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1. Introduction

Ever since the first works on dynamical systems, attempts have been made to reduce the
dimension of the system, and many techniques have been developed for that purpose: first
integrals (for some conservative systems), Poincaré return maps on transverse sections
(for flows), quotients by invariant foliations, and so on. One of these techniques is the
famous center manifold theorem; see for instance [12, 23]. Consider a fixed point x of a
diffeomorphism f on a manifold M such that the differential Df(x) leaves invariant a
splitting TyM = E** @ E¢ @ E", corresponding to the parts of the spectrum of Df(x)
whose moduli are, respectively, strictly less than 1, equal to 1, and strictly greater
than 1. Then there exists a locally f-invariant manifold W¢ through x tangent at x
to E€. Furthermore, the local topological dynamics of f is the product of the restriction
flwe by a uniform contraction in the E*® direction and by a uniform dilation in the
E""_direction.

1.1. Main result

We propose here a generalization of the center manifold theorem where the fixed point
x is replaced by an invariant compact set. Recall that a Df-invariant splitting TM =
E€¢® E" defined over an invariant compact set K is partially hyperbolic with strong
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unstable direction E" if the vectors in E*" are uniformly expanded and the possible
expansion in E€ is strictly weaker than the expansion in E"". More precisely, there
are constants Axg > 1 and C > 0 such that, for each x € K, each unit vector u € E¢(x),
v € E"(x), and each n > 1, one has

IDf"(x)vll > CAg  and  [[Df"(x)v]| > CAg | D" (x)ull.

With these hypotheses, any point in K has a well defined strong unstable manifold
W4 (x) tangent to E**(x). It is the set of points whose backward iterates get closer to
those of x at almost the same rates as the contraction of the vectors in E** by the
backward iterates of Df.

Main Theorem. Let f be a Cl-diffeomorphism and K a partially hyperbolic compact
invariant set such that TM|g = E€@® E"". Then, the next two properties are equivalent.

(1) There exists a compact C!-submanifold S with boundary which
- contains K in its interior,
— is tangent to E€ at each point of K (i.e., TyS = E€(x) for each x € K ),
— s locally invariant: f(S)NS contains a neighborhood of K in S,

(2) The strong unstable manifold of any x € K intersect K only at x (i.e., W (x)NK =
{x}).

Remarks 1.1. (1) In all the text compact manifold with boundary means compact
manifold, possibly with boundary.

(2) The submanifold S is in general not unique: if S’ is another submanifold the
intersection SN S could be reduced to K, as for the center manifolds of a fixed
point.

(3) The implication 1 = 2 in the main theorem is immediate: if K is contained in S and
if x, y € K share the same strong unstable manifold, the points x' = f™"(x), y' =
f™™(y) for n > 0 large belong to a same local strong unstable manifold. The
transversality between TS = E€(x) and T, Wi = E""(x) implies that x’ = y’, and
hence that x = y.

(4) After we wrote a first version of this text, Genevieve Raugel mentioned to us that
center manifolds for partially hyperbolic invariant sets have been also built before
by Chow, Liu, and Yi [3] for flows generated by a vector fields under different
assumptions: they require that the set is tangent at each point to its center bundle
and that its geometry is ‘bounded’ (admissibility condition). Our result shows that
their second assumption is not necessary, and that the first one can be replaced by
a dynamical property on the strong unstable lamination, which is easier to check
in practice. Our assumptions are optimal since we get an equivalence.

The compact set K is not necessarily the maximal invariant set in a neighborhood.

The corollary below extends the conclusion of the theorem to the maximal invariant set
of a neighborhood.
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Corollary 1.2. Under the conclusion of the main theorem, there is a neighborhood U of
K such that the mazimal invariant set A in U is contained in the interior of S.

We consider now an invariant compact set K having a Df-invariant partially hyperbolic
splitting in three bundles TM|x = E* & E¢ @ E"*, with strong stable, center, and strong
unstable directions E%, E€, and E", respectively.! The strong stable manifolds W*S(x)
of the points of K are the strong unstable manifolds, tangent to E**(x), for L.

Corollary 1.3. Let K be a compact invariant set of a diffeomorphism f, admitting
a partially hyperbolic splitting TM|g = E*S @ E® E". Then there is a compact
C!-submanifold S with boundary which contains K in its interior, is tangent to E€ at
each point of K, and is locally invariant, if and only if the strong stable and strong
unstable manifolds of any point x € K intersect K only at x (i.e., W (x)NK = {x} =
WS (x)NK).

We will sometimes reformulate the assumptions on K with the following terminology.
We will say that a partially hyperbolic set K admits a strong stable or a strong unstable
connection if there is x € K such that W* (x) or W"*#(x), respectively, meets K in a
point different from x. A compact invariant set K, endowed with a partially hyperbolic
structure of type E** @ E¢, E® E", or E** @ E @ E"", has no strong connection if it
has no strong stable connection, no strong unstable connection, or no strong stable or
strong unstable connection, respectively.

In the previous statements, the locally invariant submanifold S is tangent to the center
direction so that it is normally hyperbolic. In particular, it persists by small perturbations.

Corollary 1.4. Under the conclusion of the main theorem, there exists a submanifold
with boundary 8" C SN f(S) which contains a neighborhood of K in S, and there exist a
C'-neighborhood U of f and a neighborhood U of K such that, for any g € U,

— the mazimal invariant set Ag of g in U is contained in a submanifold Sg, Cl-close
to S,

- S, Ng(S,) contains a submanifold Sé, Cl-close to §',
- S and Sé depend continuously on g for the C'-topology.

In order to describe the local dynamics of f and of its perturbations in the
neighborhood of K we are therefore reduced to understanding the dynamics restricted
to S. As S is a C!-submanifold, the induced local diffeomorphism (defined in a
neighborhood of K in S) cannot be a priori more regular than C!. The standard results
on normal hyperbolicity (see [12]) ensure anyway some better smoothness on § when f
is more regular.?

IThat is, the splittings in two bundles TM|gx = (ESS @ EC)® E" and TM|g = (E"™ @ E€)® E* are
partially hyperbolic for f and f~!, respectively (with strong unstable direction E"* and E*¢,
respectively).

2We recall that a map is ck? with k e Nand a € (0, 17 if it is Ck and its kth derivative is a-Holder with
locally uniform Hélder constant. In particular, a Cl’]—map has a Lipschitz derivative. For r € [0, +00) \ N,
amap is C" if it is CK¥ with r = k+a.
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We say that a partially hyperbolic set K is r-normally hyperbolic, r > 1, if there are
constants Ax > 1 and C > 0 such that for each x € K, each n > 1, and each non-zero
vector v¥ € E*, v € E¢,v"* € E" at x, one has

IDF" vl _ [IIDf"(x)vCII

[[v]] [[ve]l

[Df" (o)v"|

c\!
K [lve]]

.
14—
:| < CTAL"

Corollary 1.5. Under the conclusion of the main theorem,
—if f is C" and K is r-normally hyperbolic, then S can be chosen C';

—if fis C", r > 1, then S can be chosen CY% for some a > 0.

The study of C'-diffeomorphisms sometimes uses approximation by more regular
diffeomorphisms (see for instance [19]). For this reason, when f and S are only C!,
we are interested in getting a more regular submanifold, by a C'-perturbation of f.

Proposition 1.6. Under the conclusion of the main theorem, there exist a neighborhood U
of K and a submanifold with boundary S C SN f(S) containing U NS with the following
property.

There exist a C*°-diffeomorphism g and some C*° submanifolds with boundary S;’,, Se
which are arbitrarily close to f, S', and S for the C'-topology such that

— the mazimal invariant set Ag of g in U is contained in Sg,
—Sg N f(Sg) contains the submanifold Sg,,

Even if f is a smooth diffeomorphism, we do not know if it is possible to chose g
C"-close to f, r > 1, in Proposition 1.6.

1.2. Dynamical consequences

Partially hyperbolic dynamics with center dimension equal to 1. For a compact partially
hyperbolic set without strong stable and strong unstable connections, we may obtain a
better description of the local dynamics if the dimension of the center direction is very
small. The following corollary asserts that, when the center direction is one dimensional,
we can perturb the diffeomorphism in order to get a dynamics which is locally of
Morse—Smale type.

Corollary 1.7. Let K be a compact invariant set endowed with a partially hyperbolic
structure whose center bundle is one dimensional, and assume that K has mo strong
connection. Then, there is a compact neighborhood U of K and, for any C'-neighborhood
U of f, there is a diffeomorphism g € U such that the mazimal invariant set Ag in U
satisfies the following.

— The set of periodic orbits in Ag is finite; each periodic point is contained in the interior
of U and is hyperbolic.

— The set of non-periodic points in Ag decomposes into finitely many orbits of compact
segments; each of them is contained in the transverse intersection of the stable manifold
W?(01) and of the unstable manifold W*(03) of two periodic orbits O, Oz € Ag.
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For the initial dynamics f, any forward orbit in K accumulates on a periodic circle or
on a periodic orbit, or on a Cantor set (a minimal set conjugated to the return map on
a family of sections of an ‘exceptional minimal set’ for a C'-vector field on a compact
surface).

This result may be related with an extension by Pujals and Sambarino of
Manié’s theorem [13] about the hyperbolicity of one-dimensional endomorphisms to
higher-dimensional diffeomorphisms; see [19] and generalizations [8, 20]:

Let K be a compact invariant set of a C?> Kupka-Smale diffeomorphism f, with a
partially hyperbolic splitting T M\x = E** @ E€, where E€ is one dimensional. Consider
the mazimal invariant set A of f in a small neighborhood of K. Then the chain-recurrent
set of f in A consists of finitely many normally hyperbolic attracting periodic circles, and
finitely many hyperbolic sets.

Palis’ hyperbolicity conjecture. A conjecture by Palis claims that any diffeomorphism
may be Cl-approzimated by Aziom A diffeomorphisms, or by diffeomorphisms which
present a homoclinic tangency (a non-transverse intersection between the stable and
unstable manifolds of a hyperbolic periodic orbit) or a heterodimensional cycle (two
hyperbolic periodic orbits with different stable dimensions linked by two heteroclinic
orbits).

This conjecture has been solved on surfaces [19], and our main theorem allows us to
generalize in some cases to higher dimensions?® (see also [7, § 2.7]).

Corollary 1.8. Let U be a filtrating set of a diffeomorphism f such that the mazimal
invariant set A of f in U admits a partially hyperbolic splitting whose center bundle has
its dimension equal to 2. We assume furthermore that A has no strong connection. Then,
in any C'-neighborhood U of f there is a diffeomorphism g € U verifying one of the two
following properties:

— either there is a hyperbolic periodic saddle x € U of g whose invariant manifolds present
a homoclinic tangency along an orbit of a point y € U;

- or g verifies the ‘Axiom A + no cycle condition’ in U: the chain-recurrent set R(g) NU
in U consists in finitely many hyperbolic transitive sets.

The previous conjecture has motivated studies of diffeomorphisms ‘far from homoclinic
tangency’ or ‘far from heterodimensional cycles’. For instance, Wen has shown that
the minimally non-hyperbolic sets of diffeomorphisms C!-far from tangencies and
from heterodimensional cycles are partially hyperbolic with a one-dimensional or

3A point x is called chain recurrent if f admits e-pseudo orbits starting and ending at x, for any ¢ > 0.
On the set R(f) of chain-recurrent points, one defines a equivalence relation as follows: two points
x,y € R(f) are equivalent if there are e-pseudo orbits starting at x and ending at y, and conversely
starting at y and ending at x, for any ¢ > 0. The chain-recurrence classes are the equivalence classes of
this relation, inducing a partition of R(f) in invariant compact sets.

A trapping region of a diffeomorphism is an open set U such that f(U) is contained in U. A filtrating set
is the intersection of a trapping region U of f with a trapping region V of f_1 . One fundamental property
of the trapping regions is that a chain-recurrence class of f meeting a trapping region is contained in it.
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two-dimensional center bundle (see [22], and its global generalization [5]), reducing the
conjecture to the partially hyperbolic setting.

The following proposition shows that the hypotheses ‘without strong connection’ and
‘far from heterodimensional cycle’ are related. We recall that two hyperbolic periodic
orbits are homoclinically related if they belong to a same transitive hyperbolic set; the
homoclinic class of a hyperbolic periodic point p is the closure of the union of the
transitive hyperbolic sets containing p.

Proposition 1.9. Consider a diffeomorphism f and a compact invariant set K admitting
a partially hyperbolic structure whose center bundle is one dimensional. If there exists
a dense sequence of periodic orbits (Oy) in K that are homoclinically related and whose
center Lyapunov exponents is positive and converge to zero, then

— either there are diffeomorphisms arbitrarily C'-close to f having a heterodimensional
cycle;
—or for any periodic point x € K homoclinically related to the O, one has W"*(x) N

K = {x}.

When the second case is not satisfied, one says that K has a strong unstable connection
at the periodic point x. Using a connecting lemma one can then by a C'-perturbation
create a strong unstable homoclinic intersection at x, i.e., an intersection between the
strong unstable manifold of the orbit of x and its stable manifold. By unfolding this
intersection, one can create a strong homoclinic intersection associated to other periodic
orbits: some of them have a center exponent close to 0, and this allows one to create
a heterodimensional cycle by another C!-perturbation, which implies the proposition
(see [18, § 2.3.2] and [7, § 2.5]).

At the time we obtained Proposition 1.9, it became for us the main motivation for this
work. More precisely, one can ask the following question.

Question 1.10. Let f be a diffeomorphism, U be a C'-neighborhood of f, and p be a
hyperbolic periodic point such that for any g € U the homoclinic class H(p, g) of the
hyperbolic continuation p, of p admits a partially hyperbolic structure whose center
bundle is one dimensional and expanded along the orbit of p,. Does one of the following
cases hold?

— Fither there is g € U such that H(p, g) has a strong unstable connection at a periodic
point x homoclinically related to p,.

— Or there exists a non-empty open subset V C U such that H(p, g), for any g € V, has
no strong unstable connection.

Assuming that the center bundle of H(p) is not uniformly expanded, one can expect to
show that there exist periodic orbits homoclinically related to p whose center exponent
is arbitrarily close to 0. In the first case of question 1.10, Proposition 1.9 gives a
heterodimensional cycle after a Cl-perturbation of f. In the second case, the main
theorem shows that the dynamics reduces to a submanifold transverse to the strong
unstable bundle: the center direction becomes an extremal one-dimensional bundle
and [20] contradicts the fact that it is not uniformly expanded.
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A positive answer to question 1.10 would thus be an important progress for Palis’
conjecture. It has been obtained recently in [7, Theorem 10] for quasi-attractors, and
(with other results, including the present paper) a weak version of the conjecture has
been proved: any diffeomorphism may be C!-approximated by diffeomorphisms that are
essentially hyperbolic or that present a homoclinic tangency or a heterodimensional cycle.

