J. Austral. Math. Soc. (Series A) 61 (1996), 216-228

NATURAL DUALITIES FOR DIHEDRAL VARIETIES

B. A. DAVEY and R. W. QUACKENBUSH

(Received 3 August 1994; revised 19 December 1994)

Communicated by L. Kovács

Abstract

A strong, natural duality is established for the variety generated by a dihedral group of order 2m with m odd. This is the first natural duality for a non-abelian variety of groups.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 08A02; secondary 08B05. Keywords and phrases: duality, natural duality, strong duality, group, dihedral group, variety.

1. Introduction

Which finitely generated quasivarieties of groups admit a natural duality? The main theorem of this paper (Theorem 2) extends the list of known examples into the non-abelian realm.

For the benefit of readers not familiar with the theory of natural dualities, we begin with a brief review of what is meant by '*admitting a natural duality*' and refer to Davey [4] or the forthcoming text Clark and Davey [3] for a detailed account.

Let $\underline{\mathbf{M}}$ be a finite group and let $\underline{\mathbf{M}} = \langle M; G, H, R, \mathscr{T} \rangle$ be a topological structure on the same underlying set, where

- (a) each $g \in G$ is a homomorphism $g : \underline{\mathbf{M}}^n \to \underline{\mathbf{M}}$ for some $n \in \mathbb{N} \cup \{0\}$,
- (b) each $h \in H$ is a homomorphism $h : dom(h) \to \underline{M}$ where dom(h) is a subgroup of \underline{M}^n for some $n \in \mathbb{N}$,
- (c) each $r \in R$ is (the universe of) a subalgebra of $\underline{\mathbf{M}}^n$ for some $n \in \mathbb{N}$,
- (d) \mathscr{T} is the discrete topology.

Whenever (a), (b) and (c) hold, we say that the operations in G, the partial operations in H and the relations in R are *algebraic over* **M**. These compatibility conditions

The research of the second author was supported by a grant from the NSERC of Canada.

^{© 1996} Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

between the structure on \underline{M} and the structure on \underline{M} guarantee that there is a naturally defined dual adjunction between the quasivariety $\mathscr{A} := \mathbb{ISP}\underline{M}$ generated by \underline{M} and the topological quasivariety $\mathscr{X} := \mathbb{IS}_{c}\mathbb{P}M$ generated by M. For all $A \in \mathscr{A}$ the homset $D(\mathbf{A}) := \mathscr{A}(\mathbf{A}, \mathbf{M})$ is a closed substructure of the direct power \mathbf{M}^{A} and for all $\mathbf{X} \in \mathscr{X}$ the homset $E(\mathbf{X}) := \mathscr{X}(\mathbf{X}, \mathbf{M})$ is a subgroup of the direct power $\underline{\mathbf{M}}^{X}$. It follows easily that the contravariant hom-functors $\mathscr{A}(-,\underline{\mathbf{M}}): \mathscr{A} \to \mathscr{S}$ and $\mathscr{X}(-,\mathbf{M}): \mathscr{X} \to \mathscr{S}$, where \mathscr{S} is the category of sets, lift to contravariant functors $D: \mathscr{A} \to \mathscr{X}$ and $E: \mathscr{X} \to \mathscr{A}$. For each $A \in \mathscr{A}$ there is a natural embedding e_A of A into ED(A) given by evaluation: for each $a \in A$ and each $x \in D(A) = \mathscr{A}(A, M)$ define $e_{\mathbf{A}}(a)(x) := x(a)$. Similarly, for each $\mathbf{X} \in \mathscr{X}$ there is an embedding $\epsilon_{\mathbf{X}}$ of \mathbf{X} into $DE(\mathbf{X})$. A simple calculation shows that $e: \mathrm{id}_{\mathscr{A}} \to DE$ and $\epsilon: \mathrm{id}_{\mathscr{X}} \to DE$ are natural transformations. If e_A is an isomorphism for all $A \in \mathscr{A}$ we say that M yields a (natural) duality on \mathscr{A} . If, moreover, $\epsilon_{\mathbf{X}}$ is an isomorphism for all $\mathbf{X} \in \mathscr{X}$, we say that **M** yields a *full duality* on \mathscr{X} (in which case \mathscr{A} and \mathscr{X} are dually equivalent categories). If there is some choice of G, H and R such that M yields a duality on \mathcal{A} then we say that **M** (or \mathcal{A}) admits a *natural duality* or, more colloquially, is dualizable.

