“p if q” is rephrased into the form “p only if q” with greater frequency for permis-

sion/obligation statements (Cheng and Holyoak 1985; Byrne 2005). For instance, the

sentence “a customer can drink an alcoholic beverage if he is over 18” is rephrased into

“a customer can drink an alcoholic beverage only if he is over 18.” It is also reported that

AA is easier than DC when a conditional is given as “if p then q.” When a conditional

is given as “p only if q,” on the other hand, it is rephrased as “if not q then not p” and

this paraphrase yields a directionality opposite which makes DC easier than AA (Braine

1978). The fact that people do not necessarily make inferences as in standard logic brings

several proposals of new interpretation of conditional sentences in cognitive psychology.

Mental logic (Braine and O’Brien 1998) interprets “if ’ ’ as conveying supposition and

introduces a set of pragmatic inference schemas for if-conditionals. Mental model theory

(Johnson-Laird 1983), on the other hand, considers that the meanings of conditionals

are not truth-functional, and represents the meaning of a conditional sentence by mod-

els of the possibilities compatible with the sentence. A probabilistic approach interprets

a conditional sentence “p ⇒ q” in terms of conditional probability P (q | p), then the

acceptance rates of four conditional inferences are represented by their respective condi-

tional probabilities (Oaksford and Chater 2001). Eichhorn et al. (2018) use conditional

logic and define inference patterns as combination of four inference rules (AA, DC, AC,

DA). Given a conditional sentence “if p then q,” four possible worlds (combination of

truth values of p and q) are considered. An inference in each pattern is then defined by

imposing corresponding constraints on the plausibility relation over the worlds.

In this way, the need of considering the pragmatics of conditional reasoning has been

widely recognized in psychology and cognitive science. On the other hand, relatively

little attention has been paid for realizing such pragmatic inference in computational

logic or logic programming (Stenning and Lambalgen 2008; Kowalski 2011). From a

practical perspective, however, people would expect AI to reason like humans, that is,

one would expect AI to conclude P from S and C, or ¬C from S and ¬P in the

introductory example, rather than conclude unknown. Logic programming is a context-

independent language and has a general-purpose inference mechanism by its nature. By

contrast, pragmatic inference is governed by context-sensitive mechanisms, rather than

context-free and general-purpose mechanisms (Cheng and Holyoak 1985; Cosmides and

Tooby 1992). As argued by Dietz et al. (2012), computational approaches to explain

human reasoning should be cognitively adequate, that is, they appropriately represent

human knowledge (conceptually adequate) and computations behave similarly to human

reasoning (inferentially adequate). Then if we use logic programming for representing

knowledge in daily life, it is useful to have a mechanism of automatic transformation

of a knowledge base to simulate human reasoning depending on the context in which

conditional sentences are used. That is, transform a program to a conceptually adequate

form in order to make computation in the program inferentially adequate.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 159

In this paper, we realize human conditional reasoning in answer set programming

(ASP) (Gelfond and Lifschitz 1991). ASP is one of the most popular frameworks that real-

ize declarative knowledge representation and commonsense reasoning. ASP is a language

of logic programming and conditional sentences are represented by rules in a program.

Inference in ASP is deduction based on default logic (Reiter 1980), while modus tol-

lens or DC is not considered in ASP. AC and DA are partly realized by abductive logic

programming (Kakas et al. 1992) and program completion (Clark 1978), respectively.

As will be argued in this paper, however, AC and DA produce different results from

them in general. We realize pragmatic AC and DA inferences as well as DC inference

in ASP in a uniform and modular way. We introduce the notions of AC completion,

DC completion, DA completion, and their variants. We investigate formal properties of

those completions and characterize human reasoning tasks in cognitive psychology. We

also address applications to commonsense reasoning in AI. The rest of this paper is or-

ganized as follows. Section 2 reviews basic notions of ASP programs considered in this

paper. Section 3 introduces different types of completions for human conditional reason-

ing, and Section 4 presents their variants as default reasoning. Section 5 characterizes

human reasoning tasks in the literature, and Section 6 addresses applications to com-

monsense reasoning. Section 7 discusses related works and Section 8 summarizes the

paper.

2 Preliminaries

In this paper, we consider logic programs with disjunction, default negation, and explicit

negation. A general extended disjunctive program (GEDP) (Lifschitz and Woo 1992; Inoue

and Sakama 1998) Π is a set of rules of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (1)

where Li’s (1 ≤ i ≤ n) are (positive or negative) literals and 0 ≤ k ≤ l ≤ m ≤
n. A program might contain two types of negation: default negation (or negation as

failure) not and explicit negation ¬. For any literal L, notL is called an NAF-literal

and define ¬¬L = L. We often use the letter � to mean either a literal L or an NAF-

literal notL. The left of “←” is a disjunction of literals and NAF-literals (called head),

and the right of “←” is a conjunction of literals and NAF-literals (called body). Given

a rule r of the form (1), define head+(r) = {L1, . . . , Lk}, head−(r) = {Lk+1, . . . , Ll},
body+(r) = {Ll+1, . . . , Lm}, and body−(r) = {Lm+1, . . . , Ln}. A rule (1) is called a fact

if body+(r) = body−(r) = ∅, and it is called a constraint if head+(r) = head−(r) = ∅.

A GEDP Π is called not-free if head−(r) = body−(r) = ∅ for each rule r in Π.

A GEDP Π coincides with an extended disjunctive program (EDP) of Gelfond and

Lifschitz (1991) if head−(r) = ∅ for any rule r in Π. An EDP Π is called (i) an extended

logic program (ELP) if |head+(r)| ≤ 1 for any r ∈ Π and (ii) a normal disjunctive program

(NDP) if Π contains no negative literal. An NDP Π is called (i) a positive disjunctive

program (PDP) if Π contains no NAF-literal and (ii) a normal logic program (NLP) if

|head+(r)| ≤ 1 for any r ∈ Π. In this paper, we consider ground programs containing no

variable and a program means a (ground) GEDP unless stated otherwise.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

160 C. Sakama

Let Lit be the set of all ground literals in the language of a program. A set of ground

literals S ⊆ Lit satisfies a ground rule r of the form (1) iff body+(r) ⊆ S and body−(r)∩
S = ∅ imply either head+(r)∩S �= ∅ or head−(r) �⊆ S. In particular, when head+(r) =

head−(r) = ∅, S ⊆ Lit satisfies a constraint r iff body+(r) �⊆ S or body−(r)∩S �= ∅. The

answer sets of a GEDP are defined by the following two steps. First, let Π be a not-free

GEDP and S ⊆ Lit. Then, S is an answer set of Π iff S is a minimal set satisfying the

conditions: (i) S satisfies every rule from Π, that is, for each ground rule:

L1 ; · · · ; Lk ← Ll+1, . . . , Lm (2)

from Π, {Ll+1, . . . , Lm} ⊆ S implies {L1, . . . , Lk} ∩ S �= ∅. (ii) If S contains a pair of

complementary literals L and ¬L, then S = Lit.1

Second, let Π be any GEDP and S ⊆ Lit. The reduct ΠS of Π by S is a not-free EDP

obtained as follows: a rule rS of the form (2) is in ΠS iff there is a ground rule r of the

form (1) from Π such that head−(r) ⊆ S and body−(r) ∩ S = ∅. For programs of the

form ΠS , their answer sets have already been defined. Then, S is an answer set of Π iff

S is an answer set of ΠS .

When a program Π is an EDP, the above definition of answer sets coincides with that

given by Gelfond and Lifschitz (1991). It is shown that every answer set of a GEDP Π

satisfies every rule from Π (Inoue and Sakama 1998). An answer set is consistent if it

is not Lit. A program Π is consistent if it has a consistent answer set; otherwise, Π is

inconsistent. When a program Π is inconsistent, there are two different cases. If Π has

the single answer set Lit, Π is called contradictory ; else if Π has no answer set, Π is called

incoherent . The difference of two cases is illustrated by the following example.

Example 2.1

The program Π1 = { p← not q, ¬p←} is incoherent, while Π2 = { p← q, q ←, ¬p←}
is contradictory. Note that Lit is not the answer set of Π1 because Lit is not the answer

set of ΠLit
1 = {¬p←}.

We write Π |=c L (resp. Π |=s L) if a literal L is included in some (resp. every)

consistent answer set of Π.2 Two programs Π1 and Π2 are equivalent if they have the

same set of answer sets. Two programs Π1 and Π2 are strongly equivalent if Π1 ∪ Π

and Π2 ∪ Π are equivalent for any program Π (Lifschitz et al. 2001). In particular, two

rules r1 and r2 are strongly equivalent if Π ∪ {r1} and Π ∪ {r2} are equivalent for any

program Π.

An answer set of a GEDP is not always minimal, that is, a program Π may have two

answer sets S and T such that S ⊂ T . This is in contrast with the case of EDPs where

every answer set is minimal.

Example 2.2

Let Π be the program:

p ; not q ←,
q ; not p← .

Then, Π has two answer sets ∅ and {p, q}.

1 By this definition, an answer set is not paraconsistent , that is, {L,¬L} ⊆ S makes S a trivial set Lit.
A paraconsistent semantics of EDPs is given by Sakama and Inoue (1995).

2 |=c (resp. |=s) means entailment under credulous (resp. skeptical) reasoning.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 161

By definition, a contradictory GEDP has exactly one answer set Lit, while a consistent

GEDP may have the answer set Lit.

Example 2.3

Let Π be the program:

p ; not p←,
¬ p← p.

Then Π has two answer sets ∅ and Lit.

In EDPs, on the other hand, no consistent program has the answer set Lit, and every

contradictory program has exactly one answer set Lit (Gelfond and Lifschitz 1991).

Suppose a rule r such that head+(r) = ∅:

notLk+1 ; · · · ; notLl ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln. (3)

Define a rule η(r) of the form:

← Lk+1, . . . , Ll, Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (4)

that is obtained by shifting “notLk+1 ; · · · ; notLl” in head−(r) to “Lk+1, . . . , Ll” in

body+(η(r)). The two rules (3) and (4) are strongly equivalent under the answer set

semantics.

Proposition 2.1 (Inoue and Sakama 1998)

Let Π be a program and Φ = { r | r ∈ Π and head+(r) = ∅}. Also let Π′ = (Π \ Φ) ∪
{ η(r) | r ∈ Φ }. Then Π and Π′ have the same answer sets.

Proposition 2.2

Let Π be a program and Ψ = { r | r ∈ Π, head+(r) = ∅ and head−(r) ∩ body−(r) �= ∅}.
Then, Π and Π \Ψ have the same answer sets.

Proof

By Proposition 2.1, every rule (3) in Π is transformed to a strongly equivalent con-

straint (4). When head−(r) ∩ body−(r) �= ∅ for some r ∈ Φ, {Lk+1, . . . , Ll} ∩
{Lm+1, . . . , Ln} �= ∅ in η(r) of the form (4). Then, {Lk+1, . . . , Ll} ⊆ S implies

{Lm+1, . . . , Ln}∩S �= ∅ for any set S, and the constraint η(r) is satisfied by any answer

set. Hence, Ψ is removed from Π and the result follows.

Example 2.4

For any program Π,

Π ∪ {not p ← q, not p }
is equivalent to the following program (Proposition 2.1):

Π ∪ {← p, q, not p },
which is further simplified to Π (Proposition 2.2).

Proposition 2.3

Let Π be a not-free GEDP. If there is a constraint in Π, then Π is not contradictory.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

162 C. Sakama

Proof

If there is a constraint “← L1, . . . , Lm” in Π, it is included in ΠLit. Since Lit does

not satisfy the constraint, it does not become the answer set of ΠLit. Hence, Π is not

contradictory.