Invariant foliations of surface hyperbolic sets. The local stable set of a hyperbolic set
K supports a natural invariant lamination whose leaves are the stable manifolds. It is
sometimes useful to extend it as a foliation £° which is locally invariant: there exists
an neighborhood U of K such that, for any x close to K, the connected components of
fLH)NU and of E‘}(x) NU containing f(x) coincide. This has been used for instance

in the original works on the Newhouse phenomenon [14, 15] and in the proof of the
structural stability for hyperbolic surface diffeomorphisms [9]. The following well-known
result becomes a simple consequence of our main theorem. It asserts that a C? surface
diffeomorphism near a hyperbolic set is ‘C!'-conjugated to a product’.

Corollary 1.11. Let f be a C?-surface diffeomorphism and K be an invariant compact set
which is hyperbolic. Then, there exists a C'-foliation locally invariant in a neighborhood
of K which is tangent to the stable bundle of K. If moreover f is C", r > 2, then the
foliation can be chosen CY*, for some a > 0.

We do not assume that K is the maximal invariant set in a neighborhood. For a classical
proof, see [16, Appendix 1].

Newhouse phenomenon in dimension larger than or equal to 3. Newhouse has
shown [14, 15] that, among C 2_diffeomorphisms of a surface, the existence of a homoclinic
tangency for f generates an open set U of diffeomorphisms close exhibiting

— persistent tangencies: there exists a transitive hyperbolic set whose local stable and
local unstable sets have a non-transverse intersection for any diffeomorphism g € U),

— generic wild dynamics: there exist infinitely many sinks or sources for any
diffeomorphism in a dense Gy subset of U.

These properties have been generalized to higher dimension by Palis and Viana [17]

for diffeomorphisms exhibiting a sectionally dissipative homoclinic tangency, whereas

Romero [21] has obtained the first property for diffeomorphisms exhibiting an arbitrary

homoclinic tangency. Their proof tries to reduce to the dimension 2 by either building

a locally invariant C? surface which support part of the dynamics, or by building an

‘intrinsic two-dimensional differentiable structure’.

The second author and Nicolas Gourmelon have noticed [6] that it is possible to recover
these results using the two following ingredients.

— After perturbation, the homoclinic tangency satisfies a generic condition and the main
theorem can be applied: the dynamics in a neighborhood of the homoclinic tangency is
contained in a Cl%-surface. This allows one to reduce to the dimension 2 as expected;
however, the smoothness of the induced dynamics is a priori less than C2.
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— The Newhouse phenomenon on surfaces also holds for « € (0,1) in the space of
cl@_diffeomorphisms whose C1% norm is bounded, endowed with the C'-topology.

1.3. Strategy of the proof, and structure of the paper
The Main Theorem is obtained in two steps.

—In § 3, we use Whitney’s extension theorem in order to build a submanifold S tangent
to the center direction which contains K.

—In § 4, we implement a graph transform argument in order to modify this submanifold
and get the local invariance.

Section 2 is devoted to classical preliminary results. The corollaries are proved in § 5.

The general strategy of [3] also follows these two steps, but there are two important
differences (beyond the fact that we deal with diffeomorphisms). In the first step, we relate
the assumptions of Whitney’s theorem to the lack of strong connections. In the second
step, we implement the graph transform argument in a different way, which explains why
the admissibility condition does not appear in our work. A key point in our proof is to
choose carefully the neighborhood where the graph transform is defined: it has to be
small, and much thinner along the strong directions (see Proposition 4.9).

2. Preliminaries

In this section, we recall results about distances to a compact set and dominated
splittings.
Notation. In the whole paper, we denote by L - v the image of v by the linear map L.

2.1. Smoothing the distance to a compact set

We will need to consider a smooth function which evaluates the distance to a compact
set.

Proposition 2.1. Let ¥ be a compact Riemannian manifold with boundary.

Then, there exists a constant Cx > 0 such that for any disjoint compact sets K, L C
X there is a function ¢ : ¥ — [0, 1] which is as smooth as the manifold X, such that
0o 1 0) =K, ¢7'(1) = L, and such that the norm of the differential D¢ is bounded by
%, where d(K, L) = inf{d(x,y) | x € K and y € L}.
We first prove the result in R”.

Lemma 2.2. For n > 1, there exists a constant A(n) > 0 such that for any disjoint
compact subsets K, L C R there is a smooth function ¢ : R* — [0, 1] such that ¢~ 1(0) =
K, ¢~'(1) = L, and whose derivative has a norm bounded by A(n) d(K, L).

Proof. Let us choose & > 0 small, and introduce a smooth function 4 :[—(1+¢), 1+
e]™ — [0, 1] which coincides with zero on a neighborhood of the boundary of the cube
[—(1+4¢€),1+4+€]" and with 1 on a neighborhood of [—1, 1]".
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For k > 0, let Pr be the dyadic partitions of R” which is the collection of cubes of the
form
C = [_2—(k+1)’ 2—(/<+1)] _|_2—/< v,

where V is a vector in Z". One also defines the larger cubes
Ce =[-27® V(1 46), 27D (1 4 o)1+ 270,
C=[-3x2"* D 3=kt o ky,
For k > 0, the cube C is a union of cubes of Pr.
We associate to the cube C the function & : C; — [0, 1] defined by
he o x = ag h((x — V)2k,

for some a; € (0, 27%]. Its derivative is bounded by some constant D, uniform in k. We
choose ag = 1 so that for k = 0 the map h¢ is bounded from below by 1 on C.
Let K C R" be a compact set, and consider the collection C of cubes C which satisfy
the following:
— C € Py for some k > 0,
— the larger cube Cis disjoint from K,

— if k # 0, there is no cube C’ € Pj_; containing C such that C' is disjoint from K.

Note that the cubes of C cover U = R" \ K and have disjoint interior. Moreover, two cubes
C, C’" € C that are adjacent belong to partitions Pk, Py with |k’ —k| < 1. In particular
,any point x € U belongs to at most 2" cubes C, associated to C € C.

The function gk defined on R" \ K by

ok = Y hc

ceC

is thus positive, smooth, and bounded by 2¢. It is bounded from below by 1 outside the
2d-neighborhood of K (this neighborhood is covered by cubes C € CNPy). Its derivative
is bounded by 2" D. Note also that, if the sequence a; decreases fast enough to zero as
k — 400, then one can extend g by 0 on K and get a smooth function of R”.
If K, L C R" are two disjoint compact subsets of R", one may define
0= YK
Yk +oL

which is smooth, has values in [0, 1], and satisfies moreover ¢ ~!(K) = 0 and ¢~ (L) = 1.
Its derivative is bounded by

Dok |l + | DeL |l
YK + oL '

Dol <2

Let us assume that the distance between K and L is equal to 2n. The sum ¢g + ¢ is
thus bounded from below by 1 everywhere, and || Dg]|| is smaller than 22Dy (K, L).

2n
One can reduce to the case when the distance from K to L is equal to 2n by taking
the image by an homothety. The lemma thus holds for A(n) = 2";20 . O
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We now prove the manifold case.

Proof of Proposition 2.1. Let us consider a finite collection of charts ¥, : U; — R" of X,
i =1,...,¢, whose union coincides with X. Let us choose a partition of the unity, i.e.,
some functions 6; : U; — [0, 1] such that

— > ;6i(x) =1 at any point x € X,
— for each i, the support Q; of 6; is a compact subset of U;.

If K, L are two compact subsets of X', one can consider the function @; : R* — [0, 1]
associated to the compact sets K; := v; (KN Q;) and L; := ¥;(LN Q;) by Lemma 2.2.
Note that ¢; := 6; x (@; o ¥;) satisfies the following:

— 0 < ¢i(x) < 6;(x) for points of the interior of Q; \ (K UL),
- ¢gi(x) =0for x € K,

@i(x) =6; for x € L,

— the derivative of ¢; is bounded by C;/d(¢;(K;, L;) where C; does not depend on
K, L.

Since any x € X'\ (K U L) belongs to the interior of some Q;, one deduces that ¢ :=); ¢;
is equal to 0 on K, to 1 on L, and has values inside (0, 1) elsewhere. Its derivative is
bounded by

C; C;-L;
ID01 < 2 G, ey < 2 TR 05 LA O

i
where L; bounds the Lipschitz constant of wi_l. The function ¢ is as smooth as the charts
¥; and the manifold X. The proposition thus holds with Cx =", C; L;. O]

2.2. Cone fields and dominated splitting

We recall here well-known facts about dominated splitting and cone fields. This section
is used in order to control the smoothness of the center manifold, and can be skipped at
a first reading.

Definition 2.3. A continuous cone field C of dimension d is a family of closed cones
C(x) C Ty M such that

— C(x) = Interior(C(x)) for the topology on T, M;
— for each x € M, there exists a d-dimensional subspace contained in Interior(C(x)) U
{0} and a (dim(M) — d)-dimensional space disjoint from C(x) \ {0};

— the set of unit vectors of C(x) and the set of unit vectors of Ty M \ Interior(C(x))
depend continuously on x for the Hausdorff topology.

The collection of cones T,M \ Interior(C(x)) is a continuous cone field, called the
complementary cone field. A d-dimensional C'-submanifold S € M is tangent to C if
TS C C(x) for each x € §S.

The cone field C is transverse to a submersion w : M — X if, for each x € Xy and
z € 17 1(2), the tangent space at z of the fiber T,7~!(x) and C(z) \ {0} are disjoint.
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2.2.1. Contracted cone fields. The notion of a contracted cone field is usually
defined for diffeomorphisms. We allow here non-surjective tangent maps, which will be
necessary when we will consider graph transforms.

Let us consider a C!'-map W : U — M defined on an open subset U C M.

Definition 2.4. For r > 1, the cone field C is r-contracted by ¥ if there exist A > 1 and
nop > 1 such that, for any n > ng, and any x in U N~ L(U)N---N¥"+(U), we have

- D¥"(x)-C(x) C C(¥"(x)),
— DW"(x)-u is non-zero if u € C(x) \ {0},
— for any unit vectors u, v € Ty M such that u € C(x) and D¥V"(x)-v ¢ C(V"(x)),
min([| DW" (x) - ull, [ DY" (x) - ull") > A" [ DW" (x) - v].
When r = 1, we simply say that the cone field is contracted.

Remarks 2.5. (1) The second item implies that, if a submanifold S is tangent to C and
invariant by W, then the restriction W g is a local diffeomorphism.

(2) We want that an r-contracted cone field is also r’-contracted for any r’ € [1, r].
This is the reason why the minimum min(||DW" (x) - u||, | D¥"(x) - u||") appears in
the third item. Up to replacing U by any open set U’ relatively compact in U, a
contracted cone field is also r-contracted for some r > 1 (with the same constant ng).

(3) If W is a diffeomorphism and if C is contracted, the complementary cone field is
contracted by f~1.

Let us define, for n > 1 and z € ¥(U)N---NW"*(U), the cone C"*(z) := DY (V7" (2)) -
C(V™"(z)), and for x € UN---NW (1), the cone C™"(x) := DWW (V" (x)) - C(¥" (x)).
The following lemma justifies that the cone field is contracted.

Lemma 2.6. If the cone field C is contracted, there exist C1 > 0, A > 1 such that, for
anyn>1andze VU)N---NWU), the cone C"(z) is exponentially thin: there exists
a d-dimensional space F C C"(2) and, for any unit vector u € C"(z), there is w € F such
that |w—ul| < C1A™". Similarly, for x € UN---NW"tN(U), the cone TyM\C™"(x) is
exponentially thin.

Proof. The proof will use the following claim.

Claim 2.7. There exist mg > 1 and o > 0 such that, for any n > mq, the angle between
the vectors u and v in the third item of Definition 2.4 is bounded from below by o. The
same holds for the angle between DW" (x) -u and DW" (x) - v, if this last vector is not zero.

Proof. One chooses k in [mg/3,2mo/3]. If mo is large enough, we have AF > 2. By
invariance of C, we get that DW*(x)-v ¢ C(¥*(x)), so that by the cone contraction
DYk (x)-u| > 2||DW*(x)-v|. Since |[DWX|| is bounded, this implies that the angle
between u# and v is bounded from below, proving that the angle between u and v is
bounded away from zero when n > mg. A similar argument holds for DW"(x)-u and
DY (x)-v. O
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Let us prove now the statement of the lemma. We set x = ™" (z). By the definition of
the cone field, there exists a d-dimensional space Fy C C(x) such that F := DV"(x) - Fy
is also d-dimensional. Similarly, there exists a transverse (dim(M) — d)-dimensional space
E C T;M which is not contained in C(z). One can thus decompose any unit vector u €
C"(z) as w+v with w € F and v € E. By definition, u has a preimage ug € C(x) and
w also. Hence, there exists a preimage vy € TyM of v =u—w by DWV"(x). The cone
contraction gives, since u is a unit vector,

—n llvoll

ol < A :
l[uoll

One may assume that vy # 0. Since vy is the preimage by DW"(x) of a vector v ¢ C(z)
and ug — vg belongs to C(x), the angle between ugp — vy and vg is bounded from below

by o. One deduces that Ivoll 4 uniformly bounded; hence there exists C; > 0 such that

Tuoll
Iwll ¢ 1. This gives the required estimate.

Tuoll
The argument for Ty M \C7"(z) is very similar after noting that DV ™"(z) - E is a
(dim(M) — d)-linear space contained in (TxM \ C(x)) U {0}. O

Let us denote by m(DW¥"(x)) the infimum of the norms || DW"(x) - u|| over unit vectors
u € Ty M. Here is another consequence of cone contraction.

Lemma 2.8. If the cone C is contracted, there exists Co > 0 such that, for anyn > 1, any
x e UNV L U)N--- N NWU), and any unit vector u € TeM, we have

DY (x) - ull = Co m(DY" (X)), m\C7(x))-

Proof. Any unit vector u € TxM decomposes as u = uj +up such that u; € C(x) and
uy € TeM \ C™"(x). By Claim 2.7, the angle between DW* .4y and DW¥ .y, is uniformly
bounded away from zero for any k € {0, ..., n} (unless one of these vectors is zero). As a
consequence,

IDW" ull > € max (m(DWy ) il . mDy yoaiy) lu2l]).

This concludes the proof after noting that max(||u||, |luz|]) is bounded away from below

and that m(D\IJ‘”C(x)) > m(D\Ill"TXM\C,,,(x)) by the cone contraction. O

2.2.2. Dominated splitting. In order to prove higher smoothness in Corollary 1.5,
we extend the usual definition of dominated splitting to the notion of r-dominated
splitting. Tt is related to the dominated splitting as the r-hyperbolicity in [12] is related
to the hyperbolicity.

The existence of a dominated splitting and of a contracted cone field are two close
properties.

