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Mordell–Lang conjecture for function fields in

characteristic zero, revisited

Anand Pillay

Abstract

We give an elementary proof of the function field (or geometric) case of the Mordell–Lang
conjecture in characteristic zero.

1. Introduction

In this paper a short proof of the following is given.

Theorem 1.1. Let k < K be algebraically closed fields of characteristic zero. Let A be a semi-
abelian variety over K, X an irreducible subvariety of A also over K, and Γ a subgroup of A(K) of
finite rational rank (that is Γ⊗ZQ is finite-dimensional as a Q-vector space). Suppose that Γ∩X(K)
is Zariski-dense in X and that X has trivial stabilizer in A. Then, after possibly replacing X by a
translate, there are a semi-abelian subvariety A1 of A containing X, and an isomorphism f of A1

with a semi-abelian variety A2 defined over k, such that f(X) is also defined over k.

The proof uses the differential-algebraic set-up as in [Bui92b] and [Hru96] but replaces Buium’s
analytic arguments and Hrushovski’s appeal to the deep results on Zariski geometries [HZ96] and
some model theory of groups of finite Morley rank, by considerations from [PZ01] involving linear
differential equations on k-jets. Buium [Bui92b] essentially proves Theorem 1.1 in the case where A
is an abelian variety. The full statement of Theorem 1.1 is proved in [Hru96]. As stated in [PZ01]
the main result (Theorem 2.5) of [PZ01] (which is stated there in model-theoretic language) can be
plugged into the final part of Hrushovski’s proof of Theorem 1.1 to give a substantial simplification.
Nevertheless, it is considered worthwhile to give a direct account of the simplified proof, avoiding
model-theoretic language.

It is worth remarking that a much stronger theorem than Theorem 1.1 is true (the absolute
Mordell–Lang conjecture), proved in full generality by McQuillan [McQ95], using heavily work and
ideas of Faltings [Fal91], Vojta [Voj96], Raynaud [Ray83], and Hindry [Hin88]. Namely under the
hypotheses of Theorem 1.1, the conclusion is that X is trivial (a point). As far as it is understood
the most difficult case is when A is defined over a number field and when Γ is finitely generated.
For A an abelian variety this is treated in [Fal94] and in general (A semi-abelian) in [Voj96].
Specialization and other arguments are used to reduce to this case. A discussion of some of
these specialization arguments appears in [Maz00]. Of course, Theorem 1.1 also provides a rather
direct reduction to the number field case.

Let us also remark that included in Theorem 1.1 is Mordell’s conjecture over function fields,
which was proved in the 1960s by Manin [Man63], with proofs by Grauert [Gra65] and Parshin
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[Par68] following shortly thereafter. An account of the methods in these latter papers appears in
Chapter VI of [Lan97].

The author considers it a major challenge to find an elementary proof of Theorem 1.1 in the
positive characteristic case (and where prime to p division points are used rather than all division
points). The only known proof is Hrushovski’s [Hru96] which makes use of the Zariski geometries
results applied to separably closed fields. As pointed out in [PZ01] the methods of the present paper
work in the positive characteristic case if A is an ordinary abelian variety. But this case is already
treated in [AV92].

The referee pointed out to us that the idea of performing descent to the constants using the
theory of linear differential equations together with a ‘Gauss map’ from the variety in question
to a certain Grassmanian, already appears in [Bui94], where Buium gives an algebraic proof of
Mordell–Lang for function fields of characteristic zero in the ‘non-hyperelliptic case’. In [Bui94],
the Grassmanian in question was associated to a tangent space. In the present paper, we use a
Grassmanian of subspaces of a suitable jet space, and the hypothesis of ‘non-hyperellipticity’ in
[Bui94] can be removed.