The best known examples of dualizable groups are the finite cyclic groups: if $\underline{\mathbf{C}}_m = \langle \mathbf{C}_m; \cdot, {}^{-1}, 1 \rangle$ is an *m*-element cyclic group, then $\underline{\mathbf{C}}_m := \langle \mathbf{C}_m; \cdot, {}^{-1}, 1, \mathcal{T} \rangle$ yields a full duality on $\mathcal{A}_m := \mathbb{I} \mathbb{S} \mathbb{P} \underline{\mathbf{C}}_m$. (In this case both *H* and *R* are empty.) The class \mathcal{A}_m is the variety of abelian groups of exponent *m* while $\mathcal{X}_m := \mathbb{I} \mathbb{S}_c \mathbb{P} \underline{\mathbf{M}}$ is the category of compact (totally disconnected) topological abelian groups of exponent *m*.

We shall refer to this as the *Pontryagin Duality* on \mathscr{A}_m as it can be obtained by restricting the Pontryagin duality for the class of all abelian groups to the subvariety \mathscr{A}_m . The general theory of natural dualities affords several simple, direct proofs of this duality which avoid the application of Pontryagin's sledgehammer—see Davey and Werner [6] or Clark and Davey [1]. In fact, every finite abelian group $\underline{\mathbf{M}}$ is dualizable: it is shown in Davey [5] that if $G = \{\cdot, ^{-1}, 1\} \cup \text{End } \underline{\mathbf{M}}$ and $H = R = \emptyset$, then $\underline{\mathbf{M}}$ yields a duality on $\mathscr{A} := \mathbb{I} \mathbb{SP} \underline{\mathbf{M}}$ which will not in general be full.

Thus, this paper is a contribution to the solution of the following fundamental problem.

PROBLEM. Which finite groups admit a natural duality?

The general theory of natural dualities tells us that it order to show that \mathbf{M} yields a full duality on \mathscr{A} it is sufficient to prove the following three conditions—

- (CLO) for each $n \in \mathbb{N}$, every morphism $t : \underbrace{M}^n \to \underbrace{M}^n$ is an n-ary term function on \underline{M} ,
- (INJ) **M** is injective in \mathscr{X} ,
- (STR) for every non-empty set I, for each substructure X of \mathbf{M}^{I} and for each

$$\mathbf{y} \in M^1 \setminus X$$
 there exist morphisms $\varphi, \psi : \mathbf{M}^1 \to \mathbf{M}$ such that $\varphi \upharpoonright_{\mathbf{X}} = \psi \upharpoonright_{\mathbf{X}}$ but $\varphi(\mathbf{y}) \neq \psi(\mathbf{y})$.

[3]

Together, (CLO) and (INJ) guarantee that $\underline{\mathbf{M}}$ yields a duality on \mathscr{A} . The condition (CLO) is of independent algebraic interest as it asserts that the *n*-ary term functions on $\underline{\mathbf{M}}$ are precisely the maps $t: M^n \to M$ which preserve the operations in *G*, partial operations in *H* and relations in *R*. A duality which satisfies (STR) is called a *strong duality*. By Clark and Davey [1], a duality is strong if and only if it is full and (INJ) holds. Every known full duality is strong. Note that in the case of the variety \mathscr{A}_m , we may always choose the morphism φ in the condition (STR) to be the constant map onto 1, whence (STR) is equivalent in this case to

if **X** is a closed subgroup of \mathbb{C}_m^l and $\mathbf{y} \in C_m^l \setminus X$, then there is a continuous homomorphism $\psi : \mathbb{C}_m^l \to \mathbb{C}_m$ such that $\psi \upharpoonright_{\mathbf{X}} = \underline{1}$ while $\psi(\mathbf{y}) \neq 1$, where $\underline{1}$ is the constant map onto 1.

The conditions (INJ) and (STR) can both be reduced to the finite case (thus elimimating all topological considerations) whenever H is empty and R is finite, as in the case of the finite cyclic group. The results of Clark and Davey [3] show that if $\underline{\mathbf{M}}$ yields a strong duality on \mathscr{A} and $\underline{\mathbf{M}}$ is not injective in \mathscr{A} , then the set H of partial operations must be non-empty. Since the dihedral group $\underline{\mathbf{D}}_m$ is not injective in the quasivariety it generates, if we wish to obtain a strong duality for the quasivariety generated by $\underline{\mathbf{D}}_m$ we will have no choice but to include partial operations in the type of $\underline{\mathbf{D}}_m$.