Definition 2.9. Let us consider an invariant compact set K for a diffeomorphism f and
an invariant splitting TM|x = E @ F. We say that E is r-dominated by F if there exist
C’' >0, 1> 1,and n > 1 such that for any unit vectors u € E(x) and v € F(x) we have

—1

max (|| Df" (x) - ull, [Df" () -ull") < C" A7 [IDf* (x)v]l.
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One can extend the bundles E¢, E" as two (non-invariant) continuous bundles E, F
over a neighborhood U of K. For any x € U and any B > 0, one defines the cone field
associated to the splitting E @ F and to the Riemannian metric:

Cpx)={weT,M|JuecEx), IveFx),w=u+v,|ul <plv|} (1)
For B/ < B and n > 1 such that C'A™"B < B’, we have, for any x close to K,

Df"(Cp(x)) C Cpr(f(x)).

Lemma 2.10. If ¥ is a diffeomorphism between U and its image, if K C U is an invariant
compact set, and d > 1 an integer, there exists a dominated splitting TMx = E®F
with d = dim(F (x)) for each x € K, if and only if there exists a contracted cone field of
dimension d on a neighborhood of K.

The bundle F is r-dominated by E for f = W~1 if and only if there exists a cone field
of dimension d on a neighborhood of K which is r-contracted by W.

Proof. The contracted cone field can be defined from a dominated splitting as in (1).
Conversely, if there exists a contracted cone field, C, we first note that the complementary
cone field is contracted by f~!'. The intersection of the cones C"(x) as in Lemma 2.6
defines at each point x € K a d-dimensional space F(x). Considering the complementary
cone field, we also obtain a (dim(M) — d)-dimensional space E(x) and, by the definition
of contracted cones, the splitting T,M = E(x) ® F(x) is dominated. The second part of
the lemma is obtained similarly. O

2.2.3. Lift to Grassmannian bundles: the r-contracted case. In order to prove
that an invariant submanifold is C", we will prove that its lift in a Grassmannian bundle
is C"~!. We explain here how to lift the dynamics. The 2-domination allows to get a
domination of the lift dynamics.

Let us fix a contracted continuous cone field C of dimension d. Let p: G(d, M) - M
be the Grassmannian bundle of d-dimensional tangent spaces. We define U , the interior
of the set of d-dimensional tangent spaces E contained in a cone C(x) for some x € U.
One gets a surjective submersion p : U—U. By the second item of Definition 2.4, DW
induces a continuous map

U:U - G, M).
Note that W is C'™! if W is C’. Moreover, U is a diffeomorphism if W is a
C2-diffeomorphism.

Proposition 2.11. If ¥ is C2, the map U contracts the fibers of p: U — U. More
precisely, there exists C3 > 0 such that, for anyn > 1, and for P € UN---NW"TL({U),
denoting x = p(P),

IDT(P) -1l < C3I D" ()7, a el MDY (0)jcey) ™" < C3a™

Proof. For any two d-spaces P, P’ in TyM, one can consider the linear map L : P —
P+ whose graph is P’. The tangent space at P € p~!'(x) to the fiber of p may thus
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be identified to the space of linear maps L : P — PL and DV acts by conjugacy. For
xeUNvLU)n...nu @),

DU (L) = T1(P,, P}") o D" (x) o Lo DY " (f"(x)),

where T1(F, E) denotes the orthogonal projection on E parallel to F and P, = DV"(x) -
P. Let us consider a (dim(M) —d)-dimensional space E’ in TgnyyM disjoint from
C(¥"(x))\ {0} and its pre-image E = DW™"(E’). The projection between E and Pt
parallel to P is uniformly bounded and has a uniformly bounded inverse. The same
holds for the projection between DW"(x)-E and (DW"(x)- P)* parallel to DW"(x)- P
(this is a consequence of Claim 2.7). One deduces that the norm of the linear map of
DV (x) restricted to E and the norm of IT(P,, PnJ-) o DW"(x) restricted to P+ are equal
up to a factor bounded by a uniform constant C3:

IDT"(P)|| < C3 D" (x) ]| m(DW" (x)p) "

Together with the cone contraction, this concludes the proof. O

Proposition 2.12. If W is C* and if C is r-contracted with r > 2, then there exists an
(r — 1)-contracted cone field 6]”07’ @, of dimension d, which is transverse to p. One can
build C to contain any compact set of vectors v € TG(d, M) such that Dp-v € C\ {0}. If
C is transverse to a submersion , then one can build C to be transverse to 7 op.

Proof. We define at each point P € G(d, M) the space G(P) tangent to the fibers of p
and H(P) a transverse space (for instance the normal space to G(P) for an arbitrary
Riemannian structure), so that G, H are two smooth transverse bundles and Dp induces
an isomorphism between the bundles H and T M. One can thus pull back the Riemannian
metric of M as a metric |- ||y on H. Let us consider an arbitrary metric || - || on the
bundle G, and define || - || = (|| - |3, +&%[|- [2)!/? a Riemannian metric on G(d, M) for
some ¢ > 0 small. Note that for any vector v at P we have | Dp - v| < ||v]|, with equality
if v is tangent to H(P).

We then define a(P) as the set of vectors v at P such that |Dp-v| > \/LEHUH and
Dp -v € C(x) with x = p(P). If E is a d-dimensional subspace contained in C(x) and F a
(dim(T) — d)-dimensional transverse subspace disjoint from C(x)\ {0}, then C (P) contains
Dp~Y(E)N Hp and is disjoint from Dp~!(F)\ {0}. Hence C is a continuous cone field of
dimension d transverse to p. If C is transverse to a submersion 7, one may choose for
F the tangent space at x of the fiber of m, which implies that C is transverse to the
submersion 1 o p.

Let us choose ng > 1 large enough. The small constant ¢ > 0 will be fixed later. In
order to prove that Definition 2.4 is satisfied, it will be enough to check it for any n €
{ng, ..., 2np}. For any P € un-- ﬂ@_”"’](l’]\) we set x = (P) and take any v € a(P)
By invariance of the cone field C we have Dp(¥"(P))- (DI//" V) € C(\I/"(x)) One can
decompose v = v 409 according to the splitting H @& G. By definition of C we have

H ¢ C(x). By definition of the metric, we have ||vH||H s||vG||G

The image w of v by D" decomposes as w +wY with |wY|g < K|w| g, where

K is a constant which controls the angle between the image DU . E of the bundle E and
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the fibers of p for any ng < n < 2ng. For ¢ small, we get
lw il > 2ewC 6. (2)
Since the metric on H is defined by lifting the metric on U, we get
lwf g = m(DY" () e v 1l
By Proposition 2.11, we have
Coll DY (P) 7, an e |l m(DY" (0) )" I1vC Nl = 1 D" (P) v 6.
Hence this gives

_ E o~
m(DW"(x)icx) 2 1D (P) iz anc-noo |l 1w g > C—OHD‘*I"n(P)'UGHG-

Since C is 2-contracted and n is large, m(DW" (x)‘z,z(x)) DY (P)1, m\c-7(x) |l is small, and

lwf | g > 26| D" (P) - v 6.

With (2), one deduces |w? ||y > 7||D‘I‘”(P) -v||, so that DU (P)-v belongs to a(W”(P)).
This gives the first item of Definition 2.4.
By the second item of Definition 2.4, and since ||[w |z = ||[DW"(x)- v ||z does not
vanish, the image DU" -y is non-zero. Hence the second item of Definition 2.4 is satisfied.
Let us fix two unit vectors u € é\(P)7 vE Tﬁ\é\’"(P) and n € {nog, ..., 2n9}. We have

-~ ~ 1
IDW*(P)-ull = |Dp(DY"(P) -u)|| = [D¥"(x) - (Dp - w)| > zm(D‘I’"(X)w(x))-

For DW" . v, two cases are possible. In the first case, ||Dp(D®" V) < %HD@" -v||. We

decompose as v = v + v and the image w = DU - vH as w = wf +wC. As before,
we have |w%| ¢ < K||lw?||y. The first case restates as |w |y < el|lw® —i—D\IJ”- 6.
Hence if ¢ has been chosen small enough |[w%|/g is much smaller than ||DlI/" v96.
With Proposition 2.11, one gets

108" vl < 36 1D, G 1 g

< 3C3 DY ()7 cno | MDY (0)c0) ™" €l
Hence by the r-contraction of the cone field C, and since ¢|[v%||g < |lv] = 1, this gives
|DU" v - 6eC3|| D" (x) 7, p\c-7 ()l
min(| DY - ull, [ DU - ul=1) ~ min(m(DW" (x)c )% m(DY" () c(x)")
In the other case, |Dp(D¥"-v))| = LIDV" v|, and Dp(DV"-v) = D¥"(Dp-v)
belongs to TU \ C. By the cone contraction, one gets
IDU" -v|| < 2| Dp(D" -v))|| = 2| DY"(Dp - v)|

< 227" min(|| DY (Dp - w)||, | DY" (Dp - u)|").

We also have | DU (Dp -u)|| = |Dp(DU" -u)| < |DY" - u||. Consequently,
IDY" |
min(|| D" - ul|, | DY" - ul)

In both cases, the third item of Definition 2.4 holds; hence the cone Cis (r — 1)-contracted.
For & > 0 small enough, C contains any compact set of vectors v satisfying Dp-v €
C\ {0}. O

< 6eC3A7".

—n
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2.2.4. Lifts to Grassmannian bundles: the bunched case. In Corollary 1.11,
we will prove the existence of locally constant foliations. These are built from locally
constant C!-vector fields that are obtained as invariant sections of the tangent bundle. A
different dominated splitting of the lift dynamics is used; it is a consequence of a bunching

property.

Definition 2.13. The cone field C is bunched if there exist A > 1 and ng > 1 such that,
for any n > ng, any x in UNW~ L U)N---Nn W1 (U), and any unit vectors u, v € C(x)
and w € TyM \ C"(x), we have

[DW" (x) - ull

I DW" (x)-w| < A" .
DY (x) - vl|

Remark 2.14. When V¥ is a diffeomorphism and K is a partially hyperbolic invariant
set such that TMx = E** @ E¢ and dim(E€) = 1, then the cone fields C associated to
E¢ as in (1) on a neighborhood of K are bunched. Indeed, by Lemma 2.8, the vectors
in the cone field TM \C™" are close to the bundle E**, and hence are contracted by
forward iterations, while the vectors in the cone C become close to the bundle E€ after
a few iteration; since E¢ is one-dimensional, the iterates of any two vectors u, v € C are
almost collinear, and the ratio ”gi:% does not decay faster than the strong stable
contraction.

Proposition 2.15. Let W be a C>-diffeomorphism between U and its image, and let C be
a contracted cone field of dimension d. If the complementary cone ﬁeld of C is bunched,
then there exists a continuous cone field C of dimension dim(M) on Uc G(d, M) which
is contracted by U and transverse to the submersion p-

Proof With the same notation as in the proof of Proposmon 2.12, we define in this case
C(P) as the set of vectors v at P such that |Dp-v| > 3 Liv|l, and we obtain in thls way a
continuous cone ﬁeld of dimension dim(M) on G(d, M), transverse to p. Since U is a local
diffeomorphism, D\IJ(x) u does not vanish on non-zero vectors. It is enough to prove the
cone contraction for any integer n € {no, ..., 2no}, Where ng is large.

Let us cons1der v e C (P) It decomposes as v = v +v%. One can decompose the image
w=DV" v as w=w" +wC On the one hand, having chosen & small enough, one
has

2ev% N6 < v |4 (3)

On the other hand, by Lemma 2.8,
lw" g =mDE") g > mDY"(x)) e v¥0¢ = Col m(DY" ()1, mc-n(r) € 116
By Proposition 2.11 and the bunching, we have

26| D" vl < 26C3 | DY (x) 7, m\cn o) | MDY () ic ) 1 llG

| DY (xX) 7, mr\c—n (o)l
m(DY" (x)1, p\c-1 (x)) MDY (X))

Together with (3), this proves the first item of Definition 2.4.

<2055 lw Il < w]

H-
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Let us fix two unit vectors u € 5(P), v E Tﬁ\a_”(P), and n € {nop, ..., 2no}. Arguing
as in the proof of Proposition 2.12, on the one hand we have
qn 1 n & n
DV (P) - ul = Em(D‘I’ (x)) = Tm(D\I’ 1 e (x))-
On the other hand we have
IDW" vl < 3C3IDY" (), am\c-n) Il MDY () c) ™" el 6.

Hence, by the bunching of the cone field C, and since €[|[v’| g < ||v|, this gives

IDT" vl 6:C5Cy DY @ e |

1D - ul| ~ m(DW" () 7,0\ () - MDY (X))
This gives the last item of Definition 2.4, and hence the contraction of the cone field C. [

< 6eC3C5 A

3. Existence of submanifolds carrying a compact set

Let K be a subset of the n-dimensional manifold M.

Definition 3.1. At each point z € K the tangent set T,K of K is defined as follow.
For any chart ¢ : U — R" centered at z, and for ¢ > 0, one considers the compact set

T =Closure{v €R".3x,y € p(K)NB(z.e), x #yand v = IIx_y|| }
X =y

One denotes by 79 the intersection (),. 7e, and by T the linear subspace of R” generated
by 0. The pull-back T.K := (D,¢)~'(T) does not depend on the choice of the chart ¢.

It is clear that a necessary condition for K to be contained in a d-dimensional
submanifold of M is that each T, K is contained in a continuous subbundle of dimension
d of the restriction of T M over K. The next theorem is an easy consequence of Whitney’s
extension theorem, and it asserts that this condition is also sufficient.

Theorem 3.1. If K C M is a compact set and x +— E(x) C TyM is a continuous
d-dimensional subbundle defined on K, such that TyK C E(x) for any x € K, then there
is a compact d-dimensional C'-submanifold with boundary ¥ C M which contains K in
its interior. Furthermore, X is tangent to E(x) at each point x € K.

We now consider the case when K is a partially hyperbolic set.

Corollary 3.2. Let f be a Cl'-diffeomorphism of M and K be a compact invariant
set admitting a partially hyperbolic structure TM\g = E°® E*", where d = dim(E°).
If, for each x € K, the intersection W**(x) N K 1is reduced to {x}, then there exists a
compact d-dimensional C'-submanifold with boundary which contains K in its interior.
Furthermore, at each x € K, it is tangent to E€(x).

Remark 3.3. One can assume that X'\ K is smooth. Indeed, one can modify X outside
a small neighborhood U of K by an arbitrarily small C'-perturbation, such that ¥\ U
is smooth. A converging sequence of such perturbation when U decreases to K gives the

property.
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3.1. Whitney’s extension theorem: the solution of the local problem

One can find in [1, Appendix A] the following statement.

Whitney’s extension theorem. Let A C R? be a closed subset, and let f: A — R"™ be
a continuous function. The two following properties are equivalent.

