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Abstract

A strong, natural duality is established for the variety generated by a dihedral group of order 2m with m
odd. This is the first natural duality for a non-abelian variety of groups.
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1. Introduction

Which finitely generated quasivarieties of groups admit a natural duality? The main
theorem of this paper (Theorem 2) extends the list of known examples into the non-
abelian realm.

For the benefit of readers not familiar with the theory of natural dualities, we begin
with a brief review of what is meant by 'admitting a natural duality' and refer to
Davey [4] or the forthcoming text Clark and Davey [3] for a detailed account.

Let M be a finite group and let M = (M; G, H, R, 2T) be a topological structure
on the same underlying set, where

(a) each g e G is a homomorphism g : M" —• M for some n e N U j O ) ,
(b) each h e H is a homomorphism h : Aom(h) —> M where Aom(h) is a subgroup

of M" for some n e N,
(c) each r e R is (the universe of) a subalgebra of M" for some n € N,
(d) & is the discrete topology.

Whenever (a), (b) and (c) hold, we say that the operations in G, the partial operations
in H and the relations in R are algebraic over M. These compatibility conditions
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[2] Natural dualities for dihedral varieties 217

between the structure on M and the structure on M guarantee that there is a naturally
denned dual adjunction between the quasivariety si := DSIPM generated by M and
the topological quasivariety JT := 0§cIPM generated by M. For all A € si the
homset D(A) := si(A, M) is a closed substructure of the direct power MA and
for all X 6 SC the homset £(X) := JT(X, M) is a subgroup of the direct power
Mx. It follows easily that the contravariant hom-functors si{—, M) : si —> y and
SC{—, M) : 3C -> 5?, where 5? is the category of sets, lift to contravariant functors
D : si ' ->• 3£ and E : SE —> si. For each A e si there is a natural embedding eA of
A into ED(A) given by evaluation: for each a e A and each x e D(A) = si (A, M)
define e\{a)(x) := x(a). Similarly, for each X e J there is an embedding ex of X
into DE(X). A simple calculation shows that e : id^ —> DE and e : id^- —>• DE are
natural transformations. If eA is an isomorphism for all A e si we say that M yields
a (natural) duality on j / . If, moreover, ex is an isomorphism for all X e SE, we
say that M yields a full duality on ^T (in which case si and ^T are dually equivalent
categories). If there is some choice of G, H and R such that M yields a duality
on si then we say that M (or si) admits a natural duality or, more colloquially, is
dualizable.

The best known examples of dualizable groups are the finite cyclic groups: if
C^ = (Cm; •, ~ \ 1) is an /n-element cyclic group, then Cm := (Cm; •, " ' , 1, &)
yields a full duality on sim := DSIPC .̂ (In this case both H and R are empty.) The
class sim is the variety of abelian groups of exponent m while SCm := ISCP M is the
category of compact (totally disconnected) topological abelian groups of exponent m.

We shall refer to this as the Pontryagin Duality on sim as it can be obtained by
restricting the Pontryagin duality for the class of all abelian groups to the subvariety
sim. The general theory of natural dualities affords several simple, direct proofs of this
duality which avoid the application of Pontryagin's sledgehammer—see Davey and
Werner [6] or Clark and Davey [1]. In fact, every finite abelian group M is dualizable:
it is shown in Davey [5] that if G = {•, " ' , 1} U End M and H = R = 0, then M yields
a duality on si :— DSPM which will not in general be full.

Thus, this paper is a contribution to the solution of the following fundamental
problem.

PROBLEM. Which finite groups admit a natural duality?