2. The dihedral groups

Let $\underline{\mathbf{D}}_m = \langle D_m; \cdot \rangle$ be the dihedral group of order 2m presented by $a^m = b^2 = 1$ and $ba = a^{m-1}b$. In the case that *m* is odd, we will establish a strong duality for $\mathscr{A} := \mathbb{ISP}\underline{\mathbf{D}}_m$, the quasivariety generated by $\underline{\mathbf{D}}_m$ (in this case, $\mathbb{ISP}\underline{\mathbf{D}}_m$ is actually the variety generated by $\underline{\mathbf{D}}_m$). Hence, we now assume that *m* is odd. The dual category will be the topological quasivariety $\mathscr{X} := \mathbb{IS}_c \mathbb{P} \underline{\mathbf{D}}_m$ where

$$\mathbf{\underline{D}}_m = \langle D_m; \alpha, 1; +, *; \mathscr{T} \rangle.$$

As usual, the topology, \mathscr{T} , is discrete. The total operations are the automorphism α of $\underline{\mathbf{D}}_m$, given by $\alpha(a) = a$ and $\alpha(b) = ab$, and the nullary operation 1. The first partial operation, +, is simply the partial binary map from $\underline{\mathbf{D}}_m^2$ to $\underline{\mathbf{D}}_m$ which is the restriction to $H := \{1, b\}$ of the group operation on $\underline{\mathbf{D}}_m$ (thus, $b^i + b^j := b^{i+j}$). The second partial operation is slightly more complicated. Let ϵ be the (unique) retraction of $\underline{\mathbf{D}}_m$ onto **H**. Let $N \subseteq D_m$ be the kernel of ϵ in the group theoretic sense (thus, $N = \{1, a, a^2, \ldots, a^{m-1}\}$), and let $K \subseteq D_m^2$ be the kernel of ϵ in the general-algebraic

sense (thus,

$$K := \{ (u, v) \in D_m^2 \mid \epsilon(u) = \epsilon(v) \} = N \times N \cup Nb \times Nb$$
$$= \{ (a^i b^k, a^j b^k) \mid 0 \le i, j \le m - 1 \text{ and } 0 \le k \le 1 \}$$

is the congruence corresponding to N). Define * to be the partial map from $\underline{\mathbf{D}}_m^2$ to $\underline{\mathbf{D}}_m$ whose domain is K with $a^i b^k * a^j b^k := a^{i+j} b^k$. Note that on N the operation * is just the original group operation while on Nb the operation * is the translation of the original group operation on N. Thus, $\langle Nb; * \rangle$ is a group and right translation by b is a group isomorphism from $\langle N; \cdot \rangle$ onto $\langle Nb; * \rangle$. Observe that α is the identity map on N and is the cycle $(b, ab, a^2b, \ldots, a^{m-1}b)$ on the other coset Nb. In the case that m is odd, α is an inner automorphism; indeed, if m = 2k + 1, then $\alpha(g) = a^{-k}ga^k$ for all $g \in D_m$. Each of these operations and partial operations is algebraic over $\underline{\mathbf{D}}_m$. This is obvious in each case except *. That * is algebraic follows from the lemma below.

LEMMA 1. Let G be a group and let ϵ be a retraction of G onto a subgroup H. Let N be the kernel of ϵ and let

$$K := \{(u, v) \in G^2 \mid \epsilon(u) = \epsilon(v)\} = \bigcup \{\epsilon^{-1}(h) \mid h \in H\} = \bigcup \{Nh \times Nh \mid h \in H\}$$

be the congruence corresponding to N. Define a partial binary operation *, with domain K, by xh * yh := xyh for all $x, y \in N$ and $h \in H$, or equivalently, define $u * v := u\epsilon(u)^{-1}v = u\epsilon(v)^{-1}v$ for all $(u, v) \in K$.

- (a) (The restriction of) * is a well-defined group operation on Nh for each $h \in H$. Moreover, right translation by h is an isomorphism of $\langle N; \cdot \rangle$ onto $\langle Nh; * \rangle$.
- (b) The partial operation * is associative wherever it is defined. It will be commutative wherever it is defined provided N is abelian.
- (c) The map $*: K \to G$ is a homomorphism if and only if N is abelian.

PROOF. For (a) we need only that N is a subgroup and that H is a class of representatives for the right cosets of N. A trivial calculation establishes (b).