3 Human conditional reasoning in ASP

ASP computes answer sets by deduction that is reasoning by AA. In this section, we

present methods for reasoning by AC, DC, and DA in ASP.

3.1 AC completion

We first introduce a framework for reasoning by affirming the consequent (AC) in ASP.

In GEDPs, a conditional sentence “ϕ ⇒ ψ” (if ϕ then ψ) is represented by the rule

“ψ ← ϕ” where ψ is a disjunction “L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl” and ϕ is a

conjunction “Ll+1, . . . , Lm, not Lm+1, . . . , not Ln”. To realize reasoning backward from

ψ to ϕ, we extend a program Π by introducing new rules.

Definition 3.1 (AC completion)

Let Π be a program and r ∈ Π a rule of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln.

1. For each disjunct in head+(r) and head−(r), converse the implication:

Ll+1, . . . , Lm, not Lm+1, . . . , not Ln ← Lj (1 ≤ j ≤ k), (5)

Ll+1, . . . , Lm, not Lm+1, . . . , not Ln ← notLj (k + 1 ≤ j ≤ l). (6)

In (5) and (6), the conjunction “Ll+1, . . . , Lm, not Lm+1, . . . , not Ln” appears on the

left of “←”. The produced (5) (resp. (6)) is considered an abbreviation of the collection

of (n − l) rules: (Ll+1 ← Lj), . . . , (notLn ← Lj) (resp. (Ll+1 ← notLj), . . . , (notLn ←
notLj))

3, hence we abuse the term “rule” and call (5) or (6) a rule. In particular, (5) is

not produced if head+(r) = ∅ or body+(r) = body−(r) = ∅, and (6) is not produced if

head−(r) = ∅ or body+(r) = body−(r) = ∅. The set of all rules (5) and (6) is denoted

as conv(r).

2. Define

ac(Π) = { Σ1 ; · · · ; Σp ← �j |
Σi ← �j (1 ≤ i ≤ p) is in

⋃

r∈Π

conv(r) }

where each Σi (1 ≤ i ≤ p) is a conjunction of literals and NAF-literals, and �j is either

a literal Lj (1 ≤ j ≤ k) or an NAF-literal notLj (k + 1 ≤ j ≤ l).
3. The AC completion of Π is defined as:

AC(Π) = Π ∪ ac(Π).

3 We often use the parenthesis “()” to improve the readability.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 163

(5) and (6) in conv(r) represent converse implications from the disjunction in the head of

r to the conjunction in the body of r. ac(Π) collects rules “Σi ← �j” (1 ≤ i ≤ p) having

the same (NAF-)literal �j on the right of “←”, and constructs “Σ1 ; · · · ; Σp ← �j ,”

which we call an extended rule. Introducing ac(Π) to Π realizes reasoning by AC in Π.

The set ac(Π) contains an extended rule having a disjunction of conjunctions in its

head, while it is transformed to rules of a GEDP. That is, the extended rule:

(�11, . . . , �
1
m1

) ; · · · ; (�p1, . . . , �
p
mp

)← �j

is identified with the set of (m1 × · · · ×mp) rules of the form:

�1i1 ; · · · ; �pip ← �j (1 ≤ ik ≤ mk; 1 ≤ k ≤ p).
By this fact, AC(Π) is viewed as a GEDP and we do not distinguish extended rules and

rules of a GEDP hereafter. The semantics of AC(Π) is defined by its answer sets.

Example 3.1

Let Π be the program:

p ; not q ← r, not s,

p← q.

Then, ac(Π) becomes

(r, not s) ; q ← p,

r, not s← not q

where the first rule “(r, not s) ; q ← p” is identified with

r ; q ← p,

not s ; q ← p,

and the second rule “r, not s← not q” is identified with

r ← not q,

not s← not q.

Then, AC(Π) ∪ {p←} has two answer sets {p, q} and {p, r}.
By definition, if there is more than one rule in Π having the same (NAF-)literal in

the heads, they are collected to produce a single converse rule in ac(Π). For instance,

Π = { p ← q, p ← r } produces ac(Π) = { q ; r ← p } but not Λ = { q ← p, r ← p }.
Then, AC(Π) ∪ {p←} has two answer sets {p, q} and {p, r}. Suppose that the new fact

“¬ q ←” is added to Π. Put Π′ = Π ∪ {¬ q ←}. Then, AC(Π′) ∪ {p←} has the answer

set {p, r}, which represents the result of AC reasoning in Π′. If Λ is used instead of

ac(Π), however, Π′ ∪Λ∪ {p←} has the answer set Lit. The result is too strong because

r is consistently inferred from Π′ ∪ {p←} by AC reasoning. As a concrete example, put

p = wet-grass, q = rain, and r = sprinkler-on. Then, AC(Π′) ∪ {wet-grass ←} has

the answer set {wet-grass,¬ rain, sprinkler-on }, while Π′∪Λ∪{wet-grass←} has the

answer set Lit. AC completion derives an antecedent from a consequent, but it does not

derive negation of antecedent by its nature. For instance, given Π = { p ; q ← r, p←},
AC(Π) |=s r but AC(Π) �|=c ¬ q.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

164 C. Sakama

Note that in Definition 3.1, the converse of constraints and facts are not produced.

When head+(r) = head−(r) = ∅, r is considered a rule with false in the head, then (5)

and (6) become

Ll+1, . . . , Lm, not Lm+1, . . . , not Ln ← false

which has no effect as a rule. On the other hand, when body+(r) = body−(r) =

∅, r is considered a rule with true in the body, then (5) and (6) respectively

become

true← Lj (1 ≤ j ≤ k) and true← notLj (k + 1 ≤ j ≤ l).
We do not include this type of rules for constructing ac(Π) because it would disable AC

reasoning. For instance, transform Π = { p ← q, p ←} to Π′ = Π ∪ {q ; true ← p}.
Then, {p} is the minimal set satisfying Π′, and q is not included in the answer set

of Π′. With this reason, constraints and facts are not completed at the first step of

Definition 3.1.

The result of AC completion is syntax-dependent in general. That is, two (strongly)

equivalent programs may produce different AC completions.

Example 3.2

Let Π1 = {not p← q } and Π2 = {← p, q }. By Proposition 2.1, Π1 and Π2 are equivalent,

but AC(Π1) = Π1∪{ q ← not p } and AC(Π2) = Π2. As a result, AC(Π1) has the answer

set {q} while AC(Π2) has the answer set ∅.

In the above example, “not p ← q” is a conditional sentence which is subject to AC

inference, while “← p, q” is a constraint which is not subject to AC inference by definition.

For instance, given the conditional sentence “if it is sunny, the grass is not wet” and the

fact “the grass is not wet.,” people would infer “it is sunny” by AC inference. On the

other hand, given the constraint “it does not happen that wet-grass and sunny-weather

at the same time” and the fact “the grass is not wet,” the number of people who infer

“it is sunny” by AC would be smaller because the cause-effect relation between “sunny”

and “not wet” is not explicitly expressed in the constraint.

Reasoning by AC is nonmonotonic in the sense that Π |=c L (or Π |=s L) does not

imply AC(Π) |=c L (or AC(Π) |=s L) in general.

Example 3.3

The program Π = { p← not q, r ← q, r ←} has the answer set {p, r}, while AC(Π) =

Π ∪ {not q ← p, q ← r } has the answer set {q, r}.
In Example 3.3, reasoning by AC produces q which blocks deriving p using the first

rule in Π. As a concrete example, an online-meeting is held on time if no network trouble

arises. However, it turns that the web browser is unconnected and one suspects that there

is some trouble on the network. Put p=“online-meeting is held on time,” q=“network

trouble,” r=“the web browser is unconnected.” In this case, one may withdraw the

conclusion p after knowing r. As such, additional rules ac(Π) may change the results of

Π. One can see the effect of AC reasoning in a program Π by comparing answer sets of

Π and AC(Π).

A consistent program Π may produce an inconsistent AC(Π). In converse, an incon-

sistent Π may produce a consistent AC(Π).

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 165

Example 3.4

Π1 = { p ← ¬ p, p ←} is consistent, but AC(Π1) = Π1 ∪ {¬ p ← p } is contradictory.

Π2 = {← not p, q ← p, q ←} is incoherent, but AC(Π2) = Π2 ∪ { p ← q } is

consistent.

A sufficient condition for the consistency of AC(Π) is given below.

Proposition 3.1

If a PDP Π contains no constraint, then AC(Π) is consistent. Moreover, for any answer

set S of Π, there is an answer set T of AC(Π) such that S ⊆ T .

Proof

A PDP Π contains no NAF-literal and every literal in Π is a positive literal (or an

atom). Then, ac(Π) is the set of rules (Σ1; · · · ; Σp ← Aj) where Aj is an atom and

Σi is a conjunction of atoms. When Π contains no constraint, the additional rules in

ac(Π) do not cause inconsistency in AC(Π) = Π ∪ ac(Π). Suppose that S is an answer

set (or a minimal model) of Π. Then S is a minimal set satisfying all rules in Π. Let

U = {A | A ∈ head+(r) for any rule r ∈ ac(Π) such that body+(r) ⊆ S }. Then, there

is an answer set T of AC(Π) such that T = S ∪ V where V ⊆ U . Hence, the result

holds.

Proposition 3.2

If a program Π has the answer set Lit, then AC(Π) has the answer set Lit.

Proof

If Π has the answer set Lit, the reduct ΠLit has the answer set Lit. By definition,

AC(Π)Lit = ΠLit ∪ ac(Π)Lit where ac(Π)Lit is the reduct of ac(Π) by Lit. Introducing

not-free rules in ac(Π)Lit does not change the answer set Lit of ΠLit. Then, Lit is the

answer set of AC(Π)Lit and the result follows.

3.2 DC completion

We next introduce a framework for reasoning by denying the consequent (DC) in ASP.

There are two ways for negating a literal – one is using explicit negation and the other

is using default negation. Accordingly, there are two ways of completing a program for

the purpose of reasoning by DC.

Definition 3.2 (DC completion)

Let Π be a program. For each rule r ∈ Π of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln

define wdc(r) as the rule:

notLl+1; · · · ;notLm ; Lm+1; · · · ;Ln ← notL1, . . . , not Lk, Lk+1, . . . , Ll (7)

and define sdc(r) as the rule:

¬Ll+1; · · · ;¬Lm ; Lm+1; · · · ;Ln ← ¬L1, . . . ,¬Lk, Lk+1, . . . , Ll. (8)

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

166 C. Sakama

In particular, (7) or (8) becomes a fact if head+(r) = head−(r) = ∅, and it becomes

a constraint if body+(r) = body−(r) = ∅. The weak DC completion and the strong DC

completion of Π are respectively defined as:

WDC(Π) = Π ∪ {wdc(r) | r ∈ Π },
SDC(Π) = Π ∪ {sdc(r) | r ∈ Π }.

By definition, WDC(Π) and SDC(Π) introduce contrapositive rules in two different

ways. In (7), literals Li (1 ≤ i ≤ k; l + 1 ≤ i ≤ m) are negated using default negation

not and NAF-literals notLj (k + 1 ≤ i ≤ l; m + 1 ≤ i ≤ n) are converted to Lj . In

(8), on the other hand, literals Li (1 ≤ i ≤ k; l + 1 ≤ i ≤ m) are negated using explicit

negation ¬ and NAF-literals notLj (k + 1 ≤ i ≤ l; m + 1 ≤ i ≤ n) are converted to

Lj . WDC(Π) and SDC(Π) are GEDPs, and their semantics are defined by their answer

sets. In particular, SDC(Π) becomes an EDP if Π is an EDP.