(1) f extends to a C' function ® : R — R4,

(2) There is a continuous map D from A to the space of linear maps L(R?, R"=?) such
that, if one defines the function R : A x A — R4 by

R(x,y) = (f(y) = f(x) = D) (y —x),

IR Cx, )l
ly—xI|

Moreover, if f and D verify the second property, then the extension ® can be chosen so
that Dx® = D(x) at each x € A.

then for each z € A the quantity tends to 0 as x # y tend to z.

It can be restated as follows.

Corollary 3.4. Let K C R" be a compact set such that

— every (n — d)-dimensional affine space (x1, ..., xq) x R" meets K in at most one
point,

— for every x € K there is a linear subspace E(x) C R" of dimension d, transverse to
(0} x R"4 containing the tangent set TyK of K at x,

— the map x — E(x) is continuous.

Then K is contained in the graph T of a C'-map ® : RY — R"~?, and the tangent space
T, coincides with E(x) at each point x of K.

Proof. Let us denote by A the projection of K on R? x {0}~ along the vertical direction:
K is the graph of a function f : A — R"~¢. Since K is compact, this map is continuous.

For each point x, the d-dimensional space E(x) has been assumed to be transverse to
the vertical direction so that it is the graph of a linear map D(x) : R — R"~¢. The map
x +— D(x) is continuous since x + E(x) is continuous.

Consider a point z € A and p = (z, f(2)) in K. The hypothesis that 7, K C E(p) means
that every v € T,K can be written as (u, D(z)u). Hence, for any x,y € A in a small
neighborhood of z, the following quantity is very small:

=y, f&x) = fO) (x =y, D@)x —y)

G =y, fO=FODI I =y, D@ = I

After multiplying by the uniformly bounded quotient %W, we get that
[(x =y, DEx—yDI x =y, f&x) = f) &=y, D@ —Y) S0 ()
G =y, fF&)=FODII llx — Il lx =yl

when x and y # x tend to z.
Considering the projection on the horizontal coordinates R?, one deduces that

% goes to 1. Since W is uniformly bounded, we deduce
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from (4) that

(=3, f) = f() &=y DE)x—Y)
o =yl llx =yl

— 0 when x # y tend to z.

By projecting on the vertical coordinates R"~“, and by continuity of x — D(x) at z, one
gets
J@)—f)—D)(x—y)
llx =yl
This gives the second of the properties of Whitney’s extension theorem, and this theorem
concludes the proof of the corollary. O

— 0 when x # y tend to z.

Consider now a subset K of the n-dimensional manifold M and a d-dimensional linear
subspace E(x) C TxM at each point x € K. We introduce two definitions.

— A diffeomorphism ¢ from an open set U C M to ]—1, 1[" is called an adapted chart
of (K, E)if o(KNU) C1—1, 1[¢x{0}"~¢ and Dg(x)- E(x) coincides with the linear
space RY x {0}~ for each x € KNU.

— A pair (U, X), where U C M is open and ¥ C U is a submanifold, carries (K, E)
if KNU C ¥ and T,y ¥ = E(x) for each x € KNU.

Corollary 3.5. Let K C M be compact. If the map x — E(x) is continuous on K and
satisfies TyK C E(x) for each x € K, then each point of K is contained in an adapted
chart of (K, E).

Proof. Let us choose some coordinates around a point p € K such that the vertical
plane {0} x R"~? is transverse at p to E(p). As T,K C E(p), shrinking the chart at p if
necessary, one can assume that, for x # y in K close to p, Hi%yl\ does not belong to the
vertical (n —d)-dimensional plane. Hence, any vertical (n — d)-dimensional affine space
in this chart meets K in at most one point. We can thus apply Corollary 3.4 and get a
Cl-graph I'. A chart at p which trivializes the graph is an adapted chart of (K, E). O

3.2. From local to global

Theorem 3.1 is now a consequence of Corollary 3.5 and of the following proposition.

Proposition 3.6. Let K C M be a compact subset, d > 0 be an integer, and at each x € K
let E(x) C TxM be a d-dimensional subspace such that K is covered by charts adapted to
(K, E).

Then there exists an open d-dimensional submanifold ¥ C M such that K C X and
T,X = E(x) forx € K.
Proof. Consider a finite covering {U;}icqi,...,ey of K by charts adapted to (K, E), and for
each i fix some open subset V; whose closure is contained in U;, such that K C | J; V;.

By induction, one will build open sets W;, for i =1, ..., £, containing O; := U;Zl V; and
a submanifold X; such that the pair (W;, X;) carries (K, E). The open submanifold X,
obtained this way will satisfy the conclusion of Proposition 3.6 since (W, X;) carries
(K, E) and since K is contained in W,.
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For the first step of the induction, one chooses Wi = U;, and X is the horizontal
d-dimensional plane in the coordinates of Uj. The other steps are obtained by applying
the next lemma, Lemma 3.7, to U;j+1, Viy1, Wi, X; and O;. O

Lemma 3.7. Let U be an adapted chart of (K, E), and (W, X) be a pair carrying (K, E).
Consider an open set V whose closure is contained in U and an open set O whose closure
1s contained in W. Then there is a pair (W', X') carrying (K, E) such that VU O C W'.

The proof of Lemma 3.7 is obtained after two intermediate lemmas.

In the first lemma, we prove that, in the coordinates of the adapted chart U, X' can be
considered as a graph. We recall that the adapted chart identifies U with ]—1, 1[" and
we introduce some constants.

— n < 4§ in ]0, I[ are chosen to define the smaller rectangles 1-§, §[", 1—n, n["* of U.
By choosing 1 close to 1, one can assume that they contain V.

— & > 0 allows us to define the (open) e-neighborhood W, of O and the intersection
Y. := XY N W,. Notice that the pair (W, X,) still carries (K, E).

Sublemma 3.8. For ¢ > 0 small enough, the intersection X, N]1—8, 8[" is the graph of a
C'-function ® : S —1—n, n["~? defined on an open subset of 1—8,8[¢. Furthermore, if
z € Sx]—8,8[""% belongs to K, then z belongs to the graph of ®.

Proof. Consider a point z = (x, 0) €]—1, 1[¢ x{0}" <.

— Assume first that z ¢ KN'O. Then the fiber {x} x[—8,8]" ¢ is a compact set
disjoint from K N 0. For & > 0 small enough, X, is contained in an arbitrarily small
neighborhood of K N'0. As a consequence, there is an open neighborhood S, of z in
1—1, 1[¢x{0}"~ and there is a number &(z) > 0 such that (S, x [—8, 8]"~%) N T,
is empty.

— Assume now that z € KN O. The submanifold X is tangent at z to ]—1, 1[¢
x {0}"~?: as a consequence, there is an open neighborhood V, of z, contained in
(-1, 1[4 x]—n, n[*~9) N W, such that the intersection of ¥ with V. is a graph
over V;N(]—1, 1[9x{0}"~). Notice that the difference ({x} x [—8,8]""9)\V; is a
compact set disjoint from K (as U is an adapted chart). Hence there is e(z) > 0, and
there is an open neighborhood V; of ({x} x [—§, 8]"_d) \ V; such that V/ is disjoint
from Y, and K. One chooses an open neighborhood §; of z in ]—1, 1[¢x{0}"~¢
small enough such that S, x [—8, 81"~ is contained in the neighborhood V, U V! of
{x} x [-38,8]" 4.

By construction, (S, x [—8, 81"~4)N Y¢(z) is the graph of a C!'-function, defined over
an open neighborhood S, of z in ]—1, 1[4 x{0}*~¢ and with values in ]—n, n[" <.
Moreover, if y € KN (S, x [=8,81"~¢) then y belongs to V., and hence to W. In
particular, y € X; hence y belongs to the graph of the function above, and in
particular y € X ().

The constructions above associates to each point z €]—1, l[dx{O}"_d an open
neighborhood §; (in ]—1, l[dx{O}”_d) and a constant £(z). By compactness of [—§, S]d,
one can choose a finite set X such that the open sets ., z € X, cover [—8, §]¢. One fixes
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e > 0 less than &(z), z € X. Then X,N]—8§, 8[" is the graph of a C'-map ® from an open
subset S C 1-8, 8[¢ to ]—n, n[* <.

Finally, let y be a point in K N (§x]-4, 8["~?). Then y belongs to some S, x [—4, s,
z € XNKNO and we have seen that y € Y¢(z); hence y belongs to the graph of ®. [

Let S be the open set given by the previous lemma, and let T be the open set Sx]—
8,8[" . We have proved that (W, UT, X,) carries (K, E). We now modify X, in the
chart U in order to glue it to the horizontal rectangle 1—n, n[¢ x{0}"~¢. We thus choose
a smooth function 6 :]—1, 1[¢ — [0, 1] which takes the value 0 in a neighborhood of
[—n, 7] and takes the value 1 in a neighborhood of ]—1, 1[4\]-8, 8[¢.

Sublemma 3.9. There is an open submanifold X| which coincides with X, on M\]-8, §["
and with the graph of 6-® : § —]—n, n["_d in 16, 8[". Moreover, (W UT, X]) carries
(K, E).

Proof. Let us consider the set X} union of X,\]-3§, §["* with the graph of 6 - ® (contained
in Sx]—n, r;["’d). We will cover M by two open sets and verify that the intersection of
X! with each of them is a submanifold of dimension d.

— In M\[-¢&,68]", where & is close to 8, the sets X] and X, coincide. Indeed,
by Sublemma 3.8, neither X/, nor X, meets [—8,8]¢ x (1—8, 8["~/\]—n, n["*~%).
Moreover, taking 8’ < & such that ¢ is equal to 1 on 138, 8[¢\]—¢', 8'[¢, one deduces
that ¥/ and ¥, coincide on (]—8, 8[¢\[—&', 8'19)x]—8, 8["~¢.

— In ]-8, 8[", the set X/ is the graph of a C!-function defined on an open set of
1-8, 8[4.

This implies that X/ is a d-dimensional submanifold of M, which is contained in W, UT
(since W, contains X, and T contains the graph of 6 - @).

Consider any z € KN (W,UT). If z € T, then Sublemma 3.8 implies that z coincides
with (x, ®(x)) for some x € S. But ®(x) =0 when x € K so that 6(x).®(x) = ®(x) =0
and z belongs to the graph of 6® and hence to X}. If z € W, \ T, then z belongs to
We\]1—6, 8["* (the points of KN]—§, 8[*N W, belong to 1§, §["N X, and hence in T, by
Sublemma 3.8); in particular x belongs to X:\]-4, 8[", and to X/. O

End of the proof of the Lemma 3.7. By Sublemma 3.9, the union X' =X/ U(]—
7, n[¢x{0}"=¢) is an open C!-submanifold of dimension d. Let W’ be the open set
W, UT Ul—n, n[". Notice that O c W, ¢ W and V C ]—n, n["*C W'.

One concludes the proof by showing that (W', X’) carries (K, E). If x € K N W/, then
one of the following holds.

— x €]-n,n[". Then x €]—n, n[¢x{0}*~?, and since U is a adapted chart of (K, E),
the space E(x) is tangent to ]—7, n[¢x{0}"~?. So x € X', and E(x) is tangent to X’.

- x€W,UT. Then x € ¥, C ¥, and E(x) is tangent to X, (and to X’) by
Sublemma 3.9. O

Proposition 3.6 and Theorem 3.1 are now proved.
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3.3. Application to partially hyperbolic sets without strong connections

By Theorem 3.1, Corollary 3.2 is a direct consequence of the following.

Proposition 3.10. Under the assumptions of Corollary 3.2, TxyK C E°(x) at each point
xekK.

As in § 2.2.2, one considers the cone fields Cg associated to a continuous extension of
the bundles E€, E**. To prove the proposition, it is enough to replace f by an iterate
f¥: hence one can assume the following properties for any x close to K:

Df(Ci(x)) C C%(f(X)),

2|Df )| < IDf ()| and ||Df (v)|| = 3 for any unitary u € E(x), v € C;(x).

For & > 0 less that the radius of the injectivity of the exponential map associated to
the metric on the manifold M (if M is not compact, it suffices to consider a compact
neighborhood of K'), and given any two points x, y € M with d(x, y) < ¢, there is a unique
geodesic of length less than ¢ joining x to y. We will denote by [x, y] this geodesic. If
¢ is small and if V C U is a small neighborhood of K, for any two points x, y € V with
d(x,y) < e, one has [x,y] C U.

Definition 3.11. The pair (x, y) is in the cone field C if the tangent vector of the geodesic
segment [x, y] at each point z € [x, y] belongs to the cone Cj.

The pairs of points contained in a same strong unstable leaf can be characterized as
follows.

Lemma 3.12. Let x,y € K and m € N such that for every n > m one has
d(f7(x),d(f"(y)) <& and the pair (f"(x), f~"(y)) is in the cone field C;.
Then x and y belong to the same strong unstable manifold.

Proof. From the definition of partial hyperbolicity, for each n > 0 and each unitary u €
E“(x),
IDf™" - ull = 2" d(f "), f7" ().

This implies that y belongs to the strong unstable manifold of x (see [12, Theorem 5.1]).
O

The property for a pair of points of K to be in the cone field C; is invariant by positive
iterates, as long as the distance between x and y remains small.

Lemma 3.13. There is § €]0, e[ such that, for any pair (x,y) in C; with x,y € K and
dx,y) <$,

—d(f(x), f(y) <e,
— the pair (f(x), f(y)) is in the cone field Cy,

—d(f(x), f(¥) =2d(x,y).
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Proof. The first point follows from uniform continuity and the two others from the
following properties.

— If d(x,y) is small, the image f([x,y]) is C'-close to the geodesic segment
[f (), fO)]. In particular, the ratio of their length is arbitrarily close to 1.

— For a pair (x, y) in Cy, the length of f([x, y]) is greater than 3 times d(x, y) (by (1)).

— For a pair (x, y) in C;, the segment f([x, y]) is tangent at each point to the cone
field C 1. O

Proof of Proposition 3.10. Assume that there is some point z € K such that T,K #
E€(z): there exist v e T,K \ E°(z) and two sequences (x,), (y,) in K converging to z

such that in any chart at z the vectors H;::—ZH converge to v. Note that by replacing v

by an iterate Df¢-v/||Df¢-v]|l one can assume v € C;(z), and hence each pair (x,, y,) is
in the cone field Cj.

For large n, the distance d(x,, y,) is arbitrarily small. Lemma 3.13 implies that there is
k, > 0 such that d(f* (x,), f* (yn)) € [”gﬂ, 81, and such that d(f*(x,), f5(yn)) < ”gﬂ
for any k € {0, ..., k, —1}. By taking a subsequence, one can assume that the pairs
(f* (xn), ¥ (yn)) converge to a pair (x,y) of points of K. We will prove now that
y € WH*(x).

