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Abstract. The power of asteroseismology relies on the ability to infer the stellar structure
from the unambiguous frequency identification of the corresponding pulsation mode. Hence, the
use of a Fourier transform is in the basis of asteroseismic studies. Nevertheless, the difficulties
with the interpretation of the frequencies found in many stars lead us to reconsider whether
Fourier analysis is the most appropriate technique to identify pulsation modes. We have found
that the data, usually analyzed using Fourier techniques, present a non-analyticity originating
from the lack of connectivity of the underlying function describing the physical phenomena.
Therefore, the conditions for the Fourier series to converge are not fulfilled. In the light of these
results, we examine in this talk some stellar light curves from different asteroseismology space
missions (CoRoT, Kepler and SoHO) in which the interpretation of the data in terms of Fourier
frequencies becomes difficult. We emphasize the necessity of a new interpretation of the stellar
light curves in order to identify the correct frequencies of the pulsation modes.
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1. Overview
Asteroseismology has been very fruitful since the launch of space satellites but some

old problems remain unsolved: the non-detection of the solar g-modes in the solar spec-
trum is a good example. Another persistent problem is the poor modelling of outer layers
of the Sun requiring an ad-hoc correction now extended to solar-like stars by Kjeldsen
et al. (2008). No physical justification for this correction has ever been given. The pres-
ence of constant stars within the instability strip of δ Scuti and γ Dor stars (Guzik et al.,
these proceedings) is another puzzle. More importantly, the range and number of fre-
quencies detected in many pulsating stars observed by satellites are not yet understood.
For instance, the observed instability range of the 422 frequencies of the δ Scuti star
HD 174936 could not be reproduced by any model (Garćıa Hernández et al. 2009). For
HD 50844 (Poretti et al. 2009), prewhitening of more than a thousand frequencies yielded
a bushy structure in its residuals, very different from the expected white noise. HD 50870
is another example showing the same phenomenon (Mantegazza et al. 2012). Addition-
ally, the analysis of the γ Dor star HD 49434 by Chapellier et al. (2011) showed that the
amplitudes of new frequency components decrease exponentially as the number of fitted
frequencies increases linearly. All the mentioned cases come from the observations made
by the CoRoT satellite (Auvergne et al. 2009), but recently some paradigmatic cases have
appeared in Kepler ’s sample of pulsating stars (Gilliland et al. 2010): high frequencies
in the oscillation spectrum of the δ Scuti star KIC 4840675 of unknown nature (Balona
et al. 2012), or KIC 8677585, the only roAp star in which low frequencies are clearly
detected (Balona et al. 2013).

All the efforts made to explain frequency spectra have been always on the side of the
theoretical modelling, never questioning the analysis, which is supposed to be consistent
but never has been tested. We put the focus here on this possibility.
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2. Methods
Normally we use a DFT to calculate the periodogram (Scargle 1982) and perform

a frequency detection based on a Fisher test. The consistency of this operation is due
to Parseval’s theorem (Kaplan 1992). The DFT and its inverse are approximations to
an expansion in Fourier series. When the Fourier series does not converge the function
has no expansion and the DFT has no sense. Therefore it is very important to check
if the underlying function of a discrete series can be expanded in Fourier series and
this is only guaranteed when the function is analytic (van Dijk 2009). Then, before
applying any further analysis we should test the analyticity characterized here through
the differentiability.

Now, to perform the differentiability analysis of the underlying function our approach
is to study how compactly connected the discrete data are through a property called
connectivity. We remark here that what we are studying is the differentiability of the
continuous function underlying the discrete data and not the discrete data themselves.

The connectivity Cn of a data point xn is defined as

Cn = εf
n − εb

n with εf
n , εb

n defined as (2.1)

εf
n = xf

n − xn

εb
n = xb

n − xn

where xf
n and xb

n are forward and backward extrapolations respectively made from the
data bracketing a datapoint xn . From these equations the numerical approximation of
the point derivative Dn at xn can be expressed through the connectivity as:

Dn =
Cn + xn+1 − xn−1

2Δt
(2.2)

which reduces to the typical point derivative for discrete data when Cn = 0. When
connectivities are not zero but independent randomly distributed values, the derivative
is still well-defined. In that case, the connectivities can be considered simply as deviations
from the derivative at this point. Otherwise, the derivability condition is not fulfilled.