Note that contraposition of facts or constraints is produced in WDC/SDC. For in-

stance, the fact “p ←” produces the constraint “← not p” by WDC and “← ¬p” by

SDC. The fact “not p ←” produces the constraint “← p” by WDC and SDC. On the

other side, the constraint “← p” produces the fact “not p ←” by WDC and “¬p ←” by

SDC. The constraint “← not p” produces the fact “p←” by WDC and SDC.

The WDC and SDC produce different results in general.

Example 3.5

Given Π = { p← not q }, it becomes

WDC(Π) = { p← not q, q ← not p },
SDC(Π) = { p← not q, q ← ¬ p }.

Then, WDC(Π) has two answer sets {p} and {q}, while SDC(Π) has the single answer

set {p}.
Example 3.5 shows that WDC is nonmonotonic as Π |=s p but WDC(Π) �|=s p. SDC is

also nonmonotonic (see Example 3.8). The result of DC completion is syntax-dependent

in general.

Example 3.6

Let Π1 = {not p ← q } and Π2 = {← p, q } where Π1 and Π2 are equivalent (Proposi-

tion 2.1). Then, SDC(Π1) = Π1 ∪ {¬ q ← p } and SDC(Π2) = Π2 ∪ {¬ p ;¬ q ←}. As a

result, SDC(Π1) has the answer set ∅, while SDC(Π2) has two answer sets {¬ p} and

{¬ q}.
WDC preserves the consistency of the original program.

Proposition 3.3

If a program Π has a consistent answer set S, then S is an answer set of WDC(Π).

Proof

Suppose a consistent answer set S of Π. Then, for any rule (L1 ; · · · ; Lk ← Ll+1, . . . , Lm)

in ΠS , either {L1, . . . , Lk} ∩ S �= ∅ or {Ll+1, . . . , Lm} �⊆ S. In each case, the rule (7) is

eliminated in ΠS . Then, S is an answer set of WDC(Π)S ; hence, the result holds.

The converse of Proposition 3.3 does not hold in general.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 167

Example 3.7

The program Π = {← not p } has no answer set, while WDC(Π) = {← not p, p ←}
has the answer set {p}.

For SDC(Π), the next result holds.

Proposition 3.4

Let Π be a consistent program such that every constraint in Π is not-free (i.e. head+(r) =

head−(r) = ∅ implies body−(r) = ∅ for any r ∈ Π). Then, SDC(Π) does not have the

answer set Lit.

Proof

Consider SDC(Π)Lit = (Π ∪ {sdc(r) | r ∈ Π })Lit = ΠLit ∪ {sdc(r) | r ∈ Π }.
(a) If there is a constraint r ∈ Π such that head+(r) = head−(r) = ∅, then body−(r) = ∅

by the assumption. Then, r ∈ ΠLit and SDC(Π)Lit does not have the answer set Lit

(Proposition 2.3). (b) Else if there is no constraint in Π, then {sdc(r) | r ∈ Π } contains

no fact by Definition 3.2. Consider two cases. (i) When there is a fact r ∈ Π, sdc(r)

becomes a not-free constraint by Definition 3.2. As SDC(Π)Lit contains this constraint,

it does not have the answer set Lit (Proposition 2.3). (ii) When there is no fact in Π,

both ΠLit and {sdc(r) | r ∈ Π } contain no fact, so SDC(Π)Lit contains no fact. In this

case, no literal is deduced in SDC(Π)Lit and it does not have the answer set Lit. By (a)

and (b), SDC(Π)Lit does not have the answer set Lit. Hence, the result follows.

A program Π satisfying the condition of Proposition 3.4 may produce an incoherent

SDC(Π).

Example 3.8

The program Π = { p← q, p← ¬q, ¬ p←} has the answer set {¬ p}, but

SDC(Π) = Π ∪ {¬ q ← ¬ p, q ← ¬ p, ← p }
is incoherent.

Proposition 3.5

If a program Π has the answer set Lit, then both WDC(Π) and SDC(Π) have the answer

set Lit. In particular, if Π is a contradictory EDP, then SDC(Π) is contradictory.

Proof

The proof is similar to Proposition 3.2. In particular, if Π is an EDP, then SDC(Π) is

an EDP and the result holds.

Note that in GEDPs, contraposition of a rule does not hold in general. Thus, the

program Π = { p ← q, ¬ p ←} does not deduce ¬ q. SDC completes the program as

SDC(Π) = Π∪ {¬ q ← ¬ p, ← p } and makes ¬ q deducible. In this sense, SDC has the

effect of making explicit negation closer to classical negation in GEDP.

3.3 DA completion

As a third extension, we introduce a framework for reasoning by denying the antecedent

(DA) in ASP. As in the case of DC completion, two different ways of completion are

considered depending on the choice of negation.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

168 C. Sakama

Definition 3.3 (weak DA completion)

Let Π be a program and r ∈ Π a rule of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln.

1. For each disjunct in head+(r) and head−(r), inverse the implication:

notLi ← notLl+1 ; · · · ; notLm ; Lm+1 ; · · · ; Ln (1 ≤ i ≤ k), (9)

Li ← notLl+1 ; · · · ; notLm ; Lm+1 ; · · · ; Ln (k + 1 ≤ i ≤ l). (10)

In (9) and (10), the disjunction “notLl+1 ; · · · ; notLm ; Lm+1 ; · · · ; Ln” appears on the

right of “←”. The produced (9) (resp. (10)) is considered an abbreviation of the collection

of (n−l) rules: (notLi ← notLl+1), . . . , (notLi ← Ln) (resp. (Li ← notLl+1), . . . , (Li ←
Ln)), hence we abuse the term “rule” and call (9) or (10) a rule. In particular, (9) is

not produced if head+(r) = ∅ or body+(r) = body−(r) = ∅, and (10) is not produced

if head−(r) = ∅ or body+(r) = body−(r) = ∅. The set of rules (9)–(10) is denoted as

winv(r).

2. Define

wda(Π) = { �i ← Γ1, . . . ,Γp |
�i ← Γj (1 ≤ j ≤ p) is in

⋃

r∈Π

winv(r) }

where �i is either a literal Li (k + 1 ≤ i ≤ l) or an NAF-literal notLi (1 ≤ i ≤ k), and

each Γj (1 ≤ j ≤ p) is a disjunction of literals and NAF-literals.

3. The weak DA completion of Π is defined as:

WDA(Π) = Π ∪ wda(Π).

(9) and (10) in winv(r) represent inverse implication from the (default) negation of the

conjunction in the body of r to the (default) negation of the disjunction in the head of r.

wda(Π) collects rules “�i ← Γj” (1 ≤ j ≤ p) having the same (NAF-)literal �i on the left

of “←,” and constructs “�i ← Γ1, . . . ,Γp,” which we call an extended rule. Introducing

wda(Π) to Π realizes reasoning by weak DA. An extended rule has a conjunction of

disjunctions in its body, while it is transformed to rules of a GEDP as the case of AC

completion. That is, the extended rule:

�i ← (�11 ; · · · ; �1m1
) , . . . , (�p1 ; · · · ; �pmp

)

is identified with the set of (m1 × · · · ×mp) rules of the form:

�i ← �1j1 , . . . , �
p
jp

(1 ≤ jk ≤ mk; 1 ≤ k ≤ p).
By this fact, WDA(Π) is viewed as a GEDP and we do not distinguish extended rules

and rules of a GEDP hereafter. The semantics of WDA(Π) is defined by its answer sets.

Example 3.9

Let Π be the program:

p ; q ← r, not s,

q ; not r ← t,

s← .

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 169

Then, wda(Π) becomes

not p← not r ; s,

not q ← (not r ; s), not t,

r ← not t

where the first rule “not p← not r ; s” is identified with

not p← not r,

not p← s,

and the second rule “not q ← (not r ; s), not t” is identified with

not q ← not r, not t,

not q ← s, not t.

Then, WDA(Π) has the answer set {s, r}.
As in the case of AC completion, if there is more than one rule having the same

(NAF-)literal in the heads, they are collected to produce a single inverse rule. For in-

stance, Π = { p ← q, p ← r } produces wda(Π) = {not p ← not q, not r } but not

Λ = {not p ← not q, not p ← not r }. Suppose that the new fact “r ←” is added to Π.

Put Π′ = Π ∪ {r ←}. Then, WDA(Π′) has the answer set {p, r}. If Λ is used instead of

wda(Π), however, Π′ ∪ Λ is incoherent because the first rule of Λ is not satisfied. The

result is too strong because p is deduced by “p ← r” and “r ←,” and it has no direct

connection to DA inference in the first rule of Λ. Hence, we conclude not p if both q and

r are negated in wda(Π).

The strong DA completion is defined in a similar manner.

Definition 3.4 (strong DA completion)

Let Π be a program and r ∈ Π a rule of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln.

1. For each disjunct in head+(r) and head−(r), inverse the implication:

¬Li ← ¬Ll+1 ; · · · ; ¬Lm ; Lm+1 ; · · · ; Ln (1 ≤ i ≤ k), (11)

Li ← ¬Ll+1 ; · · · ; ¬Lm ; Lm+1 ; · · · ; Ln (k + 1 ≤ i ≤ l). (12)

As in the case of WDA, the produced (11) (resp. (12)) is considered an abbrevi-

ation of the collection of (n − l) rules: (¬Li ← ¬Ll+1), . . . , (¬Li ← Ln) (resp.

(Li ← ¬Ll+1), . . . , (Li ← Ln)), hence we call (11) or (12) a rule. In particular, (11)

is not produced if head+(r) = ∅ or body+(r) = body−(r) = ∅, and (12) is not produced

if head−(r) = ∅ or body+(r) = body−(r) = ∅. The set of rules (11)–(12) is denoted as

sinv(r).

2. Define

sda(Π) = { �i ← Γ1, . . . ,Γp |
�i ← Γj (1 ≤ j ≤ p) is in

⋃

r∈Π

sinv(r) }

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

170 C. Sakama

where �i is either a literal Li (k+ 1 ≤ i ≤ l) or ¬Li (1 ≤ i ≤ k), and each Γj (1 ≤ j ≤ p)
is a disjunction of positive/negative literals.

3. The strong DA completion of Π is defined as:

SDA(Π) = Π ∪ sda(Π).

As in the case of WDA, extended rules in sda(Π) are transformed to rules of a GEDP.

Then, SDA(Π) is viewed as a GEDP and its semantics is defined by its answer sets. In

particular, SDA(Π) becomes an EDP if Π is an EDP.

The result of DA completion is syntax-dependent in general.

Example 3.10

Let Π1 = {not p ← q } and Π2 = {← p, q } where Π1 and Π2 are equivalent (Propo-

sition 2.1). Then, WDA(Π1) = Π1 ∪ { p ← not q } and WDA(Π2) = Π2. As a result,

WDA(Π1) has the answer set {p} while WDA(Π2) has the answer set ∅.

Both WDA and SDA are nonmonotonic in general.

Example 3.11

(1) Π1 = { p← not q, not q ← p } produces WDA(Π1) = Π1 ∪ {not p← q, q ← not p }.
Then, Π1 |=s p but WDA(Π1) �|=s p. (2) Π2 = { p← not¬r, r ← not q, q ←} produces

SDA(Π2) = Π2 ∪ {¬ p← ¬ r, ¬ r ← q }. Then, Π2 |=c p but SDA(Π2) �|=c p.

When a program is a consistent EDP, the WDA does not introduce a new answer set.

Proposition 3.6

Let Π be an EDP. If S is a consistent answer set of WDA(Π), then S is an answer set

of Π.

Proof

When Π is an EDP, the rules (10) are not included in winv(r). By the rules (9) in winv(r),

rules of the form (notLi ← Γ1, . . . ,Γp) are produced in wda(Π), which are identified with

the collection of rules (notLi ← �1j1 , . . . �
p
jp

) where �pjk (1 ≤ k ≤ p) is an (NAF-)literal.