For (c) we need to know that K is a subgroup of \underline{D}_m^2 (that is, that N is a normal subgroup) and that, for all $h, k \in H$, the representative of the right coset Nhk is hk, that is, that **H** is a subgroup of **G**. Together this says precisely that ϵ is a retraction onto the subgroup **H**.

We wish to prove that * is a homomorphism, that is,

(1)
$$(\forall w, x, y, z \in N)(\forall h, k \in H)(wh \cdot yk) * (xh \cdot zk) = (wh * xh) \cdot (yk * zk),$$

if and only if N is abelian. Let $w, x, y, z \in N$ and $h, k \in H$; then since N is normal, there exist $y', z' \in N$ such that hy = y'h and hz = z'h. Hence

$$(wh \cdot yk) * (xh \cdot zk) = (wy'hk) * (xz'hk) = (wy'xz')hk$$

220 and

$$(wh * xh) \cdot (yk * zk) = wxhyzk = wxy'hzk = (wxy'z')hk$$

Thus (1) holds provided N is abelian, and choosing h = k = w = z = 1 in (1) shows that (1) implies that N is abelian.

We can now state the main result of this paper.

THEOREM 2. The structure \mathbf{D}_m yields a strong duality on \mathscr{A} , that is, the homfunctors $D : \mathscr{A} \to \mathscr{X}$ and $E : \mathscr{X} \to \mathscr{A}$ give a dual category equivalence between $\mathscr{A} := \mathbb{ISP}\mathbf{D}_m$ and $\mathscr{X} := \mathbb{IS}_c \mathbb{P} \mathbf{D}_m$ and \mathbf{D}_m is injective in \mathscr{X} .

Unfortunately, we do not have an axiomatization of the class \mathscr{X} .

If $\underline{\mathbf{D}}_m$ yields a strong duality on \mathscr{A} , then every closed substructure \mathbf{X} of a power of $\underline{\mathbf{D}}_m$ must (at least) be closed under every endomorphism of $\underline{\mathbf{D}}_m$ and moreover every \mathscr{X} -morphism from \mathbf{X} to $\underline{\mathbf{D}}_m$ must preserve the actions of the endomorphisms of $\underline{\mathbf{D}}_m$ on \mathbf{X} (see Clark and Davey [1]). We begin our proof of Theorem 2 by establishing this necessary condition plus a little more. The partial operation * induces a partial operation on $D(\mathbf{A})$ for all $\mathbf{A} \in \mathscr{A}$ and in particular on $D(\underline{\mathbf{D}}_m) = \operatorname{End} \underline{\mathbf{D}}_m$: if $e, f \in \operatorname{End} \underline{\mathbf{D}}_m$, then e*f is defined if and only if for each $u \in G$ either $e(u), f(u) \in N$ or $e(u), f(u) \in Nb$. Denote the constant endomorphism by <u>1</u>.

LEMMA 3. Assume that m is odd.

- (a) For all $k, l \in \mathbb{Z}_m$, there is an endomorphism e of $\underline{\mathbf{D}}_m$ such that $e(a) = a^k$ and $e(b) = a^l b$. Moreover, every non-constant endomorphism of $\underline{\mathbf{D}}_m$ is of this form. Thus $|\operatorname{End} \underline{\mathbf{D}}_m| = m^2 + 1$.
- (b) $\underline{1} * \underline{1} = \underline{1}$ and, for all $e \in \text{End } \underline{D}_m$, the product $e * \underline{1}$ exists if and only if $e = \underline{1}$. If $e, f \in \text{End } \underline{D}_m$ with $e \neq \underline{1}$ and $f \neq \underline{1}$, then e * f exists.
- (c) (End D_m\{<u>1</u>}; *) is an abelian group isomorphic to Z²_m and is generated (as a group) by the powers (with respect to composition of maps) of the automorphism α. The retraction ε is an identity element for * on End D_m\{<u>1</u>}.

PROOF. It is easily seen that $a_1 := a^k$ and $b_1 := a^l b$ satisfy the defining relations for $\underline{\mathbf{D}}_m$ and hence $e(a) := a^k$ and $e(b) := a^l b$ does determine an endomorphism of $\underline{\mathbf{D}}_m$. We must now show that when *m* is odd, there are no other non-constant endomorphisms. Let *e* be an endomorphism of $\underline{\mathbf{D}}_m$ and define $a_1 := e(a)$ and $b_1 = e(b)$. Thus

(2)
$$a_1^m = 1, \quad b_1^2 = 1 \quad \text{and} \quad b_1 a_1 = a_1^{m-1} b_1.$$

As *m* is odd, we must have $a_1 \in N$ as every element of *Nb* has order 2: thus $a_1 = a^k$ for some $k \in \mathbb{Z}_m$. If $b_1 \in N$, then since *N* contains no elements of order 2, we have

 $e(b) = b_1 = 1$. In this case (2) implies that k = 0 and consequently $e = \underline{1}$. If $b_1 \in Nb$, then $e(b) = a^l b$ for some $l \in \mathbb{Z}_m$, as required. Hence (a) holds.