For any i > 0, the pair (f~(x), f~'(y)) is limit of the pairs (f*~(x,), fX~(yn)).
By the choice of ky,, the distances d(f*~(x,), f*~(y,))) are less than 8, so that
d(f7i(x), f71(y)) <e. Applying Lemma 3.13 inductively, one gets that the pair
d(fk"_i (xn), fk"_i(y,,))) is in the cone field C;. Notice that the geodesic segment
[F®&=D(x,), f%=D(y)] converges (in the Cl—topology) to the geodesic segment
[f_i(x), f_i(y)]. As a consequence, the pair (f_i (x), f_i(y)) is in the cone Cj.

Lemma 3.12 now concludes that x and y belong to the same strong unstable manifold.
Notice that x # y because x and y are joined by a geodesic segment with length in ]0, ¢[.
This contradicts the hypotheses on K in the statement of Corollary 3.2. O

4. Invariant center manifold

We explain here how to replace the submanifold given by Theorem 3.1 by an invariant
submanifold.

Theorem 4.1. Let f be a diffeomorphism of a manifold M, and let K be an invariant
compact set contained in the interior of an (a priori non-invariant) compact submanifold
with boundary X. One assumes furthermore that K admits a partially hyperbolic splitting
TM = E°® E"™ such that E(x) = T, X at each point x € K.

Then, one can replace X by a submanifold S which is locally invariant: SN f(S)
contains a neighborhood of K in S.

The proof follows the usual construction of center manifolds for fixed points: one
considers graphs of functions & : ¥ — R"™“ where R"“ is a local coordinate transverse
to X. The action of f~! can be modified outside a neighborhood of K so that it preserves
the space of Lipschitz graphs. The domination between E€ and E“* ensures that this
action is a contraction, and hence has a fixed point: this is the center manifold.
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In our setting, the fixed point has been replaced by an invariant compact set K which
makes the argument more delicate: the action of f~! in a neighborhood of K cannot be
approximated by a linear map, and the local transverse coordinates are obtained by the
construction of a tubular neighborhood.

4.1. First constructions

In this section, we build a tubular neighborhood of the submanifold ¥ which will allow
us to define the space of graphs.

4.1.1. Bundles E, F around K. Since the splitting TM|x = E°@® E"" is partially
hyperbolic, there exist Ax > 1 and ng > 1 such that, for each x € K each n > ng and
each unit vector u € E°(x), v € E*"(x), one has

IDf"(x)-vll > A IDf"(x) -ull and [ Df"(x)-vll > A.

From now on we assume that ng = 1 (this is always possible by changing the initial
metric; see [10]).

We also extend the bundles E€, E** defined on K as two (a priori non-invariant)
continuous bundles E, F on a neighborhood of K. One can reduce X and assume that at
each x € ¥ E(x), F(x) are defined and that both E(x) and T, X are transverse to F(x).

4.1.2. Tubular neighborhoods of Y. The next proposition provides us with a
tubular neighborhood T of an open submanifold Xy C X.

Definition 4.1. A tubular neighborhood of an open submanifold Xy C X is a smooth
surjective submersion 7 : T — X on an open neighborhood T of Xy which induces the
identity on X.

A vector u € Ty M for x € T is vertical if it is tangent to the fibers of 7 (i.e., D (x).u =
0) and horizontal if it is tangent to E. The set Vi of vertical vectors at x is the vertical
space. Any tangent vector u € Ty M decomposes as a sum u, + up, where u, is vertical
and uy is horizontal. For any 8 > 0 we denote by C’é (x) the horizontal cone associated to
the splitting E @ V:

Ch(x) ={u e TM, Blunll > lluyll}-

Proposition 4.2. For any A9 €11, Ax[ and any n, B,8 > 0 there is a neighborhood Xy of
K in X and there is a tubular neighborhood w : T — Xg with the following properties.

(1) For any vertical vector u, at x € TN f~1(T),

IDf(x)-uvll = Aolluyll  and | Do Df(x) - uyll < nlluy]l.
(2) For any horizontal vector uj, at x € T,
(1 =8) llupll < I1D7w(x) - unll < (L+38) flunll.
(3) For any x € TN f(T), one has
Df~'(x) - Ch(x) C C’:% f @),
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Proof. Let F be a smooth vector bundle arbitrarily C%-close to F, let X be a small
open neighborhood of K in ¥, and let mp > 0 be a small constant. We denote by 7, the
mo-neighborhood of the zero section of the restriction f\ 5,- The exponential map sends
T, diffeomorphically on a set T C M. The canonical projection 7,, C I7| 5, onto Xy
induces by identification a projection & : T — Xj. One checks easily that T is a tubular
neighborhood of Xj.

At points x of K the bundle E** is preserved, expanded by Df by Ak, and the cone
Ch(x) is mapped into Cﬂ//\ (f(x)). Since the splitting E®F is close to the splitting
E £ @ E"", the three items of the proposition follow by continuity. O

As a consequence we obtain the following.

Lemma 4.3. Under the setting of Proposition 4.2, and if B < )‘O(;f", for any vertical
vector uy, #0 at x € TN f~Y(T), the image w = Df(x)-u, does not intersect the cone
Cig(f ().

Proof. One first decomposes w into wj + w, and denotes by w; = Dw(x).w;, = Dm(x).w
the projection by Dm. We have |[w| > Aolluy| and |[wz |l < nlluy|| by Proposition 4.2(1).
Moreover, |lwy]| = %Hwh || by Proposition 4.2(2). Hence,

lwoll Z lwll = lwrll = Aolluyll = 2wz | = (o =2 luyll  and  [lwall < 2nlluyll.
We thus get ||wy| > XO 2’7

lwpll > 3B|lwy|| by our choice of the constant . O

4.1.3. Contraction of the tubular neighborhood. Let d; be the distance along
the fibers of the tubular neighborhood 7w : T — Xy, given by the induced metric. For any
m > 0 small, one denotes by T;, C T the set of points z € T such that d,(z, 7(2)) < m.

For any z € T,,, one considers the geodesic segment joining z to m(z), parameterized
by [0, 1]. For each 6 € [0, 1], this allows us to define 6 - z € T, as the barycenter of z and
7(z) for the weights 6, 1 —6. For any 6 € [0, 1] and z € T,, one defines 6 -z € T;, as the
barycenter of z and 7(z) along the geodesic segment joining them in the fiber 7~ (7 (2)).
This gives a map ® : (0,z) — 6 -z on [0, 1] x T,,. For each 6 € [0, 1], we also denote by
®¢ : Ty > T, the map z+— 6 -z.

Equivalently, let F be the tangent bundle on T to the fibers of 7, let 7, be the
m-neighborhood of the zero section of the restriction f\ 5, and let O: [0, 11X T = T
be the map which sends (0, v) € [0, 1] x F(x) on 0 - v in the vector space F(x). The maps
® and O are conjugated by the fibered exponential map.

Proposition 4.4. (1) The map © is C'.
(2) The image of the derivative Dg® at a point (0, z) € [0, 1] x Ty, is contained in the
vertical space V(z) of z. It has a norm bounded by the distance dx(z, w(z)) in the

fiber of z.

(3) For any p > 1, if m > 0 is small enough the following property holds.
For any 0 € [0, 1], and any z,7’ € T;, such that 7(z) = 7 (z'), we have d(0-z,0 -
7) < pdr(z, 7).
(4) For any constants B > B’ > 0, if m > 0 is small enough the following property holds.
For any 6 € [0,1] and z € T,,, the differential D®y(z) sends Cg,(z) inside Cg(@ -2).
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Proof. The proposition may be obtained easily from the map 0.

(1) The map © is C!, and so is ©.

(2) For any v € T, the map 6 (0, v) is linear. The norm of its derivatives is equal
to ||v]|. Let z € T, be the image of v by the fibered exponential map. Since the
exponential map sends isometrically the line R - v on the geodesic R.z, one deduces
that the derivative Dy® at the point (6, z) has a norm equal to ||v]| = dr (z, 7(2)).

(3) For any v, v" € T,,, which belong to the same fiber F(x) of I?|g07 and for any 0 € [0, 1],
we have [|0-v—0-v'| < |lv—1'||. We consider the images z,z' € T, of v, v’ by the
exponential map. At the point (x, 0) € 7,,, the derivative of the exponential map is
an isometry. Hence, for any p > 1, if v and v’ are close enough to (x, 0), we have
dz(0-2,0-7) < pdr(z, 7).

(4) By construction, for any point x € Xo, and any 6 € [0, 1], the differential DOy of
the map ®y at x maps the cone C%(x) into itself: the horizontal vectors at x are
preserved and the vertical vectors are contracted. The last item of the proposition
thus follows by continuity of the differential of ®. O

Remark 4.5. One can assume that the map 7 and ® are smooth on 7~!(Xy\ K) and
[0, 1] x 7~ 1(Zp \ K). Indeed, Xy can be taken smooth outside K by Remark 3.3, and the
vector field F tangent to the fibers of & has been chosen smooth also.

4.1.4. Lipschitz functions and graphs over Xj;. Let us consider Ag,n, 8 and a
tubular neighborhood 7 : T — Xy as given by Proposition 4.2.

Definition 4.6. A function of T is amap h : U — T, where U is a subset of X such that
mwoh(x) =x at any x € U. The image h(U) will be called the graph of h.

h is B-Lipschitz if the tangent space T;h(U) (as in Definition 3.1) is contained in the
cone Cg(z) for each z € U.

The distance inside Lipschitz graphs is bounded.

Lemma 4.7. Let X' C Xy be a neighborhood of K in Xy and h: X' — T a B-Lipschitz
function. Then, for any curve o C X', we have the estimate

|h(o)| < 2(1+ B)lo]
, where |o| and |h(o)| are the lengths of the curves o and h(o).

Proof. At any point z € T, any vector u € CZ (z) decomposes as uy + u, such that |lu,| <
Bllun|l. By Proposition 4.2(2), we also have |luy| < 2||v|, where v = D7 (z) -u, so that

llu]l < 2(14 B)|lv|l. This gives the lemma. [
The next lemma will show that the distance between Lipschitz graphs is contracted
by f~L.

Lemma 4.8. Fiz a constant y > (Ao —4n(1+ B))~! and a neighborhood X' C Xy of K in
%o. Then, there exists a neighborhood U, C T of K which satisfies the following.
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For any graph S of a B-Lipschitz function h : £ — T and any points z1, 22,72 in U,
such that 21,72 € S, m(z2) = 7(Z2) and 7(f~'(z1)) = 7(f~(z2)), we have

de (@0, £ 22) < ¥ dr(22,72).

Proof. One chooses A €11, Ao[ such that y > (A—4n(1+pB))"". Let o be a geodesic
segment joining the points f~1'(z;) and f~'(z2). Since U, is small, the length of o
is small.

The length | f(0)] is close to || Df (z) - ul| - |o|, where z is a point of o and u a unit vertical
vector tangent to o. Proposition 4.2(1) gives | f(¢)| = Aolo|. The distance between z; and
72 in M is close to the length of f(o); hence

d(z1,22) = Alo]. (5)

Similarly, the length of o' =mo f(oc) is close to |[DmoDf(z)-ul-|o|, and
Proposition 4.2(1) gives
lo’| < 2nlo]. (6)

Since h is B-Lipschitz function, we have by Lemma 4.7 that
|h(e")] <2014 B)lo’|. (7)

Since the segment h(c”) joins the points z; and 7o = h((z2)), one gets by (7) and (6) the
estimate d(z1,%2) < 4n(1+ B)lo|. Writing d(z1, z2) < d(z1,72) +d(Z2, z2), and using (5),
one gets

Mol <4n(1+p)lol+d(Z2, z2)-
Since |o| = dr (f~(z1), £~ (z2)), this gives as required

de (7 G0y f7N22) S o= 4n(1 + ) 1d(Za. 22) < ¥ dn(22.72). O

4.1.5. Choice of the constants and of the tubular neighborhood.  We explain
the constants used in the proofs below and how to choose them.

(1) One chooses the constants required by Proposition 4.2: one first fixes 19 €11, Ag[,
then n > 0 small and finally 8,8 €]0, 1/2[ small enough so that

Ao — 21

B < o

1
ko —4n(l+p) > 1 and f+5 < . (8)

(2) We also consider y > 0 and then p > 1 such that
ro—4n1+B) "<y <1 and yp<1. (9)

The first part of (8) is used in Lemma 4.3. The second part guarantees the existence
of y satisfying (8) as required in Lemma 4.8. The third part is used in the proof of
Proposition 4.14 for the cone contraction. The constant p > 1 appears in Proposition 4.4,
and the condition yp < 1 will ensure the contraction of the graph transformation in the
later constructions.
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(3) In order to obtain contraction of the horizontal cone fields, we choose 8 € ]%, Bl

(4) Proposition 2.1 applied to X gives Cx > 0, and ¢y > 1 is any bound on ||[Df| and
1D~

One can now fix the tubular neighborhood T which satisfies the conclusions of
Proposition 4.2 for the constants Ag,n, 8 and the conclusions of Proposition 4.4 for

B' = B/ho and B.

4.2. A graph transformation

4.2.1. Geometry of the graph images. Before defining the graph transformation,
we need to check that the images by f~! of the Lipschitz graphs above Xy remain
Lipschitz graphs. We recall that ¢y > 1 is a constant which bounds || Df]|, IDFY.

Proposition 4.9. There exists a function € :]0,mi[ —]0, +oo[, with the following
properties. Let X, Xy denote the open e(m) and 2cy - e(m)-neighborhoods of K in Xy.
Then the following hold.

(1) Timy o 725 = 0.
(2) For anym €10, mi[, f~"(T) N7~ (Z) C T

(3) For _any m €10, m[, the image f~ (S) of the graph S of any B-Lipschitz function
h: X, — T, contains the graph ofa 0 -Lipschitz function h' : X, — T, over Xy

The proof uses two preliminary lemmas.

Lemma 4.10. For each small neighborhood X' of K in Xy, there exists a positive constant
m = m(X') verifying the following property.

Consider the graph S of a B-Lipschitz function h: X' — Ty(xry- Then, f_l(S) 18
contained in T and is the graph of a function h' over the subset w(f~1(S)) of Xy.
Proof. Working with small charts (where the metric || || and the bundles E and F are
almost constant) that cover the tubular neighborhood T, one gets the following property.

There exists v > 0 such that, for any B-Lipschitz function h : U — T over a subset
U C Xy, and for any points x,y € h(U) such that d(x, y) < v, then the geodesic segment
joining x to y is tangent to the cone Cé’ﬂ at each point.

Since f(K) = K, since Xy is tangent at each point x € K to E(x), and since E|x is
invariant by Df, there exists a neighborhood X1 C X of K in X such that f~1(Xy) is
contained in T and is the graph of a function over a subset of Xj.

We now consider X’ C X} and prove that it satisfies the lemma with some constant
m > 0. Let us assume, by contradiction, that there exist a sequence (m,) going to 0, a
sequence of graphs (S,) of B-Lipschitz functions over X’ such that S, C Tj,,, and two
sequences of points (x,) and (y,) such that, for each n, the points x, and y, are distinct,
contained in S,, and verify (£~ (x,)) = 7(f " (yn)).