The general theory of natural dualities tells us that it order to show that M yields a
full duality on si it is sufficient to prove the following three conditions—

(CLO) for each n e N, every morphism t : M" —> M is an n-ary term function
onM,

(INJ) M is injective in SC,
(STR) for every non-empty set I, for each substructure X of M ' and for each
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218 B. A. Davey and R. W. Quackenbush [3]

y e M'\X there exist morphisms cp, \jr : M7 —> M such that <p \x = \j/ [x but

<p(y) + ^00-
Together, (CLO) and (INJ) guarantee that M yields a duality on srf. The condition
(CLO) is of independent algebraic interest as it asserts that the n-ary term functions
on M are precisely the maps t : M" —> M which preserve the operations in G, partial
operations in H and relations in R. A duality which satisfies (STR) is called a strong
duality. By Clark and Davey [1], a duality is strong if and only if it is full and (INJ)
holds. Every known full duality is strong. Note that in the case of the variety s/m, we
may always choose the morphism cp in the condition (STR) to be the constant map
onto 1, whence (STR) is equivalent in this case to

ifX is a closed subgroup of Cl
m and y e C'm\X, then there is a continuous

homomorphism \fr : C'm -* Cm such that \Jr \x = 1 while if(y) ^ 1, where 1 is
the constant map onto 1.

The conditions (INJ) and (STR) can both be reduced to the finite case (thus eli-
mimating all topological considerations) whenever H is empty and R is finite, as in
the case of the finite cyclic group. The results of Clark and Davey [3] show that if M
yields a strong duality on srf and M is not injective in srf, then the set H of partial
operations must be non-empty. Since the dihedral group ^ is not injective in the
quasivariety it generates, if we wish to obtain a strong duality for the quasivariety
generated by Dm we will have no choice but to include partial operations in the type
ofDm.

2. The dihedral groups

L e t D^ = (Dm; •} be the dihedral group of order 2m presented by am = b2 = 1
and ba = am~lb. In the case that m is odd, we will establish a strong duality for
stf := ISIPD^, the quasivariety generated by ^ (in this case, OSIPI ,̂ is actually the
variety generated by D^,). Hence, we now assume that m is odd. The dual category
will be the topological quasivariety 3£ := DScPDm where

DM = <Dm; or, 1;+,*;.?•).

As usual, the topology, !7, is discrete. The total operations are the automorphism
a of D,,,, given by a (a) = a and a(b) = ab, and the nullary operation 1. The first
partial operation, + , is simply the partial binary map from Djj, to D^ which is the
restriction to H := {1, b} of the group operation on D^ (thus, b' + bj := b'+J). The
second partial operation is slightly more complicated. Let e be the (unique) retraction
of Dm onto H. Let N ^ Dm be the kernel of € in the group theoretic sense (thus,
N = {1, a, a2,..., a"1"1}), and let K c D2

m be the kernel of e in the general-algebraic
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sense (thus,

K := {(u, V) e D2
m | e(«) = e(u) } = N x NUNbxNb

= {(a'bk, a'bk) | 0 < /, j < m - 1 and 0 < /t s£ 1}

is the congruence corresponding to N). Define * to be the partial map from D^ to D^
whose domain is K with a'bk * a'bk :— a'+ibk. Note that on N the operation * is
just the original group operation while on Nb the operation * is the translation of the
original group operation on N. Thus, (Nb; *) is a group and right translation by b is
a group isomorphism from (N; •) onto {Nb; *). Observe that a is the identity map on
N and is the cycle (b, ab, a2b,..., am~lb) on the other coset Nb. In the case that m is
odd, a is an inner automorphism; indeed, if m = Ik + 1, then a(g) = a~kgak for all
g e Dm. Each of these operations and partial operations is algebraic over D^. This is
obvious in each case except *. That * is algebraic follows from the lemma below.

LEMMA 1. Let G be a group and let € be a retraction ofG onto a subgroup H. Let

N be the kernel ofe and let

K := {(«, v ) e G 2 | e(w) = e(v)} = {J{€~l(h) \ h e H} = [J{Nh x Nh\he H]

be the congruence corresponding to N. Define a partial binary operation *, with
domain K, by xh * yh := xyh for all x, y 6 N and h e H, or equivalently, define
u * v := ue(u)~lv = u€ (v)~l v for all (u, v) e K.

(a) (The restriction of) * is a well-defined group operation on Nhfor each h e H.
Moreover, right translation by h is an isomorphism of {N; •) onto (Nh; *).

(b) The partial operation * is associative wherever it is defined. It will be commut-
ative wherever it is defined provided N is abelian.