2. Algebraic D-groups and the proof of Theorem 1.1

The main new aspect of our treatment is a rather direct proof of a (new, although implicit in [PZ01])
‘isotriviality’ result for ‘algebraic D-groups’. The category of algebraic D-groups was introduced by
Buium in [Bui92a]. We give a quick description of the category and then state and prove our main
lemma.

We work in characteristic zero. Let F be a field equipped with a derivation ∂. Let k be the
field of constants of F (set of elements killed by ∂). We will take (F, ∂) to be differentially closed,
that is, any finite system of differential polynomial equations and inequations over F with a com-
mon solution in a differential field extension of (F, ∂) already has a solution in F . (However, all
the definitions make sense for arbitrary (F, ∂).) Buium defines an algebraic D-variety to be an
irreducible variety X over F equipped with a derivation ∂X on the structure sheaf of X which
extends ∂. Algebraic D-varieties form a category in the natural way. If G is a connected algebraic
group over F , and ∂G respects multiplication and inversion (in the obvious sense), he speaks of an
algebraic D-group. ∂X as above is a kind of twisted vector field on X and it will be useful to make
this formalism more explicit. We describe briefly a functor τ defined on varieties over F , taking
account of the derivation ∂. If the variety X is locally defined by a system of polynomial equations
P1(X1, . . . ,Xn) = 0, . . . , Pr(X1, . . . ,Xn) = 0 over F , then τ(X) will be locally defined by these
equations together with

∑
i=1,...,n

(
∂Pj

∂Xi

)
(X1, . . . ,Xn)vi + P ∂

j (X1, . . . ,Xn) = 0,

for j = 1, . . . , r where P ∂ is obtained from P by hitting the coefficients of P with the derivation ∂.
τ(X) is a variety over F , irreducible if X is smooth, and comes with a canonical surjection to X.
If X happens to be defined over k, τ(X) is precisely T (X), the Zariski tangent bundle of X. τ is a
functor, so if G is an algebraic group over F , then τ(G) is equipped with an algebraic group structure
such that τ(G) → G is a homomorphism. (So for G defined over k, this is the usual algebraic group
structure on T (G).) See [Mar00] for more details on the functor τ applied to algebraic groups.

We define an algebraic D-group to be a pair (G, s) where G is a connected algebraic group over
F and s : G → τ(G) is a section which is also a homomorphism of algebraic groups (over F ). If X
is a subvariety of G we say that X is a D-subvariety of (G, s) if s|X : X → τ(X) ⊆ τ(G). If f :
G1 → G2 is a homomorphism of algebraic groups then the functoriality of τ yields a homomorphism
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τ(f) : τ(G1) → τ(G2) commuting with the canonical surjections to G1, G2. So a morphism between
algebraic D-groups (G1, s1) and (G2, s2) is a rational homomorphism f : G1 → G2 such that
τ(f) · s1 = s2 · f . This agrees with Buium’s definitions.

We will call the algebraic D-group (G, s) split, or strongly isotrivial, if there is an algebraic group
G0 defined over k such that (G, s) is isomorphic to (G0, s0) where s0 : G0 → T (G0) is the 0-section.

We now give some final notation. Given an algebraic D-variety (X, s), (X, s)� (or just X� if
s is understood) denotes {x ∈ X(F ) : ∂(x) = s(x)}. This is a Zariski-dense subset of X(F ). If,
moreover, (G, s) is an algebraic D-group, then G� is a subgroup of G(F ). (G� is a finite-dimensional
differential algebraic group in the sense of Kolchin, and every such group arises this way.)

Our main result is as follows.

Theorem 2.1. Suppose that (G, s) is an algebraic D-group, X is a D-subvariety of (G, s), and
Stab(X) = {g ∈ G : g · X = X} is trivial, namely equals {e} where e is the identity element
of G. Assume also that e ∈ X and X generates G in the sense that multiplication takes some
X±1 × X±1 × · · · × X±1 onto G. Then (G, s) is strongly isotrivial.