We first prove that the distance d(x,, y,) goes to 0: in the other case, one would obtain,
by considering some subsequences and using the fact that m, goes to 0, two distinct points
x,y in X’ whose images by m o f~! coincide, contradicting that f~1(X2) c f~(Z) is a
graph.

https://doi.org/10.1017/51474748015000055 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000055

Center manifolds for partially hyperbolic sets without strong unstable connections 813

We consider the geodesic segment ¢, joining f~'(x,) to f~'(y,) in the fiber of 7!
Then, by Lemma 4.3 and our choice of 8, the segment f(o,), joining x, to y,, is never
tangent to the cones Cé’ﬂ. On the other hand, for n large enough, the points x, and y,
are at distance less than v, so that the geodesic segment joining x, to y, is tangent to
the cone Célﬁ. When n tends to oo, the angles between these two segments at x, go to 0
leading to a contradiction. O

Lemma 4.11. There ezists a function e :]0,4o0o[ =10, +oo[, with the following
properties.

(1) limpy,—g % =0.

(2) Ty, contains the image by f~' of the &1 (m)-neighborhood of K in Xy, for anym > 0

small.
Proof. By Lemma 4.10, there is a neighborhood ¥ of K in Xy such that f’l (X1) is the
graph of a C!-function h which is tangent to the bundle E at points of K. Hence, one
can cover K by finitely many open sets U; of Xy and charts ¢; : U; — V;x]0, 1[4im(M)—d
such that V; is an open set of X and h writes in this chart as a C'-map from V; to
V; x10, 1[4m)=d of the form x +— (m(x), hi(x)). Moreover, h;(x) and Dh;(x) are equal
to zero at points x of K.

For any n > 0, let vo(n) > 0 be the supremum of the norm of the derivatives of the maps
h; on the n-neighborhood of K in Xy. We set v(n) = max(#n, vo(n)). The map n — v(n)
is continuous, increasing, and goes to 0 with n (since Dh; vanishes at points of K).
For m small enough, one defines n(m) > 0 as the minimum of the numbers 1 such that

< nv(n). Clearly, n(m) goes to 0 with m so that n(m) = v(n(m)) goes to 0 with m.

By construction (using the inequality m < nv(n) and the facts that A vanishes on K
and has a derivative bounded by v(n) on the n-neighborhood of K), the C%norm of
h is bounded by m on the n(m)-neighborhood of K in X¥y. In other words, the graph
F~I(S) over the n(m)-neighborhood of K in Xy is contained in 7,. The differential of
f~!is bounded by ¢ r > 1. Hence, the function &{(m) = @ satisfies the statement of
the lemma. O

Proof of Proposition 4.9. We set g(m) = £1(m) with ¢; as in Lemma 4.11.

= 2c

(1) The first item of the lemma is an easy consequence of Lemma 4.11(1).

(2) Let 2 be a point in F TN Y(Z,) and 7 € £~1(2)) such that xp=m(Z) =
7(z5). We also let z1 := f(z}) € Ty and Zj € Xo such that 7 (Z1) = n(z1). Since
z1 € Ty, we have d;(z1,71) < m. By Lemma 4.8, we have

dr (2}, 25) < ydr(21,71) < (10)
Since ¥ and f~!(X) are tangent at points of K, for m small we have
dr (x],25) < d(z], K) < 2cpe(m) < (1—y)-m
by Lemma 4.11(1). This proves dy (x], z}) < m and gives the second item.

(3) We now prove the following property:

F Y Tana'@E))Na " Y(Z,) = 0. (11)
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We consider a point z; in T), N7~ (d fm) and z2 = 7(z1). Let z}, 2, be their images
by f~!, and let x{, x5 be the projections of z}, z, by 7. It is enough to show that x|
and K are at distance larger than e(m) in Xy. In particular, one can assume that
xj € S

The distance between zz and K in Xy equals 2c re(m); hence the distance between
Z/z and K is larger than 2e(m) in f~'(Xp) and (since f~Y(¥) and ¥ are tangent
at points of K) the distance between x, and K is larger than %s(m). We will show

%, and this will give

that the distance between x| and x) in Xy is smaller than
the announced property.

Since xi € fm, by the second item one has 7z} € T,;, and hence dn(xi,z/l)
Since dy (z1, z2) < m, we have d(z}, z3) < 2cym, where ¢y bounds the derivative of
f~L. Since 75 € Z‘m, it belongs to the 2c re(m)-neighborhood of K in Xy. We have
2cpe(m) < e1(m), and hence z, C T, by Lemma 4.11(2); that is, dy (25, x}) is less
than m. The distance between xi and xé is thus bounded by 2(1 +cy)m.

Since 8(’"—m) may be taken arbitrarily small, one deduces that the distance in Xy

between x| and x) is smaller than e(gl), as required, proving (11).

Let us come to the proof of the last item. By Lemma 4.10, the image by f~! of
the graph S of the function i over %, is the graph S’ of a function h’ defined
over a subset D of Xj. By Proposition 4.2(3), A’ is %—Lipschitz. By the second
item, S'N7~1(X,) is contained in T},. By (11), %, and the boundary of D do not
intersect. Hence, X, is contained in D. This shows that S’ contains the graph of a
function defined over X,,. O

4.2.2. Definition of the graph transformation. For m small, we denote the
following.

Uy, the open set T;, N (;w o f)~1(Z,,). For m small it is an arbitrarily small neighborhood
of K.

Lip,, g: the set of B-Lipschitz functions & : Xy — T, which vanish outside X, i.e.,
h(x) = x for x € X\ Zy,. It is endowed with the CO-distance: if 1, b’ € Lip,, g are
two Lipschitz functions, we set

d(h, b)) = sup dy(h(x), h'(x)).
xeX,

By Arzela—Ascoli’s theorem, this space is compact.
Lip,, g(K): the subset of functions h € Lip,, g vanishing on K (i.e. Vx € K, h(x) = x).

¢m: a smooth function Xy — [0, 1], given by Proposition 2.1, equal to 1 in the
e(m) neighborhood of K and to 0 in a neighborhood of X\ X,,. Its derivative is

bounded by

6( ), where Cy is the constant associated to the manifold X.

Vin: an open neighborhood of Xy \ X, in ¥y where ¢,, vanishes.

¢m (h): the function Xy — T, associated to a function i : X, — T, as follows: it is equal
to ¢y -h on X, and to the identity outside X,,. With the notation of § 4.1.3,
@ (h)(x) = O(@p (x), h(x)) for each point x € X,.
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G, (h): the function Xy — T,, associated to h € Lip,, 4 as follows: by Proposition 4.9(3),

the image of the graph of & by f~! contains the graph of a Lipschitz function
h X, — T,. Weset G,,(h) = ¢ (h).

The map G, is called the graph transformation.
One can see the graph §” of G,,(h) as the image of the graph S of h by some C'-map.
Indeed, if one defines in f(7T") the map

U,z Opmomo f 1), F (), (12)

then the graph S’ is the union of W,,(S) N7 ~1(X,,) with Z¢\ Z..
By construction, S’ and X coincide on the open set V,,, C Xy. Note that S’ is the union
of V,, with ¥,,,(SNU,,).

Remark 4.12. From Remarks 3.3 and 4.5, one can construct the map ¥,, as smooth as
the diffeomorphism f.

4.2.3. Invariance of the space of Lipschitz graphs. The next proposition shows
that the image G, (h) of a Lipschitz graph is also Lipschitz.

Proposition 4.13. For m > 0 small, Gy, preserves Lip,, g.

This follows immediately from the next result.

Proposition 4.14. For m > 0 small, and z € T,, N f(T), the image of the cone Cg(z) is
contained in the cone CZ(\I/m(Z)). Moreover, DW,,(z) - ug does not vanish for ug € Cg(z).

Proof. Let us fix ug € Cg(z) and denote u; = DW(z) -ug. We also set 71 = f~!(z) and
1 = Df~'(2) -ug. By Proposition 4.2(3), &) belongs to Chﬁ('zvl). Note that u; is the
image of u] by the tangent map at 7| of 8

Py i x = O(pum(x), x).
We aim to compare uy with u7.

Claim 4.15. If m is small, for anyZ) € f~'(Tyy) and ) € Chﬂ , we have
0

D Py -ty [l = a1 [[] < 9B +8). Nl |- (13)

Proof. If Z; belongs to 7~ 1(X \ X)), then P, coincides locally with the projection 7 on
Xy. In particular, the image of DP,,(Z]) coincides with the tangent space to Xy, and
hence is contained in Cg (¥, (2)), and by Proposition 4.2(2) we have

D Py -ty || = Nlaay [[] < Sl .

Otherwise, Z; belongs to f~Y(T,)N7~'(2¥,), and it also belongs to T, by
Proposition 4.9(2), so that denoting x; = 7 (Z1) we have

dx(Z1,x1) < m. (14)

https://doi.org/10.1017/51474748015000055 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000055

816 C. Bonatti and S. Crovisier

We set Uy, = Dn(Z1) -4 and 6; = @ (x1). The image u; := DPy,(z)-u; is equal to
DO (01,71).(Dgy - U1 7, U1), and it decomposes as

ur=v+w=DgO(01,71) o Doy (x1) - U1,z + DO, (1) - U1,

where ©g, is the map z — ©(6, z) as before.
By Proposition 4.4(2), the vertical vector v has a norm bounded by
dz (Z1, x1) | Dop || 141,71l The first term of this product is bounded by m by (14) and

the second by g(sz) Hence,

ZCEm
e(m)
The second vector w = D@y, (Z1)-U; decomposes as the sum wy +w, of a horizontal
vector and a vertical vector. By construction, m o ®y,) =7, so that Dm(z1).w, =
Dr(Z1) - U1 = Uy ». By Proposition 4.2(2), |wy| = (=8) ||i#1 x ||. One the other hand, using
that u| is contained in a cone Cg/xoa and B > B/Ag, Proposition 4.4(4) implies that w

vl <

1, 1l- (15)

belongs to a cone CZ-. Hence, ||wy|| < Bllwpll.

Let us recall that B < B. By these estimates and (15), the vertical component u,, =
v+ w, of uy is bounded by

4C;m

ol < lvll +llwoll < < +5> llwall-

e(m)
The horizontal component u; , of uy is wp.

If one chooses m small enough, f(c—mz)m may be assumed arbitrarily small by
Proposition 4.9(1), so that %m + B is less than B. Hence u; belongs to the cone Cg (z1)-
Moreover, we have

2C2m

Har Il =12 ML < [l = 1D ®g, (Z1) -1 1] + 1,1l

e(m)
For m small, z; := P,(Z1) and Z; are arbitrarily close. Furthermore, #; and D®g, (Z1) - U}
have the same projection by D and are tangent to Cg. Recalling that 8, § €10, 1/2[, and
using Proposition 4.2(2), we also deduce that

i1l — 11D®g, (Z1) - urll] < 8(B+8) ||urll.
The claim is thus proved in all the cases. [

We have proved that u; belongs to Cg, which gives the first part of the Proposition 4.14
(and the first item of the Definition 2.4). Note that, if u¢ is non-zero, the same holds
for ] = Df~'(2) -up. If B+8 < 1/10, estimate (13) gives |ju1| > %Iliflﬂ; hence u; does
not vanish. In particular, we have obtained the second part of the proposition (and the
second item of the Definition 2.4). O

In order to control the smoothness of the center manifold we will need the following
additional result, which can be skipped at a first reading.

Addendum 4.16. Let us assume that K is r-normally hyperbolic. One can choose the

tubular neighborhood w : T — X such that, for B > 0 and m > 0 small enough, the cone
Cg s r-contracted by the restriction of Wy, to Up,.
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Proof. Note that the two first items of the Definition 2.4 are satisfied. In order to get
the third one, one has to choose the tubular neighborhood 7 : T — X carefully.

Since K is r-normally hyperbolic and the decomposition TMx = E°® E"" is
dominated, there exists ng > 1 such that, for x € K and each unit vector u¢ € E°(x),
v € E**(x),we have

min([|Df "€ Co) - ull, DT () - ull") > 3IDFTE(x) v

The same holds for any unit vectors in some thin continuous cone fields C¢ C** containing
the bundles E€, E**, respectively, and defined on a neighborhood of K.

One will choose the cone field C** to be invariant by Df. For instance, for a > 0
small enough, one may consider at points x € K the cone C**(x) := Ci*(x) of vectors
w € Ty M such that the norm of the component along E€(x) is smaller than a times the
norm of the component along E““(x): then the image of C*“(x) by Df~! is contained in
ém‘(f(x)) = C’(;;‘Ao(f(x)). The cone fields C** and C# may be extended continuously to
a neighborhood of K.

Let us choose b > 0 small. The cones C* and C being chosen as above with respect
to the r-normal hyperbolicity and the domination, we assume that the tangent spaces to
the fibers of F are close enough to the bundle E**. Moreover, D P, contracts the fibers
of mr, while its restriction to EICK is the identity. Consequently, for any points x € K and
any m small, if we have DP,,(x) -u € @(x) then DP,,(x)-u and u are almost collinear,
u belongs to C**(x), and || D Py, (x) - u|| is smaller than (1 +b) - ||u||. In particular, for any
z€ Uy, and u € T,M, we have

u € C"(z),
1DV (2) - ull < A+D)IDF (@) -ull
DV, (z) - u Df~'(2)-u
IDWy(2)-ull  [Df~1(2)-ul

DV, (2)-u € C"(z) =

‘ ~

Arguing in a similar way, the cone field C" has the same properties.
If B,m > 0 are small and y is close to K, any unit vector u € CZ /Ao(y) is close to its

image by D P, (y) by Claim 4.15; moreover, the cones Cg are contained in the cones C°.
In particular, we have, for any z € Uy,

D, (2) - u € Cj(¥n(2)),
1Dy (2)-ull = (1 =b)IDF ' (2) - ull.

D¥,()-u  Df ') -u
IDW(z)-ull  1Df~'(2)-ul

ueCh(z) =

‘ AN

In particular, forany z € U, N---N lIl,;"KH(U) and any unit vectors u, v with u € CZ 2)
and DV, X (2)-v € C*¥ (¥, X (7)), we have

min(||[ DV, X (z) - ull, | DY, K (2) -ull") > 2||D¥, X (2) - v]. (16)
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Let us now consider n > 1 large, z € U, N- FW\IJ,;”H(U)7 and any unit vectors u, v
with u € Ch(z) and DV (2)-v & Ch(\I/" (2)).

One can decompose v as a sum v° 4+ v* such that DWW, (z) - v" € C”” and DY/ (2) - v¢ €
Dy’ (C /%0 ). Note that, since the image of v is not in Cﬂ, there exists C > 0 umform such
that

IDW(2) - v"]| = C" |DW}) () - v°].