(c) The map * : K —> G is a homomorphism if and only ifN is abelian.

PROOF. For (a) we need only that N is a subgroup and that H is a class of repres-
entatives for the right cosets of iV. A trivial calculation establishes (b).

For (c) we need to know that K is a subgroup of D^ (that is, that N is a normal
subgroup) and that, for all h, k e H, the representative of the right coset Nhk is hk,
that is, that H is a subgroup of G. Together this says precisely that e is a retraction
onto the subgroup H.

We wish to prove that * is a homomorphism, that is,

(1) (Vio, x, y, z € N)(Vh, k € H)(wh • yk) * (xh • zk) = (wh * xh) • (yk * zk),

if and only if N is abelian. Let w, x, y, z e N and h,k e H; then since N is normal,

there exist y', z' e N such that hy = y'h and hz — z'h. Hence

(wh • yk) * (xh • zk) = (wy'hk) * (xz'hk) = (wy'xz')hk
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and

(wh * xh) • (yk * zlc) = wxhyzk = wxy'hzk = (wxy'z')hk.

Thus (1) holds provided N is abelian, and choosing h = k = w = z = l i n ( l ) shows

that (1) implies that N is abelian.

We can now state the main result of this paper.

THEOREM 2. The structure Dm yields a strong duality on si', that is, the hom-
functors D : si —> X and E : 3C —> si give a dual category equivalence between

and X := fl§cP Dm and Dm is injective in %'.

Unfortunately, we do not have an axiomatization of the class SC'.
If Dm yields a strong duality on si, then every closed substructure X of a power

of Dm must (at least) be closed under every endomorphism of 1^, and moreover
every JT-morphism from X to Dm must preserve the actions of the endomorphisms
of D^ on X (see Clark and Davey [1]). We begin our proof of Theorem 2 by
establishing this necessary condition plus a little more. The partial operation * induces
a partial operation on D(A) for all A e si and in particular on D(Dm) = EndD^: if
e, f e End Dm, then <?*/ is defined if and only if for each u e Geithere(M), f(u) e N
or e(u), f(u) e Nb. Denote the constant endomorphism by _1.

LEMMA 3. Assume that m is odd.

(a) For all k, I € Hm, there is an endomorphism e o / ^ such that e(a) = ak and
e(b) = a'b . Moreover, every non-constant endomorphism o/D^ is of this form.
Thus |EndDJ = m2 + \.

(b) X*]_ = I and, for all e e End ̂ , the product e *]_ exists if and only ife = L If
e, f € EndD^ with e ^\_ and f ^ h tnen e * f exists.

(c) (EndD^fi}; *) is an abelian group isomorphic to I?m and is generated (as a
group) by the powers (with respect to composition of maps) of the automorphism
a. The retraction € is an identity element for * on

PROOF. It is easily seen that ax := ak and b\ := a'b satisfy the denning relations for
D^ and hence e(a) := ak ande(b) := a'b does determine an endomorphism of Dm. We
must now show that when m is odd, there are no other non-constant endomorphisms.
Let e be an endomorphism of D^ and define a\ := e(a) and b\ = e(b). Thus

(2) a™ = 1, b\ = \ and M i = ai"~V

As m is odd, we must have a\ e N as every element of Nb has order 2: thus a\ = ak

for some k e Zm. If i»i e N, then since N contains no elements of order 2, we have
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e(b) = b\ = 1. In this case (2) implies that k = 0 and consequently e = L If
b] € Nb, then e(b) = a'b for some / e Zm, as required. Hence (a) holds.