These rules are converted into the strongly equivalent constraint (← Li, �
1
j1
, . . . , �pjp)

(Proposition 2.1). The additional constraints may eliminate answer sets of Π, but do

not introduce new answer sets. Thus, a consistent answer set S of WDA(Π) is also a

consistent answer set of Π.

Proposition 3.7

If a program Π has the answer set Lit, then both WDA(Π) and SDA(Π) have the answer

set Lit. In particular, if Π is a contradictory EDP, then SDA(Π) is contradictory.

Proof

The proof is similar to Proposition 3.2. In particular, if Π is an EDP, then SDA(Π) is

an EDP and the result holds.

As in the case of AC, a consistent program Π may produce an inconsistent WDA(Π) or

SDA(Π). In converse, an incoherent Π may produce a consistent WDA(Π) or SDA(Π).

Example 3.12

(1) Π1 = {not p ← p }, which is equivalent to {← p } (Proposition 2.1), is consistent,

but WDA(Π1) = Π1 ∪ { p← not p } is incoherent.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 171

(2) Π2 = {¬ p ← p, ¬ p ←} is consistent, but SDA(Π2) = Π2 ∪ { p ← ¬ p } is

contradictory.

(3) Π3 = {not p ← q, ← not p }, which is equivalent to {← p, q, ← not p }
(Proposition 2.1), is incoherent, but WDA(Π3) = Π3∪{ p← not q } is consistent (having

the answer set {p}).
(4) Π4 = {← not p, ¬ p← not q, q ←} is incoherent, but SDA(Π4) = Π4 ∪ { p← q }

is consistent (having the answer set {p, q}).

4 AC and DA as default reasoning

AC and DA are logically invalid and additional rules for AC and DA often make a

program inconsistent. In this section, we relax the effects of the AC or DA completion by

introducing additional rules as default rules in the sense of Reiter (1980). More precisely,

we capture AC and DA as the following default inference rules:

(defaultAC)
(ϕ⇒ ψ) ∧ ψ : ϕ

ϕ

(defaultDA)
(ϕ⇒ ψ) ∧ ¬ϕ : ¬ψ

¬ψ
The default AC rule says: given the conditional “ϕ⇒ ψ” and the fact ψ, conclude ϕ as a

default consequence. Likewise, the default DA rule says: given the conditional “ϕ⇒ ψ”

and the fact ¬ϕ, conclude ¬ψ as a default consequence. We encode these rules in ASP.

4.1 Default AC completion

The AC completion is modified for default AC reasoning.

Definition 4.1 (default AC completion)

Let Π be a program. For each rule r ∈ Π of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln,

define dac(r) as the set of rules:

Ll+1, . . . , Lm, not Lm+1, . . . , not Ln ← Li, Δ (1 ≤ i ≤ k), (13)

Ll+1, . . . , Lm, not Lm+1, . . . , not Ln ← notLi, Δ (k + 1 ≤ i ≤ l) (14)

where Δ = not¬Ll+1, . . . , not¬Lm, not Lm+1, . . . , not Ln. As before, (13) is not pro-

duced if head+(r) = ∅ or body+(r) = body−(r) = ∅; and (14) is not produced if

head−(r) = ∅ or body+(r) = body−(r) = ∅. The default AC completion of Π is defined

as:

DAC(Π) = Π ∪ dac(Π)

in which

dac(Π) = { Σ1 ; · · · ; Σp ← �j , Δi |
Σi ← �j , Δi (1 ≤ i ≤ p) is in

⋃

r∈Π

dac(r) }

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

172 C. Sakama

where each Σi (1 ≤ i ≤ p) is a conjunction of literals and NAF-literals, and �j is either

a literal Lj (1 ≤ j ≤ k) or an NAF-literal notLj (k + 1 ≤ j ≤ l).
Like AC(Π), rules in dac(Π) are converted into the form of a GEDP, then DAC(Π)

is viewed as a GEDP. Compared with the AC completion, the DAC completion in-

troduces the conjunction Δ of NAF-literals to the body of each rule. Then, the rules

“Σ1 ; · · · ; Σp ← �j , Δi” having the same head with different bodies are constructed for

i = 1, . . . , p.

Example 4.1

Let Π = { p← q, p← r, p←, ¬r ←}. Then, DAC(Π) = Π ∪ dac(Π) where

dac(Π) = { q ; r ← p, not¬q, q ; r ← p, not¬r }.
As a result, DAC(Π) has the answer set {p, q,¬r}.

We say that a set S of ground literals satisfies the conjunction “L1, . . . , Lk” of ground

literals if {L1, . . . , Lk} ⊆ S; and S satisfies the conjunction “notL1, . . . , not Lk” of

ground NAF-literals if {L1, . . . , Lk} ∩ S = ∅.

When AC(Π) has a consistent answer set, DAC(Π) does not change it.

Proposition 4.1

Let Π be a program. If AC(Π) has a consistent answer set S, then S is an answer set of

DAC(Π).

Proof

Suppose that AC(Π) has a consistent answer set S. For each rule (Σ1 ; · · · ; Σp ← Lj)

(1 ≤ j ≤ k) in ac(Π), Lj ∈ S implies that S satisfies some conjunction Σi (1 ≤ i ≤
p). In this case, S satisfies Δi and Lj ∈ S implies that S satisfies Σi for each rule

(Σ1 ; · · · ; Σp ← Lj ,Δi) in dac(Π). Likewise, for each rule (Σ1 ; · · · ; Σp ← notLj)

(k + 1 ≤ j ≤ l) in ac(Π), Lj �∈ S implies that S satisfies some Σi (1 ≤ i ≤ p). In this

case, S satisfies Δi and Lj �∈ S implies that S satisfies Σi for each rule (Σ1 ; · · · ; Σp ←
notLj ,Δi) in dac(Π). Then, AC(Π)S = DAC(Π)S and the result follows.

DAC does not introduce the contradictory answer set Lit unless the original program

has Lit as an answer set.

Proposition 4.2

Let Π be a program. If DAC(Π) has the answer set Lit, then Π has the answer set Lit.

Proof

If DAC(Π) has the answer set Lit, then DAC(Π)Lit = ΠLit ∪ dac(Π)Lit has the answer

set Lit. Since dac(Π)Lit = ∅, ΠLit has the answer set Lit. Hence, Π has the answer set

Lit.

DAC(Π) possibly turns a contradictory AC(Π) into a consistent program.

Example 4.2 (cont. Example 3.4)

Let Π1 = { p ← ¬ p, p ←}. Then, DAC(Π1) = Π1 ∪ {¬ p ← p, not p } has the single

answer set { p }. So AC(Π1) is contradictory, but DAC(Π1) is consistent.

When AC(Π) is incoherent, DAC(Π) does not resolve incoherency in general.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 173

Example 4.3

Let Π = { p← q, p←, ← q }. Then, AC(Π) = Π ∪ { q ← p } is incoherent. DAC(Π) =

Π ∪ { q ← p, not¬ q } is still incoherent.

4.2 Default DA completion

The DA completion is modified for default DA reasoning.

Definition 4.2 (default DA completion)

Let Π be a program. Define

wdda(Π) = { �i ← Γ1, . . . ,Γp, δ
w
i |

�i ← Γj (1 ≤ j ≤ p) is in
⋃

r∈Π

winv(r) },

sdda(Π) = { �i ← Γ1, . . . ,Γp, δ
s
i |

�i ← Γj (1 ≤ j ≤ p) is in
⋃

r∈Π

sinv(r) }

where �i, Γj , winv(r), and sinv(r) are the same as those in Definitions 3.3 and 3.4. In

addition, δwi = not¬Li if �i = Li, and δwi = notLi if �i = notLi; δ
s
i = not¬Li if �i = Li,

and δsi = notLi if �i = ¬Li. The weak default DA completion and the strong default DA

completion of Π are respectively defined as:

WDDA(Π) = Π ∪ wdda(Π),

SDDA(Π) = Π ∪ sdda(Π).

Rules in wdda(Π) and sdda(Π) are converted into the form of a GEDP, so WDDA(Π)

and SDDA(Π) are viewed as GEDPs. Like the DAC completion, both WDDA and SDDA

introduce an additional NAF-literal to each rule.

When WDA(Π) (resp. SDA(Π)) has a consistent answer set, WDDA(Π) (resp.

SDDA(Π)) does not change it.

Proposition 4.3

Let Π be a program. If WDA(Π) (resp. SDA(Π)) has a consistent answer set S, then S

is an answer set of WDDA(Π) (resp. SDDA(Π)).

Proof

Suppose that WDA(Π) has a consistent answer set S. If Li ∈ S, then ¬Li �∈ S and

δwi = not¬Li is eliminated in WDDA(Π)S . Else if Li �∈ S and ¬Li ∈ S, there is another

rule (�i ← Γ1, . . . ,Γp, δ
w
i) in wdda(Π) such that �i = ¬Li and δwi = notLi. Then,

δwi = notLi is eliminated in WDDA(Π)S . Thus, WDA(Π)S = WDDA(Π)S . Similarly,

SDA(Π)S = SDDA(Π)S . Hence, the result follows.

WDDA or SDDA does not introduce the contradictory answer set Lit unless the orig-

inal program has Lit as an answer set.

Proposition 4.4

Let Π be a program. If WDDA(Π) (or SDDA(Π)) has the answer set Lit, then Π has

the answer set Lit.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

174 C. Sakama

Table 1. The percentages of inferences in experiments (Byrne 1989)

Argument type AA (MP) DC (MT) AC DA

Simple arguments (S1) 96% 92% 71% 46%
Alternative arguments (S1 and S2) 96% 96% 13% 4%
Additional arguments (S1 and S3) 38% 33% 54% 63%

Proof

If WDDA(Π) has the answer Lit, then WDDA(Π)Lit = ΠLit ∪ wdda(Π)Lit has the

answer set Lit. Since wdda(Π)Lit = ∅, ΠLit has the answer set Lit. Hence, Π has the

answer set Lit. The case of SDDA(Π) is proved in a similar manner.

WDDA(Π) (resp. SDDA(Π)) possibly turns a contradictory WDA(Π) (resp.

SDA(Π)) into a consistent program, while it does not resolve incoherency in general.

Example 4.4 (cont. Example 3.12)

Let Π1 = {not p ← p } where WDA(Π1) is incoherent. WDDA(Π1) = Π1 ∪ { p ←
not p, not¬ p } is still incoherent. Let Π2 = {¬ p ← p, ¬ p ←} where SDA(Π2) is

contradictory. SDDA(Π2) = Π2 ∪ { p ← ¬ p, not¬ p } has the consistent answer set

{¬p}.

5 Characterizing human reasoning tasks

5.1 Suppression task

Byrne (1989) provides an empirical study which shows that human conditional reasoning

can be nonmonotonic in the so-called suppression tasks. She verifies the effects in differ-

ent types of conditional reasoning by experimental testing on college students. Students

are divided into three groups: the first group receives simple conditional arguments; the

second group receives conditional arguments accompanied by another conditional sen-

tence with an alternative antecedent; and the third group receives conditional arguments

accompanied by another conditional sentence with an additional antecedent. More pre-

cisely, suppose the following three conditional sentences:

S1: If she has an essay to write then she will study late in the library.
S2: If she has some textbooks to read then she will study late in the library.
S3: If the library stays open then she will study late in the library.

Given the conditional sentence S1, S2 represents a sentence with an alternative an-

tecedent, while S3 represents a sentence with an additional antecedent. The antecedent

of S2 is considered an alternative sufficient condition for studying late in the library. By

contrast, the antecedent of S3 is considered an additional sufficient condition for studying

late in the library. Table 1 presents the percentages of inferences made by subjects from

the three kinds of arguments.