If np = £ ng, we have by (16) that
IDW0(2) - v || < C27Y I DWL0(2) - v"|.

Since D[, ™ (z) - v* belongs to C¥*, one deduces that DW/, " (z) - v belongs to C**. One
can thus apply 16 to any iterate D\l'k -u, D\IJk -v such that 0 <k <n—ng—ng, and
prove for some C > 0 uniform the required estimate

IDW), (x) - vl < C27"" min(| DY}, (x) - ull, | DY, (x) - ull"). O

4.3. Fixed point of the graph transformation
4.3.1. Existence of the fixed point.

Proposition 4.17. For m > 0 small enough, G has a unique fized point in Lip,, g.

Since Lip,, g is compact, the next lemma implies Proposition 4.17.

Lemma 4.18. For m small, Gy, is a contraction of Lip,, g

Proof. Let us consider two Lipschitz functions hy, hy € Lip,, 3. By Proposition 4.9(3),
the images by f~! of their graphs contain the graphs of two Lipschitz functions hy, hy
X — Ty Let x be a point in X,,. One first wants to estimate the length dy (7] (x), h/z(x)).

Let us denote by z; and z» the images by f of h|(x) and h}(x). We introduce their
projections x1, xp € X, by m, so that z; = h1(x1) and zo = hy(x2). We also consider the
point 7o = hi(x3). By Lemma 4.8, we have

dr (R (x), 5 (x)) < yd(h, ho).
By Proposition 4.4(3), we also have
A (@ (X)) (X), @ (0).h5(x)) < pdr (R} (x), hy(x)).

Thus, one gets
d(Gm(h1), Gm(h2)) < ypd(hi, ha).

We have chosen yp < 1, so this implies the contraction property for G,,. O

4.3.2. C'-smoothness of the fixed graph. In order to prove that the graph S of the
function & € Lip,, g fixed by Gy, is C 1 we apply the following proposition to the tubular
neighborhood 7 : T, — Xy, the graph S, the map ¥,,, and the open sets Uy, V;,.

Proposition 4.19. Let us consider a C! submersion m : T — Xy and a section S. We
assume furthermore that
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(1) there exists a Cl-map W : U — T defined on an open set U C T, which preserves S:
the restriction of W to SNU is a homeomorphism to its image and W(SNU) C S,

(2) S is C' on an open set V of S containing S\ W(SNU), and

(3) there exists a continuous cone field C on T of dimension d = dim(Xy) that is
transverse to the fibration w, contracted by ¥V, and such that S is tangent to C.

Then S is a C'-submanifold.

Corollary 4.20. The fized point h : £ — T of the map G, is a C' function.
Proof of Proposition 4.19. Let us consider a point zg € S. There are two cases.

— Case 1. There exist an integer n > 0 and a point z_, € SNV such that, for each
0 < k < n, the point W¥(z_,) belongs to SNU and ¥"(z_,) = zo. Since z_, belongs
to V, the graph S is C! in a neighborhood of z_,. By the definition of contracted
cone fields, the restriction of DW” to the tangent bundle of SNV is non-degenerate:
the restriction of ¥ to a neighborhood of zg in § is a diffeomorphism to its image,
and by invariance S is C! in a neighborhood of zg. In particular, S is tangent to a
d-dimensional space L, C T, M transverse to = at each point z close to zg.

— Case 2. There exists an infinite sequence (z_j,)nen of points in SNU such that
W(z_,) = Z2—n41 for each n > 1. In this case, using that W sny is a homeomorphism
on its image, for each n > 0, the graph § is tangent to the continuous cone field
C" = DV" . C in a neighborhood of zg. This cone field is exponentially thin around
a d-dimensional subspace of T;;M by Lemma 2.6. The intersection of the C"(zo) is
thus a d-dimensional space L;, and § is tangent to L, at zo.

We now prove that z — L; is continuous at any point. It is clear in the first case. In
the second case, it comes from the fact that L, is tangent to the thin continuous cone
field C" in a neighborhood of zg, for arbitrarily large n.

We have thus proved that the section S of & has continuous tangent spaces transverse
to 7: this is a C! transverse section, and hence a C!-submanifold. O

Under stronger assumptions, we can prove a higher smoothness. It is not used in the
proof of Theorem 4.1, and may be skipped at a first reading.

Addendum 4.21. Under the assumptions of the Proposition 4.19, let us suppose
furthermore that, for some a € (0, 1], the map ¥ and the manifolds SNV are C1¢,
and that the cone field C is (1 4 a)-contracted. Then S is the graph of a CY% function.

Proof. Let us consider a point z € S and a point z/ € S close to z. We have to estimate
the difference between the slopes of T, S and 7,/ S.

In the following, we define for x € S the distance d(u, Ty S) between T, S and a non-zero
vector u € TyM as the norm of the linear projection of the unit vector u/|u| to the
tangent space of the fiber of 7 containing x, parallel to T, S.

By Claim 2.7, the angle between T, S and the fiber containing x is uniformly bounded
away from zero; hence the linear projection on the tangent space of the fiber at x and
parallel to 7, S has a norm bounded by a constant Cy > 0. Similarly, for any point x €
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SNnunNw~Hw)yn---nw*tU) and v € T, M such that DU (x)-v ¢ C(¥"0(x)), the
angle of v with T,S is bounded away from zero so that its projection has norm larger
than Cz_1 |lv]| for another constant C; > 0.

The (1 + «)-contraction of the cone field gives an integer N > 1 satisfying the following.

Lemma 4.22. There exists N >1 such that, for any x € SNUNY~LU)N---N
N, and any unit vector u € TeM close to Ty S, and any unit w € C(x),

. Y
dDWN () -, Tyny $) < 7 min(| DY @)™, Dd (@, TyS).

Proof. The proof is similar to the contraction Lemma 2.6: we may choose v such that
u+ v belongs to TS and DWWV (x) - v is tangent to the fiber of 7 at W (x). One deduces
that

IDWY (x) - v

DN (x) - ull”

The distance d(u, T, S) is the norm of the projection of u# to the fiber of x parallel to
T, S. It is thus equal to d(v, Ty S) and is larger than

d(DWN (x) - u, Tyn () S) =

d(u, T,S) > Cy ' vll.
The (1 + a)-cone contraction gives, for any unit vector w € C(x),

IDWN (x) - ]|
[vll

In particular, if w is the most contracted unit vector in C(x),

< CAV min(| DY (x) - w |, I DEN (x).w])).

IDYN (x) - v N N N N

— < CA ¥ min(|D¥" (x).w|%, Dv| < CA™" min(||DWV 7% D]l

DU () a| (ll ). wll™, Djvll (IIDW ™ ()l vl
Putting the inequalities together, one gets the announced estimate, provided that
CCN <L O

Working in charts, one can identify the tangent spaces Ty M and T;M at points close
to each other. Since DWY is a-Holder continuous, there exists a constant C3 > 0 such
that, for points x, x” close and any unit vector u,

IDWY (x)-u — DUN (x') - u|| < C3d(x, x')*.

Let us now finish the proof of the addendum. Let us denote (z—;)ogige¢ the backward
orbit of z by WV in SN U: it is infinite (£ = 0o) or defined for i smaller than some integer
£. We fix 0 > 0 (small and independent of z, z") so that the point z’ € § has backward
iterates z’ ; = WiV () by WV in S whenever the distance d(z';,z—;) is smaller than o.
If 0 has been chosen small enough, the distance between z_; and 7 ; is smaller than

i—1
dzi, 2 ) < 2 ][ IDY N plld . 2).
i=0
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Let us consider a sequence of unit vectors u_; € TS at z’; such that u_; is collinear
to D\IIN(z/_(i+l))~u_(i+1) for each i. We denote v_; the unit vector collinear to
DU (z_(iy1) - u—Git1)

We estimate inductively the distance between u_; and TS. There exists Cq4 > 0
satisfying

d(”—is TZ,,‘ S) < Cl ”u—i — U ” +d(l}_i, Tzfl- S)
1 Cad (z—(i41), 24 1)"
”DlIlN(Z/_(H_l)) “U—(i+1)

<

L min(1, 1w ~*)d T
+Zm1n( ADY G ) ) Uity S)

Z—(i+1)

r . _ _
< C4d(Z—(i+]), Z/_(H_l))a + Z min(1, ”D“I"SN(Z—i)” a)d(u_(i+1), T, S).

Z—(i+1)
We thus obtain, for any k < £,

k i—1
d(ug, T.8) < Y 47 Ca [[IDY N @ pll~d(z—i, 2 )"
i=1

j=0
k—1
+ 47 [ min(1, DN (2 )™ *)d @, T, S)
j=0
o dz )
< Cyd(z,2)% +min | 27F—222 47k
wz2) ( @t 2 )

Three cases are possible.
— The backward orbit of z is infinite (i.e., £ = 00), and the distance d(z—x,z" ;) is
smaller than o for any k. In this case, k can be taken arbitrarily large.
— There is k < £ such that d(z_g, sz) is of the order of o: for some constant C5 > 0,
we have
p d(z, )"

— < Csd(z, )%
Aot o SO

— The distance d(z—k, 2z’ ;) is smaller than o for any k < €. Moreover, there exist
jef{l,..., N} and a point

ZeS\U(SNU)NSNU)N---NE I (SNT)

such that W/(Z) = z_¢. Since o > 0 has been chosen small, there also exists a
point 7' in a compact neighborhood of S\ W(SNU) contained in V such that
W/ (7)) =7 ,. Since S is C!™ on V, one deduces that there exists Co > 0 uniform
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such that
-1
d(u_g. T, ,8) < Cod(z—1.2 )% < Co 2 [TIDWY @I d(z. )
j=0

so that d(ug, T,S) < Cad(z,7)* +27¢Ced (z, 7).

In any case, we have shown that the distance between TS and TS is smaller than
C7 d(z,7)% for a uniform constant C7, which ends the proof of the addendum. O

4.4. Conclusion of the proof of Theorem 4.1

The graph transform also fixes the space Lip, g(K), and hence the graph S of the
function h € Lip,, g fixed by G, is a C l_submanifold, having the same dimension as
X and containing K in its interior. Note that it can be extended as a submanifold with
boundary, still denoted by S, by taking the union with X\ Xy. By the definition of G,,,
the submanifolds S and f(S) coincide on a neighborhood of K. Moreover, TS| is an
invariant subbundle transverse to E**, and hence coincides with E¢ at points of K. The
proofs of Theorem 4.1 and of the main theorem are now complete.

5. Consequences

5.1. Dynamics in a neighborhood: proof of Corollaries 1.2 and 1.3

Under the setting of the main theorem, one considers 0 < 3§ < ¢ small, and a
neighborhood U of K. Provided that U is small enough, any point x in the maximal
invariant set of U by f has a strong unstable manifold of size & which intersects S at
some unique point s(x). Moreover, the intersection is transverse, d(x, s(x)) < §, and s(x)
belongs to a small neighborhood of K in §. In particular, f(s(x)) still belongs to the
unstable manifold of size ¢ of f(x) and to S. One deduces that, for any n € Z, one has

[ s(x) = s(f"(x)).
Taking n arbitrarily large, the distance d(x,s(x)) is exponentially smaller than
d(f"(x),s(f"(x))), which is bounded by §. This proves that x = s(x). The maximal
invariant set of U is thus contained in S. This proves Corollary 1.2.
Corollary 1.3 is obtained by applying the main theorem to f and f~!, respectively. The
submanifold S is built as the intersection of two locally invariant submanifolds S¢*, S
containing K and tangent to E** @ E€ and E° @ E"", respectively.

5.2. Robustness of the submanifold: proof of Corollary 1.4

The definition of the graph transform and the results of §§8§ 4.2.2, 4.3.1 and 4.3.2 allow
some flexibility: once the space Lip,, g and the function ¢, have been chosen, the set
K is not considered any more, and the graph transform may be modified into a map
which is C'-close to the initial transformation. In particular, one can replace f by any
diffeomorphism g that is C'-close to f. The map W¥,, introduced in (12) can then be
modified as a C*®°-map

g 2> Olgmog '(2), 87 (2))
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which defines a new graph transform, producing a new C!-submanifold S¢. By considering
a small neighborhood U of K and arguing as for the proof of Corollary 1.2, one gets that
the maximal invariant set of g in U is contained in S,.

The graphs S, and g(S,) coincide over an open set of X which is independent from the
diffeomorphism g (the points where ¢, equals 1 in § 4.2.2). This proves that the restriction
of the graph S, to this open set defines a submanifold Sé which depends continuously on g
for the C'-topology, is contained in S¢ N g(S,), and such that S/f contains a neighborhood
of K in Sy.

Provided that two diffeomorphisms g; and g are close enough for the C'-topology,
the fixed points in the space Lip,, g are close enough. This proves that the graphs S,
and S, are CO close. Both are tangent to some thin cone fields obtained by iteration
(see § 4.3.2). When g1, g» are C!-close, these cone fields are close, and hence Sq1» Sg, are
C!-close. This proves that g — S¢ varies continuously for the C I_topology and this ends
the proof of Corollary 1.4.

5.3. Higher regularity

5.3.1. C"-regularity of the center manifold: proof of Corollary 1.5. Let us
continue the proof of § 4 under the assumption that f is C" and that the partially
hyperbolic set K is r-normally hyperbolic for some r > 1. The argument to prove that S
is C" follows the ideas of the C"-section theorem in [12] (although we were not able to
apply this theorem directly since the map ®,, which is used for the graph transform is
not defined on an invariant domain).

Note that, by Remarks 4.5 and 4.12, one can assume that the submersion 7 : T —
Yo is smooth, and that the graph transform W := W, introduced in § 4.2.2 is C”.
Proposition 4.14 and Addendum 4.16 provide us with a cone field C := Cg on T of
dimension d which is transverse to the submersion 7 and r-contracted by W. Moreover,
S is tangent to C. Let us consider the domain U := U, and the open set V := V,,;; then
Proposition 4.19 applies. If r = 1+« with @ € (0, 1), Addendum 4.21 proves that the
submanifold S is C” also. It remains thus to consider the case r > 2.

We introduce the Grassmannian bundle p : T — T of d-dimensional tangent subspaces
of T. Since r > 2, Addendum 4.21 proves that S is the graph ofa Cl! map. Consequently,
the tangent spaces to S define a LlpSChltZ graph S of the fibration 7 := 7o op: T —
Y. The preimages U= = p~'(U) and V= =p 1(V)ﬁS are open subsets of T and S
respectively. The tangent map DW induces a C"~! map U:0— T and the two first
properties of the Proposition 4.19 hold.