It is clear that 1*1 exists and equals L If e e End D^ with e ^ J_, then by (a) we
have e(b) e /Vfe. Hence

, e(b)) = (1, e(6)) <£ K = N2UNb2 = dom(*)

and consequently i * e is not defined on D(Dm) = Endl^,. If e, f e
then e(N) c N, e(Nb) c Nb, f(N) c N and / ( A ^ ) c Nb and hence, for all
u eDn,

(e(u), f(u)) e K = N2UNb2 = dom(*),

that is,e*f is defined on £>(Dm) = EndD^. Thus (b) holds.
Since, by Lemma 1, the partial operation * on Dn is commutative and associative

wherever it is defined, it follows that ( E n d D ^ d ) ; *) is a commutative semigroup.
It is easily seen that the map y : Endl^, —>• Z2

m, given by y(e) = (k, I) if e(a) = ak

and e{b) = a'b, is an isomorphism. It is clear from the definition of * that e is an
identity element for * on End D^. Denote powers of e e End D^ with respect to
composition of maps by es and powers with respect to * by els]. A simple calculation
shows that e := id^"11 * a1 * id^1 satisfies e(a) = ak and e(b) = a'b, whence the set
[as | s = 1 , . . . , m } generates the group ( E n d D ^ d } ; *). This proves (c).

We are now ready to prove Theorem 2. We will establish this strong duality by
proving the conditions (INJ), (CLO) and (STR)—see Propositions 4, 5 and 8 below.
The first is of independent, group-theoretic interest.

PROPOSITION 4. Let m be odd. A map <p : D"m -> Dm is a term function on the
dihedral group D ,̂ if and only if cp preserves the action of the automorphism a, the
constant 1 and the partial operations + and *.

PROOF. AS Kovacs observes in [7], since srf is the product variety s^ms^2, Corollary
21.13 of Neumann [8] implies that the n-generated free group in srf is an extension
of a Frfm{k) by F^2(n), where k = (n — I) | /v2(«) | + 1. Thus the n-generated free
group over 1^ has cardinality 2"/n("~1)2"+1. Since the (partial) operations on Dm are
algebraic over Dm, every n-ary D^-term function belongs to 3£{Wm, Dm). Thus it
suffices to show that \SC{^m, D J | ^ 2nm{n-l)2"+l. ~ ~

Let <p e <3T(D ,̂ Dm). Since + is the original group operation on the subgroup
{l,b} of D^, and since <p preserves +, the restriction (p\{{Mn is an abelian group
homomorphism. There are exactly 2" such homomorphisms. We will show that each
homomorphism from {1, b}" to {1, b] has at most m<n-^2"+l extensions to a member of
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^, Dm). Recall our retraction e of Dm onto H = {1, b}\ on Dn
m it is a retraction

onto [\,b}n. Now recall our partial operation *; it turns each of the two cosets of
N into an abelian group isomorphic to Zm. On Dn

m it turns each of the cosets of N"
into an abelian group isomorphic to lTm. But each such coset is equal to €~l{h) for
some h e {l,b}". Since <p preserves *, there are at most m" possibilities for <p \(->(h).
(Note that <p(e~l (h)) will be contained in either N or Nb, depending on whether <p(h)
equals 1 orb). This yields \&(D"m,Dm)\ ^ 2"m"2", since for each of the 2" choices
for A € {1, b}n we have at most m" choices for (p\(-\w. We now take into account
the effect of the automorphism a. If h ^ 1, then a(h) ^ h, but e(a(h)) = h whence
a(h) e e~l(h). As <p(a(h)) is determined by <p(h) (since <p preserves a) and as a(h)
is an element of order m in the abelian group on e"1 (h) determined by *, there are at
most mn~x choices for extending q> to all of e"1 (h) when h ^ 1. Hence

, Dm)| < 2" • m(n-lH2"-l)m" =

as required.

PROPOSITION 5. Dm is injective in SC.

PROOF. Let X be a closed substructure of D^ for some / , and let (p e JT(X, Dm)
be a continuous structure-preserving map. By Lemma 3, the substructure X is closed
under every endomorphism of E^ and <p preserves every endomorphism. In particular,
X is closed under e and cp preserves e. We must find \Js e SC^m, Dm) with \j/ fx = <p.
On D^, the map e is a continuous retraction onto {1, b}'. Since X is closed under e,
it follows easily that e(X) = X f l ( l , b}' and so is a closed subgroup of ({1, b}', +) .
Thus cp re(X) is a continuous + -homomorphism. By the Pontryagin duality for abelian
groups of exponent 2, there is a continuous +-homomorphism q>\ : {\,b}' -> {1, b)
which extends (p \em-