By the table, given the sentence S1 and the fact: “she will study late in the library,”

the 71% of the first group concludes: “she has an essay to write” by AC. When S1 is

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 175

accompanied by a conditional S2 containing an alternative antecedent, on the other hand,

the percentage of subjects who perform AC inference reduces to 13%. The reason is that

people know that the alternative: “She has some textbooks to read,” could be the case

instead. Similar reduction is observed for DA. Byrne argues that those fallacious infer-

ences are suppressed when a conditional is accompanied by an alternative antecedent.

She also observes that the inference patterns change when S1 is accompanied by a con-

ditional S3 containing an additional antecedent. In Table 1, the number of subjects who

conclude: “She will study late in the library” by AA reduces to 38%, and the number of

subjects who conclude: “She does not have an essay to write” by DC reduces to 33%.

By contrast, the suppression of AC and DA are relaxed, 54% of subjects make AC and

63% of subjects make DA. Byrne then argues that “valid inferences are suppressed in

the same way as fallacious inferences.”

The suppression task is characterized in our framework as follows. First, the sen-

tence S1 is represented as the rule: “library ← essay.” Then, four conditional inferences

(AA, DC, AC, DA) in simple arguments are respectively represented by the following

programs:

(AA) Π0 = { library ← essay, essay ←},
(DC) Π1 = { library ← essay, ¬ library ←},
(AC) Π2 = { library ← essay, library ←},
(DA) Π3 = { library ← essay, ¬ essay ←}.

Then, Π0 has the answer set { library, essay } in which AA inference is done. By contrast,

DC, AC, and DA inferences are not performed in Π1, Π2, and Π3, respectively. To realize

those inferences, consider completions such that

SDC(Π1) = Π1 ∪ {¬ essay ← ¬ library },
AC(Π2) = Π2 ∪ { essay ← library },

SDA(Π3) = Π3 ∪ {¬ library ← ¬ essay }
where SDC(Π1) has the answer set {¬ library,¬ essay }, AC(Π2) has the answer set

{ library, essay }, and SDA(Π3) has the answer set {¬ library,¬ essay }. As a re-

sult, DC, AC, and DA inferences are performed in SDC(Π1), AC(Π2), and SDA(Π3),

respectively.

Next, consider the alternative arguments S1 and S2. They are represented by the

programs:

ΠALT
k = Πk ∪ { library ← text } (k = 0, 1, 2, 3).

The program ΠALT
0 has the answer set { library, essay } in which the result of AA in-

ference does not change from Π0. Programs ΠALT
1 , ΠALT

2 , and ΠALT
3 are completed as

follows:

SDC(ΠALT
1) = ΠALT

1 ∪ {¬ essay ← ¬ library, ¬ text← ¬ library },
AC(ΠALT

2) = ΠALT
2 ∪ { essay ; text← library },

SDA(ΠALT
3) = ΠALT

3 ∪ {¬ library ← ¬ essay, ¬ text }
where SDC(ΠALT

1) has the answer set {¬ library,¬ essay,¬ text }, AC(ΠALT
2) has

the two answer sets { library, essay } and { library, text }, and SDA(ΠALT
3) has the

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

176 C. Sakama

Table 2. Summary of inferences made by completion

Argument type AA (MP) DC (MT) AC DA

S1 ◦ (Π0) ◦ (SDC(Π1)) ◦ (AC(Π2)) ◦ (SDA(Π3))
S1 and S2 ◦ (ΠALT

0) ◦ (SDC(ΠALT
1)) × (AC(ΠALT

2)) × (SDA(ΠALT
3))

S1 and S3 (× (ΠADD
0)) (× (SDC(ΠADD

1))) (◦ (AC(ΠADD
2))) (◦ (SDA(ΠADD

3)))

◦ means that inference succeeds; × means that inference is suppressed.

answer set {¬ essay }. As a result, SDC(ΠALT
1) |=s ¬ essay, AC(ΠALT

2) �|=s essay, and

SDA(ΠALT
3) �|=s ¬ library, which indicate that AC and DA inferences are suppressed

while DC is not suppressed. In this way, the completion successfully represents the effect

of suppression of AC/DA inference in alternative arguments.

In additional arguments, on the other hand, Byrne (1989) observes that AA/DC in-

ference is also suppressed. Our completion method does not characterize the suppres-

sion of AA inference because we enable fallacious inferences by AC/DA completion

while still keep the valid AA inference. Byrne (1989) says “people may consider that

certain other conditions are necessary for this conclusion to hold, for example, the li-

brary must remain open. Thus, conditionals are frequently elliptical in that informa-

tion that can be taken for granted is omitted from them.” In the above example, the

availability of the library is necessary for studying in it but it is just omitted in the

initial premises. Then, it is considered that the rule: “library ← essay” in mind is over-

written by the rule: “library ← essay, open” when the additional antecedent is given.

Let

ΠADD
0 = { library ← essay, open, essay ←},

ΠADD
1 = { library ← essay, open, ¬ library ←},

ΠADD
2 = { library ← essay, open, library ←},

ΠADD
3 = { library ← essay, open, ¬ essay ←}.

The program ΠADD
0 has the answer set { essay }, thereby ΠADD

0 �|=s library. Then, the

result of AA inference is suppressed. Programs ΠADD
1 , ΠADD

2 , ΠADD
3 are completed as

follows:

SDC(ΠADD
1) = ΠADD

1 ∪ {¬ essay ; ¬ open← ¬ library },
AC(ΠADD

2) = ΠADD
2 ∪ { essay ← library, open← library },

SDA(ΠADD
3) = ΠADD

3 ∪ {¬ library ← ¬ essay, ¬ library ← ¬ open }
where SDC(ΠADD

1) has the two answer sets {¬ library,¬ essay } and

{¬ library,¬ open }, AC(ΠADD
2) has the answer set { library, essay, open },

and SDA(ΠADD
3) has the the answer set {¬ essay,¬ library }. As a result,

SDC(ΠADD
1) �|=s ¬ essay, AC(ΠADD

2) |=s essay, and SDA(ΠADD
3) |=s ¬ library.

This indicates that DC is suppressed but AC and DA are not suppressed, which explains

the results of Byrne (1989).

The results of inferences using completion are summarized in Table 2. By the table,

the suppression of AC and DA in face of an alternative antecedent is realized in our

framework. The suppression of AA and DC in face of an additional antecedent is also

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 177

realized if the additional condition is written in the antecedent of the original conditional

sentence.

5.2 Wason selection task

Wason (1968) introduces the selection task for examining human conditional reasoning.

The task is described as follows. There are four cards on a table, each of which has a letter

on one side and a number on the other. Suppose that those cards are showing respectively

D, K, 3, 7. Given the sentence: “Every card which has the letter D on one side has the

number 3 on the other side,” then which cards are to be turned over in order to verify

the truth of the sentence? Testing on college students, it turns out that a relatively

small number of students select the logically correct answer “D and 7” (4%), while

others select “D and 3” (46%) or D alone (33%) (Wason and Shapiro 1971). The result

shows that people are likely to perform AC inference but less likely to perform logically

correct DC inference in this task. The situation is characterized in our framework as

follows.

The sentence: “Every card which has the letter D on one side has the number 3 on

the other side” is rephrased as “If a card has the letter D on one side, then it has the

number 3 on the other side.” Then, it is represented by the program:

ΠW = {n3 ← �D} (15)

where n3 means the number 3 and �D means the letter D. Four cards on the desk are

represented by the facts:

�D ←, �K ←, n3 ←, n7 ← . (16)

Then, each card is checked one by one.

• ΠW ∪{�D ←} has the answer set {�D, n3}. If the other side of �D is not the number

3, however, {�D, n3}∪ {¬n3} is contradictory. To verify the consistency, one has to

turn over the card of D.

• ΠW ∪ {�K ←} has the answer set {�K}. Since both {�K} ∪ {n3} and {�K} ∪ {¬n3}
are consistent, there is no need to turn over the card of K.

• ΠW ∪ {n3 ←} has the answer set {n3}. Since both {n3} ∪ {�D} and {n3} ∪ {¬�D}
are consistent, there is no need to turn over the card of 3.

• ΠW ∪ {n7 ←} has the answer set {n7}. Since both {n7} ∪ {�D} and {n7} ∪ {¬�D}
are consistent, there is no need to turn over the card of D.

As the standard ASP does not realize DC inference, it characterizes reasoners who select

only D as shown above.

By contrast, people who choose D and 3 are likely to perform AC inference using the

conditional sentence. In this case, the situation is represented as

AC(ΠW) = {n3 ← �D, �D ← n3 }.
Now AC(ΠW) ∪ {n3 ←} has the answer set {n3, �D}. If the other side of n3 is not the

letter D, however, {n3, �D} ∪ {¬�D} is contradictory. To verify the consistency, they opt

to turn over the card of 3 as well as the card of D.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

178 C. Sakama

Finally, those who choose D and 7 perform weak DC inference as4

WDC (ΠW) = {n3 ← �D, not �D ← not n3 }.
The program WDC (ΠW) ∪ {n7 ←} has the answer set {n7}. However, if the other side

of n7 is the letter D, WDC (ΠW) ∪ {n7 ←} ∪ {�D ←} ∪ {← n3, n7} is incoherent, where

the constraint “← n3, n7” represents that one card cannot have two numbers. To verify

the consistency, they need to turn over the card of 7 as well as the card of D.5

It is known that the Wason selection task is context dependent and the results change

when, for instance, it is presented with a deontic rule. Griggs and Cox (1982) use the

rule: “If a person is drinking beer, then the person must be over 19 year of age.” There

are four cards on a table as before, but this time a person’s age is on one side of a

card and on the other side is what the person is drinking. Four cards show, “beer,”

“coke,” “16,” and “22,” respectively. Then select the card(s) needed to turn over to de-

termine whether or not no person is violating the rule. In this drinking-age problem,

almost 75% of participants select logically correct answers “beer” and “16.” To charac-

terize the situation, (W)DC completion is used for representing selection tasks in deontic

contexts.

6 Applications to commonsense reasoning

The AC, DC, DA completions realize human conditional reasoning in ASP. In addition,

they are used for computing commonsense reasoning in AI.

6.1 Abduction and prediction

Abduction reasons from an observation to explanations. An abductive logic program

(Kakas et al. 1992) is defined as a pair 〈Π,Γ 〉 where Π is a program and Γ (⊆ Lit)

is a set of literals called abducibles.6 It is assumed that abducibles appear in the head of

no rule in Π. Given an observation O as a ground literal, the abduction problem is to

find an explanation E (⊆ Γ) satisfying (i) Π∪E |=x O and (ii) Π∪E is consistent, where

|=x is either |=c or |=s depending on the problem. Here we consider |=c that realizes

credulous abduction. In GEDP, the abduction problem is characterized as follows. Let

us define

abd(Γ) = { γ ; not γ ← | γ ∈ Γ }.

Proposition 6.1 (Inoue and Sakama 1998)

Let 〈Π,Γ 〉 be an abductive program. Given an observation O, a set E ⊆ Γ is an ex-

planation of O iff Π ∪ abd(Γ) ∪ {← notO } has a consistent answer set S such that

S ∩ Γ = E.

4 Alternatively, the SDC “¬ �D ← ¬n3” is used by introducing the rule “¬n3 ← n7” instead of the
constraint “← n3, n7.”

5 Kowalski (2011) also uses an integrity constraint to explain the effect of modus tollens in the selection
task.

6 Kakas et al. (1992) consider integrity constraints which are handled as constraints in Π.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 179

Example 6.1

Consider (Π1,Γ1) where

Π1 : arrive on time← not accident,

¬ arrive on time← accident.

Γ1 : accident.