It is clear that $\underline{1} * \underline{1}$ exists and equals $\underline{1}$. If $e \in \text{End } \underline{D}_m$ with $e \neq \underline{1}$, then by (a) we have $e(b) \in Nb$. Hence

$$(1(b), e(b)) = (1, e(b)) \notin K = N^2 \cup Nb^2 = dom(*)$$

and consequently $\underline{1} * e$ is not defined on $D(\underline{\mathbf{D}}_m) = \operatorname{End} \underline{\mathbf{D}}_m$. If $e, f \in \operatorname{End} \underline{\mathbf{D}}_m \setminus \{\underline{1}\}$, then $e(N) \subseteq N$, $e(Nb) \subseteq Nb$, $f(N) \subseteq N$ and $f(Nb) \subseteq Nb$ and hence, for all $u \in D_n$,

$$(e(u), f(u)) \in K = N^2 \cup Nb^2 = dom(*),$$

that is, e * f is defined on $D(\underline{\mathbf{D}}_m) = \operatorname{End} \underline{\mathbf{D}}_m$. Thus (b) holds.

Since, by Lemma 1, the partial operation * on D_n is commutative and associative wherever it is defined, it follows that $\langle \operatorname{End} \underline{\mathbf{D}}_m \setminus \{\underline{1}\}; * \rangle$ is a commutative semigroup. It is easily seen that the map $\gamma : \operatorname{End} \underline{\mathbf{D}}_m \to \mathbb{Z}_m^2$, given by $\gamma(e) = (k, l)$ if $e(a) = a^k$ and $e(b) = a^l b$, is an isomorphism. It is clear from the definition of * that ϵ is an identity element for * on $\operatorname{End} \underline{\mathbf{D}}_m$. Denote powers of $e \in \operatorname{End} \underline{\mathbf{D}}_m$ with respect to composition of maps by e^s and powers with respect to * by $e^{[s]}$. A simple calculation shows that $e := \operatorname{id}_{\underline{\mathbf{D}}_m}^{(m-1)} * \alpha^l * \operatorname{id}_{\underline{\mathbf{D}}_m}^{[k]}$ satisfies $e(a) = a^k$ and $e(b) = a^l b$, whence the set $\{\alpha^s \mid s = 1, \ldots, m\}$ generates the group $\langle \operatorname{End} \underline{\mathbf{D}}_m \setminus \{\underline{1}\}; * \rangle$. This proves (c).

We are now ready to prove Theorem 2. We will establish this strong duality by proving the conditions (INJ), (CLO) and (STR)—see Propositions 4, 5 and 8 below. The first is of independent, group-theoretic interest.

PROPOSITION 4. Let *m* be odd. A map $\varphi : D_m^n \to D_m$ is a term function on the dihedral group $\underline{\mathbf{D}}_m$ if and only if φ preserves the action of the automorphism α , the constant 1 and the partial operations + and *.

PROOF. As Kovács observes in [7], since \mathscr{A} is the product variety $\mathscr{A}_m \mathscr{A}_2$, Corollary 21.13 of Neumann [8] implies that the *n*-generated free group in \mathscr{A} is an extension of a $F_{\mathscr{A}_m}(k)$ by $F_{\mathscr{A}_2}(n)$, where $k = (n-1)|F_{\mathscr{A}_2}(n)| + 1$. Thus the *n*-generated free group over $\underline{\mathbf{D}}_m$ has cardinality $2^n m^{(n-1)2^n+1}$. Since the (partial) operations on $\underline{\mathbf{D}}_m$ are algebraic over $\underline{\mathbf{D}}_m$, every *n*-ary $\underline{\mathbf{D}}_m$ -term function belongs to $\mathscr{X}(\underline{\mathbf{D}}_m^n, \underline{\mathbf{D}}_m)$. Thus it suffices to show that $|\mathscr{X}(\underline{\mathbf{D}}_m^n, \underline{\mathbf{D}}_m)| \leq 2^n m^{(n-1)2^n+1}$.