Since § is Lipschitz, the angle between the tangent space to S and the tangent space
to the fibers of p is uniformly bounded away from zero. The unit tangent vectors to S
are thus contained in a compact set of vectors v satlsfylng Dp(v) # 0. One can apply
Proposition 2.12 and get a continuous cone field C on T of dimension d, which is
transverse to the fibration 7 and (r — 1)-contracted by 0. Moreover, one can require
that S is tangent to 6 indeed the collection of unit vectors in the tangent sets of S is
contained in a compact set of vectors v satisfying Dp(v) e C\ {0}.

Proposition 4.19 and Addendum 4.21 now imply that S is a C!**-submanifold of T and
hence that S is C>%, where @ = min(1, r — 2). For any integer k < r — 1, one can repeat
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this argument inductively & times and conclude that S is C*%, where @ = min(1,r —k —
1). This proves that S is C”", and gives the first item of Corollary 1.5.

If fis C" for some r > 1, and if we only assume that K is partially hyperbolic, the
continuity of the tangent map and the compactness of the unit bundle inside the central
bundle E€ on K imply that K is (1 4+ «)-normally hyperbolic for some o > 0 small. One
deduces that S can be chosen Ch, proving the second item of Corollary 1.5.

5.3.2. Smoothing the submanifold: proof of Proposition 1.6. Let S’ C int(SN
f(S)) be a submanifold with boundary which contains K in its interior. Let U be a small
neighborhood of K. Let us consider a C*°-diffeomorphism gy and a C°°-submanifold S,
close to f and S for the C!-topology. The image 80(Sg) is C!-close to S, and in particular
is arbitrarily C!-close to Sg in a neighborhood of §’. More precisely, there exist Sé (@AY
and Sg, C 80(S,) which both project on §” by 7. One can thus consider a diffeomorphism
7 of a neighborhood of §, which is a translation along each curve 7 ~!(x) of the tubular
neighborhood T and which maps :S;g, on S,. Since 7 is C*°, and since S, and §g are
C*-submanifolds which are C'-close, one deduces that 7 is a C*®-diffeomorphism which
is C'-close to the identity. It can be extended as a smooth diffeomorphism of M. The
C* diffeomorphism g := togg is C'-close to f, and by construction Sé C SgNg(Sy).
Arguing as in the proof of Corollary 1.2, one shows that the maximal invariant set A, of
U is contained in S,. This gives the proposition.

5.4. Consequences when the center dimension equals 1 or 2

5.4.1. One-dimensional center bundle: proof of corollary 1.7. The arguments
for one-dimensional invertible systems are classical, and we only recall the main ideas. Let
K be a compact invariant set endowed with a partially hyperbolic structure whose center
bundle is one dimensional, and assume that K has no strong connection. By Corollary 1.3,
the set K is contained in a family of curves and circles yy, ..., yx that are tangent at E€
at points of K and such that, for any point x € I' := U;y; close to K, the image of x is still
contained in I'. Any minimal subset C of K is either a periodic circle, a periodic orbit, or
a Cantor set. In the third case, the orbit of any point x € I close to C accumulates on A
in the past or in the future. In particular, there exist at most finitely many non-periodic
minimal sets, and any orbit in K accumulates in the future and in the past to minimal sets.

One can C!l-approximate f by a diffeomorphism g whose periodic orbits are hyperbolic
and whose minimal sets are limit for the Hausdorff topology of periodic orbits. By
Corollary 1.4, the maximal invariant set Ag for g in a neighborhood U of K is still
contained in a one-dimensional C'-submanifold ', and the dynamics of g on A, satisfies
the same properties as (K, f). However, for any minimal set C C Ag, there exists a
periodic orbit O contained in an arbitrarily small neighborhood of C. One deduces that
O is contained in I'y. Since the non-periodic minimal sets are isolated in I'y from the
periodic orbits, they cannot exist for g. There are at most finitely many periodic orbits
since they are hyperbolic. This gives the conclusion of Corollary 1.7.

5.4.2. Two-dimensional center bundle: proof of Corollary 1.8. By
Corollary 1.4, for any diffeomorphism g that is C'-close to f, the maximal invariant
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set Ay in U has no strong connection, and is contained in a locally invariant C Lsurface
X,. Let us make two remarks.

— X, is in general not a boundaryless compact manifold, but some known results for
surface dynamics which only involve local arguments extend to this setting.

— If h is a C'-perturbation of the restriction 8|z, supported on an arbitrarily small
neighborhood of Ag, then it extends as a diffeomorphism of M that is close to f for
the C!'-topology such that X, contains Ay, and is locally invariant in a neighborhood
of this set. Indeed, one can decompose h = ¢ o g5, where ¢ is a diffeomorphism of
X, which is C I_close to the identity and supported inside a small neighborhood of
A r. Since ¢ is isotopic to the identity among diffeomorphisms of X, close to the
identity with compact support, one can extend ¢ to a diffeomorphism of M close
to the identity.

Since U is a filtrating set, the intersection R(g)NU is a union of chain-recurrence
classes C.

Lemma 5.1. Let us assume that the first case of the Corollary 1.8 does not hold. Taking g
in a dense Gg-subset of U, the center bundle over any non-trivial chain-recurrence class
C C U has a dominated splitting El‘c = E{® ES, i.e., there exists N > 1 such that, for

any x € C and any u, € E{(x), v € E{(x), one has IDgN )| < %||Dg”(v)||.

Proof. Taking g in a dense Gs-subset of U, one can assume that any chain-recurrence
class C which is not a periodic orbit is the limit of a sequence of hyperbolic periodic
orbits (Op) (see [4]), and then argue as in [19].

A result by Pliss (see [19, Theorem 2.1]) asserts that by perturbation of 8|z, one
can turn one of the periodic orbits O, to be a saddle inside X,. By a standard Baire
argument this implies that C is also the limit of hyperbolic periodic orbits whose stable
and unstable spaces intersect E¢ along one-dimensional subspaces, inducing an invariant
splitting E{ @ ES of E€ over the union of the orbits Oy. If this splitting is not dominated,
one can create by perturbation of g5, a homoclinic tangency for one of these saddles
(see [11]). This perturbation may be extended as a diffeomorphism of M, and the first
case of the corollary holds. Otherwise, there exists a dominated splitting on the union of
the Oy, and hence on their closure and on C (see [2, Appendix B.1.1]). O

As a consequence, the set R(g) NU decomposes into finitely many isolated periodic
orbits and a set whose center bundle has a dominated splitting. The previous argument
shows that (up to reducing U and replacing f by a diffeomorphism C!-close) one can
restrict to the case the center bundle of Ay has a dominated splitting E€ = E{ @ E5.
This also holds for any diffeomorphism g in a neighborhood U.

By Proposition 1.6, one can consider g € U such that ¥, and gz, are smooth. By
perturbation of g|x,, one can furthermore assume that all the periodic orbits in X, are
hyperbolic, and that there do not exist minimal sets in X, which are a finite union of
circles that are normally hyperbolic. One can now apply the result of [19] (once again, the
argument involves only the dynamics in a neighborhood of K, and the diffeomorphism g
may be only defined on a neighborhood of K).
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Theorem (Pujals-Sambarino). Consider a C?-diffeomorphism g of a surface S, and an
invariant compact set K with a dominated splitting T Sx = E{ ® E5 such that each
periodic orbit in K is a hyperbolic saddle and K does not contain a minimal set which is
a finite union of circles that is normally hyperbolic. Then K is a hyperbolic set.

For the dynamics of gx,, the set R(g) N A, is thus the union of sinks, of sources,
and of a saddle compact set K. In particular, the number of sinks and sources is finite.
By Smale’s spectral decomposition theorem, the set K decomposes into finitely many
transitive subsets, as announced by Corollary 1.8.

5.5. Invariant foliations for surface hyperbolic sets: proof of Corollary 1.11

Let f be a C?-surface diffeomorphism and K be an invariant compact set which is
hyperbolic. In particular, E* is 2-dominated by E* for f~! and by Lemma 2.10 there
exists a continuous cone field C of dimension 1 which is 2-contracted in a neighborhood
of K: we have E*(x) C C(x) at each x € K.

Let M denote the projectivization of the tangent bundle T M (that is, the Grassmannian
bundle of one-dimensional tangent spaces) and p : M — M the natural projection. The
tangent dynamics Df induces a C'-diffeomorphism fof M. Since the unstable bundle
E* on K is one dimensional, it induces a point X in each fiber p~!(x) with x € K,
defining a lift K C M of K which is invariant by f Since x — E"(x) is continuous, the
set K is compact. By Proposition 2.15 and Remark 2.14, there exist neighborhoods U
of K and U = p(ﬁ ) of K and a contracted continuous cone f field C of dimension 2 on U
that is transverse to p. By Lemma 2.10, this proves that K has a dominated splitting
TM| g = = E@®F where F has two-dimensional spaces. Since the tangent spaces to the
fibers of p at points of K are preserved by f and since the fibers of p are contracted by
f (see Proposmon 2. 11), one deduces that K is partially hyperbolic With a dominated
splitting TM|K = E* @ E°. The prOJeCthH Dp is an 1som0rphlsm between E€ and TM|K

Since the fibers of p are invariant by f and tangent to ESS at points x of K, one
deduces that each strong stable manifold W* (%) is contained in p~!(p(x)). In particular,
it 1ntersects Kina single point and the main theorem apphes

Let S C Mbea locally invariant C! surface containing K and tangent to . EC at points
of K. The projection p: S — M is a local diffeomorphism, injective on K and hence
injective on a neighborhood of K: reducing S if necessary, p is a diffeomorphism between
S and a neighborhood U of K. Moreover, U is endowed with a C! line field £ : x
p~'(x)NS which is locally invariant by Df by construction. This line field uniquely
integrates as a foliation F* on U that is locally invariant on a neighborhood of K and
that is tangent to E* at points of K. In particular, the leaves F} at points x € K contain
the local stable manifolds of x.

If fis C", with r > 2, then fis C"!', and S can be chosen C® for some a > 0 by
Corollary 1.5. In particular, the line field £ and the foliation F* are C12.

Acknowledgements. The second author is grateful to Enrique Pujals and Genevieve
Raugel for their comments related to this work. We thank also the anonymous referees
for their remarks, which improved the presentation of the text. This work was partially

https://doi.org/10.1017/51474748015000055 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000055

Center manifolds for partially hyperbolic sets without strong unstable connections 827

supported by the ANR project DynNonHyp BLANO08-2 313375 and by the Balzan
Research Project of J. Palis. The authors acknowledge the IFUM and the CMAT
(Montevideo), where part of this text was written.

References
1. R. ABRAHAM AND J. ROBBIN, Transversal mappings and flows (W. A. Benjamin, Inc.,
New York-Amsterdam, 1967).
2. C. BonarTi, L. Diaz AND M. VIANA, Dynamics Beyond Uniform Hyperbolicity
(Springer, Berlin, 2004).

3. S.-N. CHow, W. Liu, Y. YI AND YINGFEI, Center manifolds for invariant sets,
J. Differential Equations 168 (2000), 355-385.

4. S. CROVISIER, Periodic orbits and chain-transitive sets of C!-diffeomorphisms, Publ. Math.
Inst. Hautes Etudes Sci. 104 (2006), 87-141.

5. S. CROVISIER, Partial hyperbolicity far from homoclinic bifurcations, Adv. Math. 226
(2011), 673-726.

6. S. CrROVISIER AND N. GOURMELON, Stabilisation of homoclinic tangencies in higher
dimension. In preparation.

7. S. CROVISIER AND E. R. PuJALS, Essential hyperbolicity versus homoclinic bifurcations.
Invent. Math. to appear.

8. S. CROVISIER, E. R. PujaLs AND M. SAMBARINO, Hyperbolicity of extremal bundles.
In preparation.

9.  W. DE MELO, Structural stability of diffeomorphisms on two-manifolds, Invent. Math. 21
(1973), 233-246.

10. N. GOURMELON, Adapted metrics for dominated splittings, Ergodic Theory Dynam.
Systems 27 (2007), 1839-1849.

11. N. GOURMELON, Generation of homoclinic tangencies by C!-perturbations, Discrete
Contin. Dyn. Syst. 26 (2010), 1-42.

12. M. HirscH, C. PuGH AND M. SHUB, Invariant Manifolds, Lecture Notes in Mathematics,
volume 583 (Springer-Verlag, Berlin, 1977).

13.  R. MANE, Hyperbolicity, sinks and measure in one dimensional dynamics, Commun. Math.
Phys. 100 (1985), 495-524. and Commun. Math. Phys. 112 (1987), 721-724.

14. S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18.

15. S. NEWHOUSE, The abundance of wild hyperbolic sets and nonsmooth stable sets for
diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 50 (1979), 101-151.

16. J. PaLis AND F. TAKENS, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic
Bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35 (Cambridge University
Press, 1993).

17. J. PALIS AND M. ViANA, High dimension diffeomorphisms displaying infinitely many
periodic attractors, Ann. of Math. 140(1) (1994), 207-250.

18. E. R. PujaLs, On the density of hyperbolicity and homoclinic bifurcations for 3D-
diffeomorphisms in attracting regions, Discrete Contin. Dyn. Syst. 16 (2006), 179-226.

19. E. R. PuJALS AND M. SAMBARINO, Homoclinic tangencies and hyperbolicity for surface
diffeomorphisms, Ann. of Math. 151 (2000), 961-1023.

20. E. R. PujaLs AND M. SAMBARINO, Density of hyperbolicity and tangencies in sectional
dissipative regions, Ann. Inst. H. Poincaré 26 (2009), 1971-2000.

21. N. ROMERO, Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory

Dynam. Systems 15 (1995), 735-757.

https://doi.org/10.1017/51474748015000055 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000055

828 C. Bonatti and S. Crovisier

22. L. WEN, Generic Diffeomorphisms away from homoclinic tangencies and
heterodimensional cycles, Bull. Braz. Math. Soc. 35 (2004), 419-452.

23. S. WIGGINS, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Applied
Mathematical Sciences, vol. 105 (Springer-Verlag, 1994).

https://doi.org/10.1017/51474748015000055 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000055

	CENTER MANIFOLDS FOR PARTIALLY HYPERBOLIC SETS  WITHOUT STRONG UNSTABLE CONNECTIONS
	Introduction
	Main result
	Dynamical consequences
	Strategy of the proof, and structure of the paper

	Preliminaries
	Smoothing the distance to a compact set
	Cone fields and dominated splitting

	Existence of submanifolds carrying a compact set
	Whitney's extension theorem: the solution of the local problem
	From local to global
	Application to partially hyperbolic sets without strong connections

	Invariant center manifold
	First constructions
	A graph transformation
	Fixed point of the graph transformation
	Conclusion of the proof of Theorem 4.1

	Consequences
	Dynamics in a neighborhood: proof of Corollaries 1.2 and 1.3
	Robustness of the submanifold: proof of Corollary 1.4
	Higher regularity
	Consequences when the center dimension equals 1 or 2
	Invariant foliations for surface hyperbolic sets: proof of Corollary 1.11

	References