Π1 represents that a train arrives on time unless there is an accident. Given the obser-

vation O = ¬ arrive on time, it has the explanation E = {accident}. The problem is

represented as the GEDP:

arrive on time← not accident,

¬ arrive on time← accident,

accident ; not accident←,
← not¬ arrive on time

which has the answer set S = {¬ arrive on time, accident} where S ∩ Γ1 = E.

Since abduction reasons backward from an observation, it is characterized using AC

inference as follows.

Proposition 6.2

Let 〈Π,Γ 〉 be an abductive program and O an observation.

(i) A set E ⊆ Γ is an explanation of O if O ∈ head+(r) for some r ∈ Π and AC(Π)∪{O}
has a consistent answer set S such that S ∩ Γ = E.

(ii) If a set E ⊆ Γ is an explanation of O, then there is Π′ ⊆ Π such that AC(Π′)∪{O}
has a consistent answer set S such that S ∩ Γ = E.

Proof

(i) Suppose that O ∈ head+(r) for some r ∈ Π and AC(Π)∪{O} has a consistent answer

set S such that S∩Γ = E. By the definition of AC(Π), there is a path from O to literals in

E in the dependency graph7 of the program AC(Π)S ∪{O} where AC(Π)S is the reduct

of AC(Π) by S. In this case, O is reached by reasoning forward from E in ΠS , and S is

an answer set of ΠS ∪ E such that O ∈ S. This implies that Π ∪ E ∪ {← notO} has a

consistent answer set S such that abd(Γ)S = E, and the result holds by Proposition 6.1

(ii) If E ⊆ Γ is an explanation of O, there is Π′ ⊆ Π such that Π′∪abd(Γ)∪{← notO}
has a consistent answer set S satisfying S ∩ Γ = E (Proposition 6.1). Select a minimal

set Π′ of rules such that there is no Π′′ ⊂ Π′ satisfying the above condition. In this case,

abd(Γ)S = E is obtained by reasoning backward from O in (Π′)S , and S is a minimal

set satisfying (Π′)S ∪ ac(Π′)S ∪ {O}. Then, AC(Π′) ∪ {O} has a consistent answer set S

such that S ∩ Γ = E.

In Example 6.1, AC(Π1) ∪ {O} becomes

arrive on time← not accident,

¬ arrive on time← accident.

7 A not-free EDP Π is associated with a dependency graph (V,E) where the nodes V are literals of Π
and there are edges in E from L ∈ body+(r) to L′ ∈ head+(r) for each r ∈ Π.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

180 C. Sakama

not accident← arrive on time,

accident← ¬ arrive on time,
¬ arrive on time←,

which has the answer set S = {¬ arrive on time, accident }. By S ∩ Γ1 = { accident },
E = { accident } is the explanation.

Note that AC(Π) introduces converse of every rule, while explanations are computed

using the AC completion of a subset Π′ ⊆ Π in general (Proposition 6.2(ii)).

Example 6.2

Let Π = { p ← a, q ← ¬a, q ←} and Γ = {a,¬a}. Then O = p has the explanation

E = {a} in 〈Π,Γ 〉, while AC(Π)∪{O} = Π∪{ a← p, ¬a← q, p←} is contradictory.

By putting Π′ = { p← a }, AC(Π′)∪{O} has the consistent answer set S = {p, a} where

S ∩ Γ = {a}.
As illustrated in Example 6.2, abduction and AC completion produce different results in

general.

Abductive logic programs of Kakas et al. (1992) cannot compute explanations

when contrary to the consequent is observed. For instance, consider 〈Π2,Γ2 〉 such

that

Π2 : arrive on time← not accident.

Γ2 : accident.

Given the observation O = ¬ arrive on time, no explanation is obtained from 〈Π2,Γ2 〉.
Generally, a program Π does not necessarily contain a pair of rules r and r′ that define

L and ¬L, respectively. When there is a rule defining L but no rule defining ¬L, abduc-

tion computes no explanation for the observation O = ¬L. The problem is resolved by

reasoning by DC. For the rule r in Π2, sdc(r) becomes

accident← ¬ arrive on time.

Then, SDC(Π2) ∪ {O} computes the explanation { accident }.
In contrast to SDC,WDC is used for abduction from negative observations. A negative

observation represents that some evidence G is not observed, and it is represented as O =

notG, which should be distinguished from the (positive) observation O = ¬G meaning

that ¬G is observed. In the abductive program 〈Π2,Γ2 〉, the negative observation O =

not arrive on time is explained using wdc(r):

accident← not arrive on time.

Then, WDC(Π2) ∪ {O} has the answer set { accident }.
In this way, both AC and DC are used for computing explanations deductively, and

DC is used for computing explanations that are not obtained using the framework of

Kakas et al. (1992). Moreover, AC and DC realize prediction by combining abduction

and deduction.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 181

Example 6.3

Consider (Π3,Γ3) where

Π3 : arrive on time← not accident,

¬ arrive on time← accident,

newspaper ← accident.

Γ3 : accident.

The third rule in Π3 says: if there is an accident, a newspaper will report it. Given the

observation O = ¬ arrive on time, AC(Π3) ∪ {O} |=s newspaper.

As such, AC or DC combines abduction and deduction to realize prediction.

6.2 Counterfactual reasoning

A counterfactual is a conditional statement representing what would be the case if its

premise were true (although it is not true in fact). Lewis (1973) introduces two different

types of counterfactual sentences. Given two different events ϕ and ψ, two counterfac-

tual sentences are considered: “if it were the case that ϕ, then it would be the case

that ψ” (written ϕ�→ ψ) and “if it were the case that ϕ, then it might be the case

that ψ” (written ϕ♦→ ψ). Here (ϕ�→ ψ) implies (ϕ♦→ ψ). We consider coun-

terfactual reasoning such that what would be the case if some facts were not true.

We then realize Lewis’s two types of counterfactual reasoning using DA inference in

ASP.

Definition 6.1 (counterfact)

Let ϕ be a fact of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl ← (1 ≤ k ≤ l).
Then, the counterfact ϕ is the set of facts such that

ϕ = {¬Li ←| 1 ≤ i ≤ k } ∪ {Lj ←| k + 1 ≤ j ≤ l }.
Given a set Σ of facts, define

Σ =
⋃

ϕ∈Σ

ϕ.

We say that Σ satisfies the conjunction “Ll+1, . . . , Lm, not Lm+1, . . . , not Ln” if

{Li ←| l + 1 ≤ i ≤ m} ⊆ Σ and {Lj ←| m+ 1 ≤ i ≤ n} ∩ Σ = ∅.

Definition 6.2 (counterfactual program)

Let Π be a program and Σ a set of facts in Π. Then, a counterfactual program Ω is defined

as

Ω = (Π \ Σ) ∪ Σ ∪ sda(Π).

For λ ∈ Lit, define

Σ �→ λ if Ω |=s λ,

Σ ♦→ λ if Ω |=c λ.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

182 C. Sakama

By definition, Ω is obtained from Π by removing a set Σ of facts, and instead introduc-

ing a set Σ of counterfacts as well as strong DA rules sda(Π). Σ �→ λ (resp. Σ ♦→ λ)

means that if the counterfacts Σ were the case, then λ is included in every (resp. some)

answer set of Ω.

Example 6.4

Consider the program Π:

London ; Paris← not virtual,

virtual← pandemic,

pandemic← .

An event is scheduled to take place in either London or Paris if it is not virtual. The

pandemic turns the event into virtual, however. Suppose a counterfactual sentence: “if

there were no pandemic, the event would not be virtual.” Putting Σ = { pandemic }, Ω

becomes:

London ; Paris← not virtual,

virtual← pandemic,

¬London← virtual,

¬Paris← virtual,

¬ virtual← ¬ pandemic,
¬ pandemic← .

Then, Ω has two answer sets:

{¬ pandemic, ¬ virtual, London },
{¬ pandemic, ¬ virtual, Paris }.

As a result, it holds that

{¬ pandemic}�→ ¬ virtual and {¬ pandemic}♦→ London.

Given a consistent program Π, it might be the case that the program Ω is inconsistent.

To eliminate contradictory Ω, default DA completion is used instead of DA completion.

Define ΩD that is obtained by replacing sda(Π) by its default version sdda(Π) in Defini-

tion 6.2. The next result holds by Proposition 4.4.

Proposition 6.3

Let Π be an EDP and Σ a set of facts in Π. If (Π \Σ) ∪ Σ is consistent, then ΩD is not

contradictory.

Proof

Put Π′ = (Π \ Σ) ∪ Σ. Since facts are set aside in (SD)DA completion, ΩD =

Π′ ∪ sdda(Π) = Π′ ∪ sdda(Π′) = SDDA(Π′). Suppose that SDDA(Π′) has the an-

swer set Lit. Then Π′ has the answer set Lit (Proposition 4.4). Since Π′ is an EDP, Π′

is inconsistent, which contradicts the assumption that Π′ is consistent. Hence, the result

holds.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 183

6.3 Neighborhood inference

Cooperative query answering analyzes the intent of a query and provides associated in-

formation relevant to the query (Chu et al. 1990). Neighborhood inference (Gaasterland

et al. 1992) is a technique used for such a purpose and reasons up/down in a taxonomy

of atoms to reach neighboring solutions.

Example 6.5

A travel agency has flight information represented by the program Π:

travel(LHR,CDG)← flight(AF1681),

travel(LHR,CDG)← flight(BA306),

travel(NRT,CDG)← flight(AF275),

f light(BA306)←, ¬ flight(AF1681)←, f light(AF275)←
where “travel(X,Y) ← flight(Z)” means that a flight Z is used for traveling from X

to Y . Suppose that a customer asks the availability of a flight AF1681 from LHR to

CDG. Unfortunately, no ticket is available on the requested time of a day. The agent

then proposes an alternative flight BA306 that is still available.

In this scenario, from the request flight(AF1681) the agent understands that the cus-

tomer wants to travel from London (LHR) to Paris (CDG). The request flight(AF1681)

is then relaxed to travel(LHR,CDG) and reaches the fact flight(BA306).

Neighborhood inference consists of two steps: generalization from the body to the

head of one rule and specialization from the head to the body of another rule. The

generalization is the inference of affirming the antecedent, while the specialization is

the inference of affirming the consequent. Then, neighborhood inference is realized by

combining AA and AC. In what follows, we consider a binary program Π that consists of

ground rules of the form “L1 ← L2” where L1 and L2 are positive/negative literals (L2

is possibly empty). Π is partitioned into the set of non-factual rules ΠR and the set of

facts ΠF , that is, Π = ΠR ∪ΠF .

Definition 6.3 (neighborhood solution)

Let Π be a binary program such that Π = ΠR ∪ΠF and G a ground literal representing

a request. Define

U = { r | r ∈ ΠR and body+(r) = {G} },
V = { r′ | r′ ∈ ΠR \ U and head+(r′) = head+(r) for some r ∈ U }.

If U and V are non-empty and ΠR ∪ ac(V) ∪ {G} has a consistent answer set S, then

S ∩ΠF is called a neighborhood solution of G.

By definition, the AC completion is applied to a part of the program, which realizes

neighborhood inference based on a request.

Example 6.6 (cont. Example 6.5)

Given the request G = flight(AF1681), U = { travel(LHR,CDG)← flight(AF1681) }
and V = { travel(LHR,CDG) ← flight(BA306) }. Then, ac(V) = { flight(BA306) ←
travel(LHR,CDG) }, and ΠR ∪ ac(V) becomes

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

184 C. Sakama

travel(LHR,CDG)← flight(AF1681),

travel(LHR,CDG)← flight(BA306),

travel(NRT,CDG)← flight(AF275),

f light(BA306)← travel(LHR,CDG).

ΠR ∪ ac(V) ∪ {G} has the answer set

S = { flight(AF1681), f light(BA306), travel(LHR,CDG) }.
Hence, S ∩ΠF = {flight(BA306)} is a neighborhood solution of G.