Before giving the proof let us remark that it is related to (and even motivated by) Campana’s
proof [Cam80] of a result of Ueno: if A is a complex torus and X an analytic subvariety of A with
trivial stabilizer, then X is an algebraic variety.

Proof of Theorem 2.1. By assumption e ∈ X. For p � 1 let jp(G)e, the p-jet of G at e, be the
dual space to m/mp+1 where m is the maximal ideal of the local ring of G at e. jp(G)e is a
finite-dimensional F -vector space. Similarly, if Y is a subvariety of G passing through e, we obtain
jp(Y )e as a F -subspace of jp(G)e. If Y is a member of an algebraic family of subvarieties, all
passing through e, then Y is determined (in this family) by jp(Y )e ⊆ jp(G)e for sufficiently large p.
As Stab(X) is trivial, for t1, t2 ∈ G, Xt−1

1 = Xt−1
2 if and only if t1 = t2. For t ∈ X, Xt−1 contains e.

Thus, for sufficiently large p, the map taking t ∈ X to jp(Xt−1)e gives a birational embedding h
of X into Grr(jp(G)e), the variety of r-dimensional subspaces of jp(G)e for suitable values of r.
Let us fix such p. By virtue of s, the local ring of G at e is equipped with a derivation extending ∂,
making it into a differential ring. As e ∈ G�, all powers of the maximal ideal m of this local ring
are differential ideals. It follows that V = m/mp+1 is equipped with the structure of a ∂-module
(V,DV ) over F . The dual space jp(G)e = V ∗ of V is equipped with the dual connection DV ∗ :
(DV ∗(λ))(v) = ∂(λ(v)) − λ(DV (v)). So (V ∗,DV ∗) is a ∂-module. As F is differentially closed, the
theory of linear differential equations gives us a fundamental system of solutions of the equation
DV ∗ = 0 on V ∗, that is a tuple d = (d1, . . . , dn) of elements of V ∗ which is simultaneously an F -basis
of V ∗ and a k-basis of the solution space (V ∗)∂ of DV ∗ = 0. Note that (V ∗)∂ is precisely the set of
λ ∈ V ∗ such that λ(DV (v)) = ∂(λ(v)) for all v ∈ V . In any case, the basis d yields an identification
of V ∗ with Fn and (V ∗)∂ with kn.

Now suppose that t ∈ X�. Then Xt−1 is a D-subvariety of G and e ∈ (Xt−1)�. (Xt−1, s|(Xt−1))
imposes on the local ring of Xt−1 at e a differential ring structure which is clearly induced by that
on the local ring of G at e. As e ∈ (Xt−1)� the maximal ideal mt, say, of the local ring of (Xt−1)
at e is again a differential ideal. Let Wt = jp(Xt−1)e. Then Wt is a ∂-submodule of (V ∗,DV ∗).
As above, the solution space W ∂