Let $\varphi \in \mathscr{X}(\underline{\mathbb{D}}_{m}^{n}, \underline{\mathbb{D}}_{m})$. Since + is the original group operation on the subgroup $\{1, b\}$ of $\underline{\mathbb{D}}_{m}$, and since φ preserves +, the restriction $\varphi \upharpoonright_{\{1,b\}^{n}}$ is an abelian group homomorphism. There are exactly 2^{n} such homomorphisms. We will show that each homomorphism from $\{1, b\}^{n}$ to $\{1, b\}$ has at most $m^{(n-1)2^{n}+1}$ extensions to a member of

 $\mathscr{X}(\underline{\mathbb{D}}_{m}^{n}, \underline{\mathbb{D}}_{m})$. Recall our retraction ϵ of D_{m} onto $H = \{1, b\}$; on D_{m}^{n} it is a retraction onto $\{1, b\}^{n}$. Now recall our partial operation *; it turns each of the two cosets of N into an abelian group isomorphic to \mathbb{Z}_{m} . On D_{m}^{n} it turns each of the cosets of N^{n} into an abelian group isomorphic to \mathbb{Z}_{m}^{n} . But each such coset is equal to $\epsilon^{-1}(h)$ for some $h \in \{1, b\}^{n}$. Since φ preserves *, there are at most m^{n} possibilities for $\varphi|_{\epsilon^{-1}(h)}$. (Note that $\varphi(\epsilon^{-1}(h))$ will be contained in either N or Nb, depending on whether $\varphi(h)$ equals 1 or b). This yields $|\mathscr{X}(\underline{\mathbb{D}}_{m}^{n}, \underline{\mathbb{D}}_{m})| \leq 2^{n}m^{n2^{n}}$, since for each of the 2^{n} choices for $h \in \{1, b\}^{n}$ we have at most m^{n} choices for $\varphi|_{\epsilon^{-1}(h)}$. We now take into account the effect of the automorphism α . If $h \neq 1$, then $\alpha(h) \neq h$, but $\epsilon(\alpha(h)) = h$ whence $\alpha(h) \in \epsilon^{-1}(h)$. As $\varphi(\alpha(h))$ is determined by $\varphi(h)$ (since φ preserves α) and as $\alpha(h)$ is an element of order m in the abelian group on $\epsilon^{-1}(h)$ determined by *, there are at most m^{n-1} choices for extending φ to all of $\epsilon^{-1}(h)$ when $h \neq 1$. Hence

$$|\mathscr{X}(\mathbf{\underline{D}}_m^n,\mathbf{\underline{D}}_m)|\leqslant 2^n\cdot m^{(n-1)(2^n-1)}m^n=2^nm^{(n-1)2^n+1},$$

as required.

PROPOSITION 5. \mathbf{D}_m is injective in \mathscr{X} .

PROOF. Let **X** be a closed substructure of $\underline{\mathbb{D}}_m^l$ for some *I*, and let $\varphi \in \mathscr{X}(\mathbf{X}, \underline{\mathbb{D}}_m)$ be a continuous structure-preserving map. By Lemma 3, the substructure **X** is closed under every endomorphism of $\underline{\mathbb{D}}_m$ and φ preserves every endomorphism. In particular, **X** is closed under ϵ and φ preserves ϵ . We must find $\psi \in \mathscr{X}(\underline{\mathbb{D}}_m^l, \underline{\mathbb{D}}_m)$ with $\psi \upharpoonright_{\mathbf{X}} = \varphi$. On $\underline{\mathbb{D}}_m^l$, the map ϵ is a continuous retraction onto $\{1, b\}^l$. Since **X** is closed under ϵ , it follows easily that $\epsilon(X) = X \cap \{1, b\}^l$ and so is a closed subgroup of $\langle \{1, b\}^l, + \rangle$. Thus $\varphi \upharpoonright_{\epsilon(X)}$ is a continuous + – homomorphism. By the Pontryagin duality for abelian groups of exponent 2, there is a continuous + – homomorphism $\varphi_1 : \{1, b\}^l \to \{1, b\}$ which extends $\varphi \upharpoonright_{\epsilon(X)}$.