Proposition 6.4

Let Π be a binary program and G a ground literal representing a request. If U and V

in Definition 6.3 are non-empty and AC(Π) ∪ {G} is consistent, G has a neighborhood

solution.

Proof

Since ΠR ∪ ac(V) ⊆ AC(Π), ΠR ∪ ac(V) ∪ {G} has a consistent answer set S. In this

case, G has a neighborhood solution S ∩ΠF .

7 Related work

There is a number of studies on human conditional reasoning in psychology and cognitive

science. In this section, we focus on related work based on logic programming and its

application to common sense reasoning.

7.1 Completion

The idea of interpreting if-then rules in logic programs as bi-conditional dates back to

Clark (1978). He introduces predicate completion in normal logic programs (NLPs), which

introduces the only-if part of each rule to a program. Given a propositional NLP Π, Clark

completion Comp(Π) is obtained by two steps: (i) all rules “p← B1”, . . . , “p← Bk” in

Π having the same head p are replaced by “p↔ B1 ∨ · · · ∨Bk,” where Bi (1 ≤ i ≤ k) is

a conjunction of literals; and (ii) for any atom p appearing in the head of no rule in Π,

add “p↔ false.” The AC completion introduced in this paper extends the technique to

the class of GEDP, while the result is generally different from Clark completion in NLPs.

For instance, given the program:

Π1 = { p← q, p←},
Clark completion becomes

Comp(Π1) = { p↔ q ∨ �, q ↔ ⊥}
where � and ⊥ represent true and false, respectively. Comp(Π1) has the single completion

model called a supported model (Apt et al. 1988) {p}. In contrast,

AC(Π1) = Π1 ∪ { q ← p }
has the answer set {p, q}. The difference comes from the fact that in Comp(Π1), q is

identified with false but this is not the case in AC(Π1). In Clark completion, undefined

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 185

atoms (i.e. atoms appearing in the head of no rule) are interpreted false. We do not use

this type of completion because it disturbs the basic type of AC reasoning that infers

q from p and “p ← q.” Clark completion is extended to normal disjunctive programs

by several researchers (Lobo et al. 1988; Alviano and Dodaro 2016; Nieves and Osorio

2018). Those extensions reduce to Clark completion in NLPs, so that they are different

from the AC completion. We also introduce the DC completion and the DA completion.

When Π2 = { p ← not q }, Comp(Π2) = { p ↔ ¬q, q ↔ ⊥} has the supported model

{p}. On the other hand,

WDC(Π2) = Π2 ∪ { q ← not p }
has two answer sets {p} and {q}. When Π3 = { p← not q, p← q, q ← p }, Comp(Π3) =

{ p↔ q ∨ ¬q, q ↔ p } has the supported model {p, q}. In contrast,

WDA(Π3) = Π3 ∪ {not p← q, not q, not q ← not p }
has no answer set. As such, completion semantics introduced in this paper is generally

different from Clark completion in NLPs.

The weak completion (Hölldobler and Kencana Ramli 2009) leaves undefined atoms

unknown under 3-valued logic. In the program Π1 = { p← q, p←}, the weak completion

becomes

wcomp(Π1) = { p↔ q ∨ �}
which is semantically equivalent to { p ↔ �}. Then, p is true but q is unknown in

wcomp(Π1), which is again different from AC(Π1) that has the answer set {p, q}. In the

program Π2 = { p← not q }, the weak completion becomes

wcomp(Π2) = { p↔ ¬q }
then both p and q are unknown. In contrast, WDC(Π2) has two answer sets {p} and

{q}, and WDA(Π2) has the single answer set {p}.

7.2 Human conditional reasoning

Stenning and Lambalgen (2008) formulate human conditional reasoning using Clark’s

program completion under the three-valued logic of Fitting (1985). They represent a

conditional sentence “if p then q” as a logic programming rule:8

q ← p ∧ ¬ab
where ab represents an abnormal atom. In this setting, DA is represented as

Π1 = { p← ⊥, q ← p ∧ ¬ab, ab← ⊥}.
The rule “A← ⊥” means that A is a proposition to which the closed world assumption

(Reiter 1978) is applied. If a program does not contain “A ← ⊥,” nor any other rule in

which A occurs in its head, then A is interpreted unknown. Then, its completion

Comp(Π1) = { p↔ ⊥, q ↔ p ∧ ¬ab, ab↔ ⊥}

8 They write it “p ∧ ¬ab→ q” but we use the standard writing in LP.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

186 C. Sakama

derives “q ↔ ⊥.” On the other hand, completion does not realize AC or DC inference by

itself. In their framework, AC is represented as

Π2 = { q ← �, q ← p ∧ ¬ab, ab← ⊥}

while its completion

Comp(Π2) = { q ↔ �∨ (p ∧ ¬ab), ab↔ ⊥}

does not derive p. Likewise, DC is represented as

Π3 = { q ← ⊥, q ← p ∧ ¬ab, ab← ⊥}

while its completion

Comp(Π3) = { q ↔ ⊥∨ (p ∧ ¬ab), ab↔ ⊥}

does not derive “p ↔ ⊥.” They then interpret “q ← p ∧ ¬ab” as an integrity constraint

meaning that “if q succeeds (resp. fails) then “p ∧ ¬ab” succeeds (resp. fails)” to get the

AC consequence p (resp. DC consequence ¬p).
Stenning and Lambalgen (2008) characterize the suppression task in their formulation.

The sentence “If she has an essay to write then she will study late in the library” is

represented as:

library ← essay ∧ ¬ab1.
Given the negation of antecedent ¬essay (or equivalently, the CWA rule “essay ← ⊥”),

the completed program:

library ↔ essay ∧ ¬ab1,
ab1 ↔ ⊥,
essay ↔ ⊥

derives “library ↔ ⊥”. Next, suppose that the conditional with an alternative an-

tecedent: “If she has some textbooks to read then she will study late in the library”

is given. The program becomes

library ← essay ∧ ¬ab1,
library ← text ∧ ¬ab2.

Given the fact ¬essay (or equivalently, the CWA rule “essay ← ⊥”), the completed

program:

library ↔ (essay ∧ ¬ab1) ∨ (text ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥,
essay ↔ ⊥

does not derive “library ↔ ⊥”. Thus, the DA inference is suppressed. They also charac-

terize Byrne’s suppression of valid inference. Suppose the conditional with an additional

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 187

antecedent: “If the library stays open then she will study late in the library.” The program

becomes

library ← essay ∧ ¬ab1,
library ← open ∧ ¬ab3.

They also introduce interaction of abnormality atoms as

ab1 ← ¬open,
ab3 ← ¬essay.

Completing these four rules with “ab1 ← ⊥” and “ab3 ← ⊥” produces

library ↔ (essay ∧ ¬ab1) ∨ (open ∧ ¬ab3),

ab1 ↔ ¬open ∨ ⊥,
ab3 ↔ ¬essay ∨ ⊥,

which reduces to

library ↔ open ∧ essay.
Then, essay alone does not deduce library, so the AA inference is suppressed.

Stenning and Lambalgen (2008) argue that most people represent the effect of an addi-

tional premise formally as “p ← q ∧ r” and that of an alternative premise formally as

“p← q ∨ r.” This argument coincides with our view addressed in Section 5.1.

Dietz et al. (2012) point out a technical flaw in the formulation by Stenning and

Lambalgen (2008). In the above example, open and library are unknown (U) under the

3-valued logic, then the rule “library ← open ∧ ¬ab3” becomes “U ← U.” Under the

Fitting semantics, however, the truth value of the rule “U ← U” is U, then it does not

represent the truth of the rule “library ← open ∧ ¬ab3.” To remedy the problem, they

employ �Lukasiewicz’s 3-valued logic which maps “U← U” to �. Dietz et al. (2012) also

characterize the suppression effects in AC or DC using an abductive logic program 〈Π,Γ 〉
with abducibles Γ = { p← ⊥, p← �}. Consider 〈Π1,Γ1 〉 where

Π1 : library ← essay ∧ ¬ab1,
ab1 ← ⊥,

Γ1 : essay ← ⊥, essay ← �,
the weakly completed program of Π1 becomes

library ↔ essay ∧ ¬ab1,
ab1 ↔ ⊥.

The observation O = (library ↔ �) derives “essay ↔ �,” then “essay ← �” is the

skeptical explanation of O. When the additional rules and abducibles

Π2 : library ← text ∧ ¬ab2,
ab2 ← ⊥,

Γ2 : text← ⊥, text← �

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

188 C. Sakama

are given, the weakly completed program of Π1 ∪Π2 becomes

library ↔ (essay ∧ ¬ab1) ∨ (text ∧ ¬ab2),

ab1 ↔ ⊥,
ab2 ↔ ⊥.

The observation O = (library ↔ �) derives “essay ∨ text ↔ �,” and there are two

credulous explanations “essay ← �” and “text← �” in Γ1 ∪ Γ2. In this case, “essay ←
�” is not concluded under skeptical reasoning, which represents the suppression of AC.

Comparing the above mentioned two studies with our approach, there are several differ-

ences. First, they translate a conditional sentence “if p then q” into the rule “q ← p∧¬ ab.”
However, it is unlikely that people who commit logical fallacies, especially younger chil-

dren (Rumain et al. 1983), translate the conditional sentence into the rule of the above

complex form in their mind. We represent the conditional sentence directly as “q ← p”

and assume that people would interpret it as bi-conditional depending on the context

in which it is used. Second, in order to characterize AC or DC reasoning, Stenning

and Lambalgen (2008) interpret a conditional sentence as an integrity constraint, while

Dietz et al. (2012) use abductive logic programs. Our framework does not need a specific

interpretation of rules (such as integrity constraints) nor need an extra mechanism of

abductive logic programs. Third, they use a single (weak) completion for all AC/DA/DC

reasoning, while we introduce different types of completions for each inference. By sep-

arating respective completions, individual inferences are realized in a modular way and

freely combined depending on their application context. For instance, we use AC and

(S)DA completion to characterize the suppression task (Section 5.1), while use AC and

(W)DC completion to characterize Wason selection task (Section 5.2). Fourth, they han-

dle normal logic programs, while our framework can handle a more general class of logic

programs containing disjunction and two different types of negation. For instance, con-

sider the rule: “buy car ; buy house ← win lottery” (if she wins the lottery, she buys

a car or a house). When it is known that buy car is true, one may infer win lottery

by AC inference. The AC completion realizes such an inference by introducing rules:

“win lottery ← buy car” and “win lottery ← buy house.”

Cramer et al. (2021) represent conditionals as in Stenning and Lambalgen (2008) and

use the weak completion and abductive logic programs as in Dietz et al. (2012). They

formulate different types of conditionals based on their contexts and argue in which case

AC or DC is more likely to happen. More precisely, a conditional sentence whose conse-

quent appears to be obligatory given the antecedent is called an obligation conditional.

An example of an obligation conditional is that “if Paul rides a motorbike, then he must

wear a helmet.” If the consequence of a conditional is not obligatory, then it is called a

factual conditional. The antecedent A of a conditional sentence is said to be necessary iff

its consequent C cannot be true unless A is true. For example, the library’s being open is

a necessary antecedent for studying in the library. Cramer et al. argue that AA and DA

occur independently of the type of a conditional. On the other hand, in AC most people

will conclude A from “A⇒ C” and C, while the number of people who conclude nothing

will increase if A is a non-necessary antecedent. In DC, most people will conclude ¬A
from “A⇒ C” and ¬C, while the number of people who conclude nothing will increase if

the conditional is factual. Those assumptions are verified by questioning participants who

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 189

do not receive any education in logic beyond high school training. They then formulate

the situation by introducing the abducible “C ← �” if the antecedent is non-necessary,

and “ab ← �” if the conditional is factual. In the former case, the observation C does

not imply A because the additional “C ← �” can make C explainable by itself. As a

result, A is not a skeptical explanation of C. In the latter case, the observation ¬C does

not imply ¬A because if one employs the explanation “ab ← �” then “C ← A ∧ ¬ab”
does not produce “C ↔ A.”