t of DV ∗ = 0 on Wt is Zariski-dense in Wt. Identifying Wt with an
r-dimensional subspace of Fn, via the basis d, we see that the set of k-points of Wt is Zariski-dense,
whence Wt is defined over k. Thus Wt = jp(Xt−1)e is a k-rational point of Grr(Fn). We have
obtained a birational isomorphism h of X with a subvariety Y of Grr(Fn) such that, for generic
t ∈ X�, h(t) is rational over k. Note that, as X� is Zariski-dense in X, Y is defined over k. It is
now rather routine, using Weil’s theorem, to find an algebraic group G0 defined over k satisfying
the conclusion of Theorem 2.1. We will give some details.
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Let K be an algebraically closed subfield of F of finite transcendence degree over which all the
data G, s,X, d are defined and such that K is algebraically independent from k over k0 = K ∩ k.
There is no harm in assuming F to be a universal differential field (in the sense of Kolchin). We can
find a generic point t of X over K such that t ∈ X�. From the previous paragraph we find some
tuple c from k, such that t and c are birational over K, that is K(t) = K(c). Write c = f(t) where
f is a K-rational generically defined generically invertible function on X. Let t1, . . . , ts, say, be
generic independent (over K) elements of X such that the product g of the ti in G is a generic
point of G over K, and such that all ti ∈ X�. Note that g ∈ G�. Let ci = f(ti). So ci ∈ k are
independent over k0, and we find g′ ∈ k0(c1, . . . , cs) birational with g over K. Write g′ = f ′(g);
again f ′ is K-rational and invertible. Let g1, g2 be chosen exactly like g, and independent over K.
Let g′i = f ′(gi) for i = 1, 2. Let g3 be the product of g1 and g2 in G. So g3 ∈ G� and f ′(g3) = g′3
is rational over k too. g′1, g′2, g′3 are generic points of a variety W say defined over k0, and each is
k0-rational over the other two. By virtue of the construction, W is equipped with a generic group
law and so is birationally isomorphic over k0 to an algebraic group G0 defined over k0 such that
g′3 = g′1 · g′2. Moreover, f ′ induces a K-rational isomorphism of G with G0. By construction f ′ takes
G� to G0(k). It follows that f ′ is also an isomorphism of algebraic D-groups between (G, s) and
(G0, s0), where s0 : G0 → T (G0) is the 0-section.

We now complete the proof of Theorem 1.1. The global structure of the proof remains that
of Hrushovski [Hru96], and uses Buium’s construction [Bui92b] of a ‘finite-dimensional differential
algebraic’ subgroup of A containing Γ.

Proof of Theorem 1.1. We may assume Γ to be Zariski-dense in A. By possibly enlarging K we
can choose a derivation ∂ on K whose field of constants is precisely k and such that (K,∂) is
differentially closed. We may assume (K,∂) is universal in the sense of Kolchin. Buium (§ 2 of
[Bui92b]) produces a finite-dimensional differential algebraic subgroup of A(F ) containing Γ. Strictly
speaking he does this assuming A to be an abelian variety. In [Hru96] it is stated that this also
goes through in the semi-abelian case. Alternatively, it follows from statement C5 in Appendix C
of [Bui92a]. In any case, in the algebraic D-group formalism, Buium’s construction amounts to the
following.

There is a connected commutative algebraic D-group (G, s) and a surjective homomorphism
(of algebraic groups) π : G → A such that:

i) L = ker(π) is unipotent (and is thus the unipotent radical of G, as A is semi-abelian);

ii) π|G� is injective;

iii) Γ ⊂ π(G�).

Let X1 be the Zariski closure in G of π−1(X) ∩G�. Then X1 is a (possibly reducible) D-subvariety
of G. Replacing X1 by a suitable irreducible component, we obtain a D-subvariety X2 of G
such that π maps X2 into a Zariski-dense subset of X (using the Zariski-denseness of Γ ∩ X in
X).

Claim. X2 has trivial stabilizer in G.

Proof. Stab(X2) is a D-subgroup of G, so if non-trivial it has a non-trivial point a in G�. But then
π(a) is a non-trivial point in Stab(X) in A, contradiction.

Replacing X2 by a translate by a point of X�
2 we may assume that e ∈ X2. Let G0 be the

connected algebraic subgroup of G generated by X. Then G0 is a D-subgroup of (G, s) and X2

a D-subvariety. By Theorem 2.1, we may assume that (G0, s) is defined over k and s is the
0-section. But then G�

0 is precisely G0(k). As (by item i) L = ker(π) is the unipotent radical
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of G, L1 = ker(π|G0) is the unipotent radical of G0, so if non-trivial it has non-trivial points in
G0(k). But this contradicts item ii. Thus π|G0 is an isomorphism with an algebraic subgroup G1 of
G. Clearly π(X2) is a translate of X. Finally, as X2 is a D-subvariety of G0 and s = 0 we see that
X2 is defined over k. This completes the proof of Theorem 1.1.
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