The set

$$X' = X \cup \bigcup \{ \alpha^{l} (\{1, b\}^{l}) \mid l \in \mathbb{Z}_{m} \}$$
$$= X \cup \bigcup \{ \{1, a^{l}b\}^{l} \mid l \in \mathbb{Z}_{m} \}$$

is a closed substructure of \mathbf{D}_m^l . (To see that X' is closed under *, use the fact that if $\mathbf{x} * \mathbf{y}$ is defined and $\mathbf{y} \in \{1, a^l b\}^l$, then $\mathbf{x} * \mathbf{y} = \alpha^l(\mathbf{x})$.) Define a map $\varphi_2 : X' \to D_m$ by

$$\varphi_2 \upharpoonright_{\mathbf{X}} = \varphi$$
, and $\varphi_2 \upharpoonright_{\{1, a^l b\}^l} = \alpha^l \circ \varphi_1 \circ \alpha^{(m-l)}$ for all $l \in \mathbb{Z}_m$.

For all $x \in X \cap \{1, a^l b\}$, we have

$$\alpha^{l} \circ \varphi_{1} \circ \alpha^{(m-l)}(\mathbf{x}) = \alpha^{l} \varphi_{1}(\alpha^{(m-l)}(\mathbf{x}))$$

= $\alpha^{l} \varphi(\alpha^{(m-l)}(\mathbf{x}))$ as $\alpha^{(m-l)}(\mathbf{x}) \in \epsilon(X)$ and $\varphi_{1} \uparrow_{\epsilon(\mathbf{X})} = \varphi$
= $\varphi \alpha^{l} \alpha^{(m-l)}(\mathbf{x})$ as φ preserves α
= $\varphi(\mathbf{x})$,

from which it follows that φ_2 is well-defined. Clearly, φ_2 is continuous and preserves the partial operation + and the constant 1. We now show that φ_2 also preserves both the action of α and the partial operation *. If $\mathbf{x} \in X$, then it is trivial that φ_2 preserves the action of α on \mathbf{x} since $\varphi_2|_{\mathbf{x}} = \varphi$ and φ preserves α . If $\mathbf{x} \in \{1, a^l b\}^l$, then $\alpha(\mathbf{x}) \in \{1, a^{l+1}b\}^l$ and hence

$$\varphi_2(\alpha(\mathbf{x})) = \alpha^{l+1}\varphi_1\alpha^{m-l-1}(\alpha(\mathbf{x})) = \alpha(\alpha^l\varphi_1\alpha^{m-l}(\mathbf{x})) = \alpha(\varphi_2(\mathbf{x})),$$

whence φ_2 preserves α . Note that if $y \in \{1, a^l b\}^I$, then $\varphi_2(y) \in \{1, a^l b\}$ since $\varphi_1(\{1, b\}^I) \subseteq \{1, b\}$. If $x \in X'$ and $y \in \{1, a^l b\}^I$ and x * y is defined, then $x * y = \alpha^l(x)$ and hence

$$\varphi_2(\mathbf{x} * \mathbf{y}) = \varphi_2(\alpha^l(\mathbf{x}))$$

= $\alpha^l(\varphi_2(\mathbf{x}))$ as φ_2 preserves α
= $\varphi_2(\mathbf{x}) * \varphi_2(\mathbf{y})$ as $\varphi_2(\mathbf{x}) \in \{1, a^l b\}^l$.

Hence φ_2 preserves * and consequently $\varphi_2 \in \mathscr{X}(\mathbf{X}', \mathbf{D}_m)$. That is, without loss of generality, we may assume that X contains $\{1, b\}^I$ and thus

$$Z := \{1, b\}^{I} \cup \{1, ab\}^{I} \cup \{1, a^{2}b\}^{I} \cup \cdots \cup \{1, a^{m-1}b\}^{I} \subseteq X.$$

Note that **Z** is a closed substructure of $\underline{\mathbf{D}}_m^{\prime}$ and hence, by assumption, is a closed substructure of **X**.

A simple-minded attempt to define the extension ψ would proceed as follows. For any $\mathbf{h} \in \{1, b\}^{l}$, the set $X \cap \epsilon^{-1}(\mathbf{h})$ is non-empty and so is a closed subgroup of $\epsilon^{-1}(\mathbf{h}) = N^{l}\mathbf{h}$ (under the restriction of *). Now $\langle \epsilon^{-1}(\mathbf{h}); * \rangle$ is a compact topological abelian group of exponent *m* and since φ preserves *, the restriction $\varphi \upharpoonright_{X \cap \epsilon^{-1}(\mathbf{h})}$ is a continuous group homomorphism with codomain $\langle N\varphi(\mathbf{h}); * \rangle$. By the Pontryagin duality for abelian groups of exponent *m*, we can extend $\varphi \upharpoonright_{X \cap \epsilon^{-1}(\mathbf{h})}$ to a continuous group homomorphism $\psi_{\mathbf{h}} : \epsilon^{-1}(\mathbf{h}) \to N\varphi(\mathbf{h})$. Doing this for each $\mathbf{h} \in \{1, b\}^{l}$, we obtain an extension of φ to a map $\psi : D_{m}^{l} \to D_{m}$ given by $\psi \upharpoonright_{\epsilon^{-1}(\mathbf{h})} = \psi_{\mathbf{h}}$ for all $\mathbf{h} \in \{1, b\}^{l}$.