Dietz et al. (2022) use logic programming rules to represent different types of condi-

tionals. For instance,

concl← prem(x), sufficient(x)

represents MP that concl follows if a sufficient premise is asserted to be true. By contrast,

not concl← not prem(x), necessary(x)

represents DA that concl does not follow if a necessary premise is asserted to be false.

With these rules, Byrne’s suppression effect is represented as follows. First, given the

fact prem(essay) and sufficient(essay),

library← prem(essay), sufficient(essay)

implies library. Next, given the additional fact necessary(open) and in the absence of

prem(open)

not library← not prem(open), necessary(open)

has the effect of withdrawing library. In the current study, we do not distinguish different

types of conditionals as in Cramer et al. (2021) and Dietz et al. (2022). However, com-

pletion is done for individual rules, so we could realize partial completion by selecting

rules Π′ ⊆ Π that are subject to be completed in practice. More precisely, if a program

Π consists of rules R1 having necessary antecedents and R2 having non-necessary an-

tecedents, apply AC completion to R1 while keep R2 as they are. The resulting program

then realizes AC inference using R1 only. Likewise, if a program Π consists of rules R3

having obligatory consequents and R4 having factual consequents, apply DC completion

to R3 while keep R4 as they are. The resulting program then realizes DC inference using

R3 only. Such a partial completion is also effectively used for commonsense reasoning in

this paper (Proposition 6.2(ii), Definition 6.3).

7.3 Commonsense reasoning

Console et al. (1991) and Fung and Kowalski (1997) compute abduction by deduction

using Clark completion. Abduction using AC and DC completion is close to those ap-

proaches, while the approach based on Clark completion is restricted to normal logic

programs (NLPs). We argued that a (positive) observation O = ¬G is distinguished

from a negative observation O = notG, but such a distinction is not considered in NLPs

handling only default negation. Inoue and Sakama (1999) introduce transaction pro-

grams to compute extended abduction. Extended abduction computes explanations for

not only (positive) observations but also negative ones. A transaction program is con-

structed based on the converse of conditionals, and its semantics is operationally given

as a fixpoint of the program. A transaction program is a meta-level specification of the

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

190 C. Sakama

procedure and is different from the current approach. Moreover, a transaction program

is defined for NLPs only.

Pereira et al. (1991, 2017) realize counterfactual reasoning in logic programming. In

Pereira et al. (1991), a counterfactual conditional “ϕ > ψ” (meaning ϕ�→ ψ) is evalu-

ated in a program Π by adding ϕ to Π and computing the maximal non-contradictory

submodels of the new program. Then, the counterfactual conditional is true iff ψ holds

in all such submodels. Pereira and Saptawijaya (2017) first use abduction to compute

possible causes of an event. Next, they assume counterfactual assumption and verify

whether an expected outcome will happen under possible causes. These studies consider

extended/normal logic programs under the well-founded semantics and realize counter-

factual reasoning via program revision or abductive reasoning. Unlike our approach, they

do not introduce new rules for DA inference in counterfactual reasoning.

Gaasterland et al. (1992) introduce neighborhood inference for query answering in

Horn logic programs. The scope of a query is expanded by relaxing the specification,

which allows a program to return answers related to the original query. They introduce

a meta-interpreter to realize it and argue for control strategies. We show that similar

reasoning is simulated in ASP using the AC completion.

8 Conclusion

This paper studies a method of realizing human conditional reasoning in ASP. Different

types of completions are introduced to realize logically invalid inferences AC and DA as

well as a logically valid inference DC. They are applied to representing human reasoning

tasks in the literature and are also used for computing common sense reasoning in AI. In

psychology and cognitive science, empirical studies show that people perform AC, DA,

or DC inference depending on the context in which a conditional sentence is used. We

could import the results of those studies and encode knowledge in a way that people

are likely to use it. The proposed theory is used for such a purpose to realize pragmatic

inference in ASP and produce results that are close to human reasoning in practice.

Completions introduced in this paper are defined in a modular way, so one can apply

respective completion to specific rules of a program according to their contexts. They are

combined freely and can be mixed in the same program. Those completions are general

in the sense that they are applied to logic programs containing disjunction, explicit, and

default negation. Since a completed program is still in the class of GEDPs and a GEDP

is transformed to a semantically equivalent EDP (Inoue and Sakama 1998), answer sets

of completed programs are computed using existing answer set solvers.

References

Alviano, M. and Dodaro, C. 2016. Completion of disjunctive logic programs. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence, 886–892.

Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a theory of declarative knowl-
edge. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan
Kaufmann, 89–148.

Braine, M. D. S. 1978. On the relation between the natural logic of reasoning and standard
logic. Psychological Review 85, 1–21.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

Human conditional reasoning in answer set programming 191

Braine, M. D. S. and O’Brien, D. P. Eds. 1998. Mental Logic. Erlbaum, Mahwah, NJ.

Byrne, R. M. J. 1989. Suppressing valid inferences with conditionals. Cognition 31, 1, 61–83.

Byrne, R. M. J. 2005. The Rational Imagination: How People Create Alternatives to Reality.
MIT Press, Cambridge, MA.

Cheng, P. W. and Holyoak, H. J. 1985. Pragmatic reasoning schemas. Cognitive Psychology
17, 391–416.

Chu, W. W., Chen, Q. and Lee, R.-C. 1990. Cooperative query answering via type abstraction
hierarchy. In Cooperating Knowledge Based Systems, S. M. Deen, Ed. Springer, 271–290.

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,
Eds. Plenum Press, 293–322.

Console, L., Dupré, D. T. and Torasso, P. 1991. On the relationship between abduction
and deduction. Journal of Logic and Computation 1, 661–690.

Cosmides, L. and Tooby, J. 1992. Cognitive adaptions for social exchange. In The Adapted
Mind: Evolutionary Psychology and the Generation of Culture, J. Barkow, L. Cosmides and
J. Tooby, Eds. Oxford University Press, New York, 163–228.

Cramer, M., Hölldobler, S. and Ragnl, M. 2021. Modeling human reasoning about con-
ditionals. In Proceedings of the 19th International Workshop on Non-Monotonic Reasoning
(NMR-21), 223–232.

Dietz, E., Fichte, J. K. and Hamiti, F. 2022. A quantitative symbolic approach to individual
human reasoning. In Proceedings of the 44th Annual Conference of the Cognitive Science
Society, 2838–2846.

Dietz, E., Hölldobler, S. and Ragni, M. 2012. A computational approach to the suppression
task. In Proceedings of the 34th Annual Conference of the Cognitive Science Society, 1500–
1505.

Eichhorn, C., Kern-Isberner, G. and Ragni, M. 2018. Rational inference patterns based
on conditional logic. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI-18), 1827–1834.

Fitting, M. 1985. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming
2, 295–312.

Fung, T. H. and Kowalski, R. 1997. The iff procedure for abductive logic programming.
Journal of Logic Programming 33, 151–165.

Gaasterland, T., Godfrey, P. and Minker, P. 1992. Relaxation as a platform for cooper-
ative answering. Journal of Intelligence Information Systems 1, 3/4, 293–321.

Geis, M. L. and Zwicky, A. 1971. On invited inferences. Linguistic Inquiry 2, 561–566.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3&4, 365–385.

Griggs, R. A. and Cox, J. R. 1982. The elusive thematic-materials effect in Wason’s selection
task. British Journal of Psychology 73, 3, 407–420.

Hölldobler, S. and Kencana Ramli, C. D. 2009. Logic programs under three-valued
Lukasiewicz’s semantics. In Proceedings of the 25th International Conference on Logic Pro-
gramming. Lecture Notes in Computer Science, vol. 5649. Springer, 464–478.

Horn, L. R. 2000. From if to iff: Conditional perfection as pragmatic strengthening. Journal of
Pragmatics 32, 289–326.

Inoue, K. and Sakama, C. 1998. Negation as failure in the head. Journal of Logic Programming
35, 1, 39–78.

Inoue, K. and Sakama, C. 1999. Computing extended abduction through transaction pro-
grams. Annals of Mathematics and Artificial Intelligence 25, 3&4, 339–367.

Johnson-Laird, P. N. 1983. Mental Models. Harvard University Press, Cambridge, MA.

Kakas, A. C., Kowalski, R. A. and Toni, F. 1992. Abductive logic programming. Journal
of Logic and Computation 2, 6, 719–770.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

192 C. Sakama

Kowalski, R. A. 2011. Computational Logic and Human Thinking: How to be Artificially In-
telligent. Cambridge University Press.

Lewis, D. 1973. Counterfactuals. Blackwell Publishing.

Lifschitz, V., Pearce, D. and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541.

Lifschitz, V. and Woo, T. Y. C. 1992. Answer sets in general nonmonotonic reasoning
(preliminary report). In Principles of Knowledge Representation and Reasoning: Proceedings
of the Third International Conference, B. Nebel, C. Rich and W. Swartout, Eds. Morgan
Kaufmann, 603–614.

Lobo, J., Minker, J. and Rajasekar, A. 1988. Weak completion theory for non-Horn pro-
grams. In Proceedings of the Fifth lnternational Conference and Symposium on Logic Pro-
gramming, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Cambridge, MA, 828–842.

Nieves, J. C. and Osorio, M. 2018. Extending well-founded semantics with Clark’s completion
for disjunctive logic programs. Hindawi Scientific Programming, Article ID 4157030.

Oaksford, M. and Chater, N. 2001. The probabilistic approach to human reasoning. Trends
in Cognitive Science 5, 349–357.

Pereira, L. P., Apaŕıcio, J. N. and Alferes, J. J. 1991. Counterfactual reasoning based
on revising assumptions. In Logic Programming, Proceedings of the 1991 International Sym-
posium. MIT Press, 566–577.

Pereira, L. P. and Saptawijaya, A. 2017. Counterfactuals in logic programming. In Pro-
gramming Machine Ethics. Springer, 81–93.

Reiter, R. 1978. On closed world data bases. In Logic and Data Bases, H. Gallaire and J.
Minker, Eds. Plenum Press, 119–140.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13, 81–132.

Rumain, B., Connell, J. and Braine, M. D. S. 1983. Conversational comprehension processes
are responsible for reasoning fallacies in children as well as adults: IF is not the biconditional.
Developmental Psychology 19, 471–481.

Sakama, C. and Inoue, K. 1995. Paraconsistent stable semantics for extended disjunctive
programs. Journal of Logic and Computation 5, 3, 265–285.

Stenning, K. and van Lambalgen, M. 2008. Human Reasoning and Cognitive Science. MIT
Press.

Wason, P. C. 1968. Reasoning about a rule. Quarterly Journal of Experimental Psychology 20,
273–281.

Wason, P. C. and Shapiro, D. 1971. Natural and contrived experience in a reasoning problem.
Quarterly Journal of Experimental Psychology 23, 63–71.

https://doi.org/10.1017/S1471068423000376 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000376

	Introduction
	Preliminaries
	Human conditional reasoning in ASP
	AC completion
	DC completion
	DA completion

	AC and DA as default reasoning
	Default AC completion
	Default DA completion

	Characterizing human reasoning tasks
	Suppression task
	Wason selection task

	Applications to commonsense reasoning
	Abduction and prediction
	Counterfactual reasoning
	Neighborhood inference

	Related work
	Completion
	Human conditional reasoning
	Commonsense reasoning

	Conclusion
	References