The set

' = Xu\J{al({l,b}')\lelm}

is a closed substructure of D^. (To see that X' is closed under *, use the fact that if
x*y is defined andy e {l,a'b}',thenx*y = a'(x).) Define a map <p2 : X' ->• Dn by

<p2 \x = <p, and <p2 \{ha,b), = f f ' o ( 0 , o a*"1"" for all / e Zm.
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For all x e X D {1, a'b], we have

a' o<p, oa(m-l)(x) = aVi(« ( m " 0 U))

= a><p(a(m-l)(x)) as a(m'l)(x) € e(X) and <p, f€(X) = <p

= ^a'a<m~')(af) as cp preserves a

from which it follows that (p2 is well-defined. Clearly, <p2 is continuous and preserves
the partial operation + and the constant 1. We now show that <p2 also preserves
both the action of a and the partial operation *. If x e X, then it is trivial that <p2

preserves the action of a on x since cp2\x = <P and <p preserves a. If x e {1, a'b}1,
thena(x) e {\,a'+1b}' and hence

<p2(a(x)) = a'+Via™"'"1 («(*)) = a{al<pxa
m-'(x)) =

whence <p2 preserves a. Note that if y e {I, a'b}', then q^OO € {l,a'&} since
<Pi({l,fc}') c { l , i } . I f x e X ' a n d ^ e [I, a'b}' andjc*jis defined, thenx*^ = a'(x)
and hence

(Pi(x*y) = (p2(a'(x))

= a'(<p2(x)) as <p2 preserves a

= <p2(x) * <p2(y) as (p2(x) e {1, a'/?}7.

Hence <p2 preserves * and consequently <p2 € &(X', Dm). That is, without loss of
generality, we may assume that X contains {1, b}' and thus

Z := {1, ft}7 U {1, ab}' U {1, a2fc}7 U • • • U {1, am~xb}' c X.

Note that Z is a closed substructure of D^ and hence, by assumption, is a closed
substructure of X.

A simple-minded attempt to define the extension \}r would proceed as follows. For
any h e {1, b}1, the set X n r ' ( k ) is non-empty and so is a closed subgroup of
e"1 (h) = N'h (under the restriction of *). Now (e"1 (h); *) is a compact topological
abelian group of exponent m and since (p preserves *, the restriction <p\XncHh) is

a continuous group homomorphism with codomain {N(p(h); *). By the Pontryagin
duality for abelian groups of exponent m, we can extend <p \Xne->(h) t o a continuous
group homomorphism \jth : e~l(h) -> N(p(h). Doing this for each h € {1, ft}7, we
obtain an extension of <p to a map V : D'm -*• Dm given by V t€-i(») = ^/i f° r all
h£ {l,b}'.

We claim that xj/ is structure preserving. Since Z is a substructure of X, it is
trivial that i/' preserves both + and 1 and \j/ preserves * by construction. That \Jf also
preserves a follows immediately once we have established the following lemma.
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LEMMA 6. Let Xbe a closed substructure ofj)'m.

(a) For all x e Dm (and therefore for all x e X) we have (x, a(e(x))) e dom(*)
anda(x) — x * a

(b) If yjf : X —> Dm preserves * and e and \jr \xnz preserves a, then \\r preserves a.
(c) Let Xbe a substructure ofX.If\/r:X-+Dm preserves * and \\r \z preserves a,

then \\r preserves a.

PROOF. The proof of (a) is a simple calculation and (b) follows easily from (a).
Assume that Z is a substructure of X, that \\r preserves * and that \\r \z preserves a.
By (b), in order to establish (c) it remains to show that \j/ preserves e.

Since Z c X, for all h e {l,b}', the set X D e~\h) is non-empty, whence
{X D €~l(h); *) is a group with identity element h. Since V preserves *, we have
ir(h) € {l,b}andx/r(Xr)e-1(h)) c Ni/r(h). Thus

e(x/f(X n c-'(*))) c

which gives e(^r(x)) = x/r (e(x)) for all x € X, as required.

