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Abstract

Maximum and minimum principles for capillary surface problems with
prescribed contact angle are derived in a unified manner from canonical
variational theory. The results are illustrated by calculations for a liquid in
a cylindrical container with circular cross-section.

1. Introduction

The nonlinear boundary value problem described by the equations

div{W($)grad¢} =¢ in ¥, (1.1)
with
n. W(¢d)grad¢ =cosy on B, (1.2)
where
W($) = (1+|grad )~ 1.3)

arises in the determination of an equilibrium-free surface S of a liquid that partially
fills a cylindrical container under surface forces; gravitational forces and boundary
adhesion (cf. Adams [1]). Here ¢ = ¢(x, y) represents the height of the capillary
surface S, v is the angle of intersection of S and the cylindrical container (measured
interior to the liquid) and n is the outward unit normal field on the boundary B
of the cross-section ¥ of the cylinder. For boundaries B of class C* and y >0, it
has been shown (Spruck [3]) that a solution of the problem exists and is unique.
We shall suppose that these conditions are satisfied, and turn to the question of
effective methods of solving such problems.
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Because of its nonlinear form, the boundary value problem described by
equations (1.1)-(1.3) cannot be solved exactly. Approximate methods are therefore
required and in this paper we develop extremum principles which can be used as
a basis for variational methods of solution. Our approach employs the canonical
theory of complementary variational principles which leads to maximum and
minimum principles in a unified manner.

2, Hamiltonian formalism
Since we want to use a canonical approach, we set
W(®)grad® = U, @.0n

and then equations (1.1)-(1.3) may be written in Hamiltonian form

grad®=U(1-U.U)t = ZiUI in V, 2.2)
. oH

—leU=—(D—% in ¥V, 2.3)
n.U=cosy onB. 2.4

A suitable Hamiltonian A in equations (2.2) and (2.3) is given by
H(U,®) =—-(1-U.U)t-}02 2.5

The exact solution of this problem in (2.2)-(2.4) will be denoted by (u, ¢). From
the form of these canonical equations we see that we are dealing with an example
of a quasilinear Neumann-type probem.

3. Variational principles

The Hamiltonian equations (2.2)-(2.4) can be given a variational description
if we introduce the associated canonical action integral (cf. Arthurs [2]):

KU @) = L{U. grad ®— H(U, ®)} dx dy— fBCDCOSyds 3.1

= fy{(—diVU)‘D—H(U, (D)}dxdy+f ®(U—-ncosy).nds.  (3.1)
B .
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This is defined for spaces Q, and Q; of continuously differentiable square-
integrable functions U and @ and to keep H real we impose the further condition
onU

U.U<1, (3.3)

which is satisfied by the exact function u (see equation (2.1)). This action is stationary
at the exact solution (u, ) of equations (2.2)-(2.5).
To go further and obtain extremum principles we define two subsets of
Q=Q,xQ4 by
Q, ={(u, ¢,): v, = W(¢,) grad ¢,}, 34
and
Q, = {(uy, $5): divuy = ¢, in ¥, n.u, = cosy on B}. 3.5

These subsets intersect at the exact solution (u, ) of the problem in (2.2) to (2.5).
Using the action and these two subsets we can define functionals J and G by

setting
J(d) = I(u, ¢ via (3.1), with (u,, ,) in Qy, (3.6)
and
G(uy) = I(uy, ¢,) via (3.2), with (u,, §,) in Q,. 3.7
These lead to the expressions
J(¢y) = JV{(I +| grad ¢, [t + 442 dx dy — fBg&l cosyds 3.8)
and
6w = | (1 -vs.u)t = i(diva)tydvp. (3.9

It follows from these definitions that J(¢,) is stationary at ¢ and G(u,) is stationary
at u. In addition we find that

I$)—I) = [ (b0~ By, o0/
—[H(u, ¢)— H(u, $)— (¢, — ) 0H/0¢]} dxdy  (3.10)

and
Gln) — G(ug) = fV{H(“z, #)— H(, &)~ (u,— ). 9H/ou

— [H(up, §)— H(uy, do) — ($— $5) 2H/0d,Jydxdy.  (3.11)
Now the Hamiltonian H(U, ®) in (2.5) is convex in U for all functions U such that

1-U.U>0, (3.12)
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and strictly concave in @ for all functions ®. Since v,(¢,) = W(4,) grad ¢, auto-
matically satisfies (3.12), the expression (3.10) gives the global minimum principle

J(P)<J($y). (3.13)
Also, if we impose condition (3.12) on u,, that is
0.0, 3.19)
expression (3.11) gives the global maximum principle

G(a,) < G(u). (3.15)

Combining (3.13) and (3.15) we therefore obtain the global complementary
variational principles

G(uy) <G(u) = I(n, ¢) = J($) <J($), (3.16)

equality holding when ¢, = ¢ and u, = u. The minimum principle for J in (3.16) is
just the Euler-Lagrange extremum principle for problems described by (1.1)-(1.3),
while the complementary maximum principle for G appears to be new.

4. Example

To illustrate these results we take the case of a liquid in a cylindrical container
with circular cross-section of radius one. We select two vectors (u;, ¢,) and (u,, ¢,)
in @, and Q, respectively:

d = a,+aritagri+ary, 0<r<li, 4.1
u = Wi(g)grad, 4.2)
and
4
w = ncosyfor+ S, 0<rsl, @“3)
k=1
¢y =divu, inV, 4.9
where
4
a=1-3b,
k=1

In choosing these functions we have imposed extra symmetry properties, namely,
grad ¢, = 0 and u, = O at r = 0, which are satisfied by the exact functions ¢ and u.
There are eight parameters which are optimised by minimizing J and maximizing G.
Taking the contact angle y equal to =/3 we have carried out the optimization and
the resulting parameters are given in Table 1.
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The closeness of the functionals J and G indicates that, in terms of the action
metric, the variational solution (4.1) provides an accurate representation of the
capillary surface S of the liquid in this case.

TABLE 1
Variational parameters for y = a/3

ay a, ag a, J
0.886961  0.148485 0.108400 —0.013280  1.37425

by by by be G
0.104994  —0.038556  0.070206 0.006850  1.37413
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