As it is defined the connectivity resembles the non-differentiability coefficient intro-
duced by Wiener (Wiener 1923) but involving extrapolations in our case.

To calculate those extrapolations we need a model that can approximate arbitrarily
well any continuous function. The Stone-Weierstrass theorem (Royden 1988) states that
a function uniformly continuous in a closed interval can be approximated arbitrarily well
by a polynomial of degree n. Therefore, provided a sufficient amount of data, a spline
function (de Boor 1978) should provide a good extrapolation for the datapoint - the
residuals form an independent random sequence, i.e. white noise. We also make use of
an ARMA (autoregressive moving average) approximation (Box & Jenkins 1976) which
is capable of fitting non-analytic functions. Both results are compared.

3. Results
We have calculated the connectivities in the following cases:
• The light curve of a δ Scuti star observed by CoRoT, and the best analytic model

that can be obtained from the Fourier analysis of its light curve.
• A hybrid star observed by Kepler .
• Radial velocities of the Sun observed by the GOLF instrument onboard SoHO .
The first case is the δ Scuti HD 174936, one of the enigmatic cases having a range

of excited frequencies not predicted by any model. An analytic model for this star has
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Figure 1. Right: CoRoT data for the δ Scuti star HD 174936. Left: the corresponding analytic
model. Connectivities - ARMA (points), splines (circles), and the original light curve (crosses).
Note the different scaling of the panels.
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Figure 2. Kepler data for the hybrid star KIC 006187665. Connectivities – ARMA (points),
spline (circles), and the original light curve (crosses).

been constructed using the 422 frequencies detected using Fourier techniques in Garćıa-
Hernández et al. (2009). It is expected that both time series show the same properties.

In Fig. 1 we show the connectivities calculated with both approaches: splines (analytic
fitting) and ARMA (non-analytic fitting). We emphasize here that the points should
show an independent random distribution in case of a well-behaved underlying function
that could be interpreted in terms of Fourier frequencies. However, when considering only
the spline connectivities, while the analytic model shows that kind of distribution, the
connectivities of the CoRoT data are completely correlated. Two conclusions come to
mind from this first analysis:
• CoRoT data for the δ Scuti HD 174936 do not originate from an analytic function.
• The analytic model built from Fourier frequencies does not represent the same func-

tion as CoRoT data.
When we consider ARMA connectivities, in contrast to the analytic approach given

by the splines, these connectivities show a distribution typical of a white noise in both
panels of Fig. 1, giving more weight to the previous conclusions.

The second light curve studied here is a hybrid pulsating star observed by Kepler.
The connectivities calculated with splines (Fig. 2) are correlated, whereas those calcu-
lated with the non-analytic approach are not. Since we are analyzing data from another
instrument, no instrumental effect can be involved in the non-differentiability of the
function, but rather an intrinsic effect of the light curves.

Finally, the results corresponding to the radial velocities of the Sun taken by the GOLF
instrument (Garćıa et al. 2005) are shown in Fig. 3. In this case the connectivities calcu-
lated using splines present again a higher dispersion than the ARMA ones. Connectivities
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Figure 3. Left : original SoHO/GOLF data. Right : connectivities – ARMA (points) and
splines (circles).

are also correlated with the original time series, confirming the non-differentiability of
the function in this case too.

In summary, the non-differentiability is ubiquitous in the stellar light curves.

4. Conclusions
The tests carried out here show that the underlying function describing the light vari-

ations of some pulsating stars is non-analytic. This implies that the conditions for the
Parseval theorem might be not satisfied. Therefore, it is not guaranteed that the sig-
nal can be represented by a Fourier series and thereby the periodogram could be not a
consistent estimator of the frequency content of the underlying function. We have demon-
strated that this phenomenon is neither due to an instrumental effect nor caused by the
type of measurement. It does not depend on the intrinsic variability type either. The non-
analyticity of the function underlying the light curves is a fine structure that could be the
origin of some puzzling features like the flickering observed in classical Cepheids (Evans
et al., these proceedings). We conclude that the standard periodogram interpretation of
the time series of pulsating stars should be accordingly revised. Work is in progress to
investigate the origin of this inconsistency in the harmonic analysis.
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