Unfortunately, if / is infinite, we cannot guarantee that the extension \\t is continuous
and the simple-minded approach falters. Nevertheless, the basic idea can be salvaged.
Obviously, we need to invoke some kind of compactness argument. The following
lemma plays a crucial role.

LEMMA 7: THE GOOD, THE BAD, BUT NO UGLY. Let A and I be sets with A finite.
Suppose that, for every finite I' C / , each element of A' is labeled either 'good' or
'bad' and that if I" c / ' and x e A1' is bad, then so is x\,,, € A'". Then either there
is a finite / ' c / such that each element of A1 is good, or there is anx e A1 such that
x\,, is bad for each finite / ' c / .

PROOF. Endow A with the discrete topology and A' with the product topology;
then A1 is a compact space with a basis of clopen sets. For finite / ' c / , let
X(I') := {x e A1 | x\,, is bad}; it is a closed set. Then by the finite intersection
property, either p){ X(I') | / ' c / is finite} is non-empty or there are finitely many
finite sets Iu ..., Ik such that X(/i) D • • • D X(Ik) is empty. In the former case, take
x e f]{X(f) | / ' c / is finite}; then x\,, is bad for any finite / ' c / . In the latter
case, let / ' = /, U • • • U Ik; then, as X(I') c X(Ij) for 1 ^ j < k, the set X(I') is
empty and so every member of A' is good.

Let us apply the Good, the Bad, but no Ugly Lemma to {1, b}'. For h e {1, b}1

and finite / ' c / , define

r* := {(x\r, <p(x)) | x e X and e(x\r) = h\r }.
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Call h\r 'good' if F* is a subset of the graph of a ^-preserving map defined on
€~l(h\,,) = €^{h)\,,; otherwise, call h\r 'bad'. Let / " c / ' and let n denote the
natural restriction map from €~x(h)\r to e~x(h)\,,,. If y is an extension of F*, to a
*-preserving map on e~'(&[/»), then y o n is an extension of F* to a *-preserving
map on e~l(h\,,). Hence 'badness' is hereditary in the sense required by the lemma.
Thus, by the lemma, either

(a) there is a finite subset / ' of / such that every member h of {1, b}' is good, or
(b) there exists h e {1, b}' such that h \r is bad, for all finite / ' c / .

Case (a). For each h e {1, b}', let fa : e~\h') —>• Dm be a *-preserving map which
satisfies fa(x\r) = <p(x) for all x e X with €(x\r) = h, and define \jf' : D ,̂ -> Dm

to be the union of the maps \frh for A' e {1, b}''. We claim that ifr' is an ^T-morphism.
Letx' , ,^ € {l,fo}r =dom E r(+) . Thus as Z c X, there exist *,, x2 e {1,^}' c X
withx, [•,, = JCJ. Thus (xlt x2) e domx(+) andsoxj+^2 e X and (XI+JC2) I"/- =
Define A' := eO^ + JC2) and /ij := e(jcj). Thus

Vr'(x; + 4 ) = V*- (^i + x'2) (definition of f)

= (p{x\ + x2) (definition of fa)

= (p(xi) + (p(x2) (as cp preserves +)

= fa\ (xi \r) + fa'2(x2 \,,) (definition of fa)

= fa>(x') + fa>(x'2)

whence yjr' preserves +. By Lemma 6 applied to yjr', it remains to show that f \z,
preserves a, where Z' := (J{ {1, a'b}1' \ I e Tm }. Let x1 € Z' and define h' :=
e(x') = e(a(x')). Let x e Z with xf,, = x\ Note that x s X a s Z C X . Now

= fa(a(x) \,,) (definition of f)

= ^(a(x)) (definition of fa)

= a(<p(x)) (as cp preserves a)

= a(fa(x\,,)) (definition of fa)

= a(fa,(x'))

and consequently \j/' preserves a on Z', as required. Thus \jr' : D'm -> Dm is an
^-morphism, as claimed.

Finally, let nr : D ,̂ ->• (D^) denote the restriction map. Then the map i//' o

^z' : Bm "*• B« is ^ ^"-morphism which extends cp since i/^W = if'(x\r) =

fax\,,)(x\r) = <P(*) f o r a11 xeX.

https://doi.org/10.1017/S1446788700000203 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000203


226 B. A. Davey and R. W. Quackenbush [11]

Case (b). Assume that h e {l,b}' with h \,, bad, for all finite / ' c / , that is, for every
finite subset / ' of / , the set

F* := {(x\r, <p(x)) | x € X and e(x\r) = h\r }.

is not a subset of a ^-preserving map defined on e"1 (h \r). Define X° := X U e"1 (h).
Then X° is closed under * and, as in the simple-minded approach, we may apply
the Pontryagin duality for abelian groups of exponent m to extend <p to a continuous
•-preserving map (p° : X° -> Dm. Since e(x|"r) = e(x)|> and since €"'(*) c X°,
we have

r* = {(xr/(, v(x)) I x e X and e(x) \r =h\,,}

c {(xr/(, ?°(x)) | x € X and e(x) f,, = Afr )

The set r ° := {(x\r, <p°(x)) | x e e"'(ft)} is easily seen to be a *-closed subset
of D'm x £)m. Hence, if Fo were the graph of a map, then it would be the graph
of a *-preserving map defined on e~'(7*)lV, contradicting the fact that h\,, is bad.
Thus there existy, z e X (depending on / ' ) such ihaty\r = z\r but <p°(y) ^ <p°(z).
This means that the continuous map cp° does not depend on any finite subset of / ,
a contradiction to the fact that every continuous map from a closed subspace of any
power of Dm into Dm depends on only finitely many components. Hence, Case (b)
cannot occur.

PROPOSITION 8. If X is a closed substructure ofD'mfor some set I andy e D'm\X,
then there exists a continuous morphism \jr : J)'m —> Dm such that \jj \x = 1 but
is(y) 7̂  1, where 1 is the constant map onto 1.

PROOF. Let X be a substructure of D'm and lety £ X.

Ify € Z,sayy € {l,a'b}', then defineyx € {l,b}' by

J l
\b if y(i) = a1 b.

Note that a'(yi) = y whence yx € {1, b]'\X (as X is closed under a) . Since the
Pontryagin duality for si2 is as strong, there exists a continuous group homomorphism
q>i : {l,b}' ->• {l,b} such that (pi\e(X) = 1 but <pi(j>i) ^ 1. As in the proof
of Proposition 5, there exists an extension i/r : D^ —> Dm with \j/ \x = 1 and
ijf [•(, h(, = 9?,. Suppose that ^(y) = 1; then
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a contradiction. Hence \fr(y) ^ 1, as required.
If y £ Z, then, as in the proof of Proposition 5, we may assume that Z c X. Since

X is a closed subspace of D^ and y £ X, there exists a finite subset / ' of / such that
x\r ^ y\,, for all x e X. Let h := e ( y ) , / := y\r and h' := h\r — e(y'). Since the
Pontryagin duality for srfm is strong, there exists a *-preserving map i/*v : e~l(h') —•
Dm such that \jrh (x\r) = 1 for all x G X with e(xf,,) = h while ^A-(y \,,) / 1. Define
f' : D'm -> Dm by

, _ Jl ifz^e-'C/r'),
\x/rhl(z) i f z e e - ' ( A ' ) ,

and let i/' '.= iff' o nr. Clearly, \j/ : D^ —*• Dm preserves * and i/r fz preserves a (since
Z c. X and VKX) = {!})• Thus, Lemma 6(c), with X = D^, implies that \}r preserves
a. Finally, ( l . i f c z c x implies that ^ takes the constant value 1 on {1, b] and
so preserves +. Thus i/r is the required «^T-morphism.

This concludes the proof of Theorem 2. We close the paper with an interesting
special case of the problem stated in the introduction.

PROBLEM. Does every finite metacyclic group admit a duality? In particular, does
every dihedral group of order 2m, with m even, admit a duality. Indeed, does D,,
admit a duality?

NOTE ADDED IN PROOF. CS. Szabo and the second author have shown that no finite,
non-abelian nilpotent group admits a duality.
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