We claim that ψ is structure preserving. Since Z is a substructure of X, it is trivial that ψ preserves both + and 1 and ψ preserves * by construction. That ψ also preserves α follows immediately once we have established the following lemma.

LEMMA 6. Let **X** be a closed substructure of \mathbf{D}_m^l .

- (a) For all $x \in D_m$ (and therefore for all $x \in X$) we have $(x, \alpha(\epsilon(x))) \in \text{dom}(*)$ and $\alpha(x) = x * \alpha(\epsilon(x))$.
- (b) If $\psi : X \to D_m$ preserves * and ϵ and $\psi \upharpoonright_{X \cap Z}$ preserves α , then ψ preserves α .
- (c) Let \mathbb{Z} be a substructure of \mathbb{X} . If $\psi : X \to D_m$ preserves * and $\psi \upharpoonright_Z$ preserves α , then ψ preserves α .

PROOF. The proof of (a) is a simple calculation and (b) follows easily from (a). Assume that Z is a substructure of X, that ψ preserves * and that $\psi|_Z$ preserves α . By (b), in order to establish (c) it remains to show that ψ preserves ϵ .

Since $Z \subseteq X$, for all $h \in \{1, b\}^I$, the set $X \cap \epsilon^{-1}(h)$ is non-empty, whence $\langle X \cap \epsilon^{-1}(h); * \rangle$ is a group with identity element h. Since ψ preserves *, we have $\psi(h) \in \{1, b\}$ and $\psi(X \cap \epsilon^{-1}(h)) \subseteq N\psi(h)$. Thus

$$\epsilon(\psi(X \cap \epsilon^{-1}(\boldsymbol{h}))) \subseteq \epsilon(N\psi(\boldsymbol{h})) = \{\psi(\boldsymbol{h})\},\$$

which gives $\epsilon(\psi(\mathbf{x})) = \psi(\epsilon(\mathbf{x}))$ for all $\mathbf{x} \in X$, as required.

Unfortunately, if I is infinite, we cannot guarantee that the extension ψ is continuous and the simple-minded approach falters. Nevertheless, the basic idea can be salvaged. Obviously, we need to invoke some kind of compactness argument. The following lemma plays a crucial role.

LEMMA 7: THE GOOD, THE BAD, BUT NO UGLY. Let A and I be sets with A finite. Suppose that, for every finite $I' \subseteq I$, each element of $A^{I'}$ is labeled either 'good' or 'bad' and that if $I'' \subseteq I'$ and $\mathbf{x} \in A^{I'}$ is bad, then so is $\mathbf{x}|_{I''} \in A^{I''}$. Then either there is a finite $I' \subseteq I$ such that each element of $A^{I'}$ is good, or there is an $\mathbf{x} \in A^{I}$ such that $\mathbf{x}|_{I'}$ is bad for each finite $I' \subseteq I$.

PROOF. Endow A with the discrete topology and A^{I} with the product topology; then A^{I} is a compact space with a basis of clopen sets. For finite $I' \subseteq I$, let $X(I') := \{ \mathbf{x} \in A^{I} \mid \mathbf{x}_{I'} | \mathbf{x}_{I'} \text{ is bad} \}$; it is a closed set. Then by the finite intersection property, either $\bigcap \{ X(I') \mid I' \subseteq I \text{ is finite} \}$ is non-empty or there are finitely many finite sets I_1, \ldots, I_k such that $X(I_1) \cap \cdots \cap X(I_k)$ is empty. In the former case, take $\mathbf{x} \in \bigcap \{ X(I') \mid I' \subseteq I \text{ is finite} \}$; then $\mathbf{x}_{I'}$ is bad for any finite $I' \subseteq I$. In the latter case, let $I' = I_1 \cup \cdots \cup I_k$; then, as $X(I') \subseteq X(I_j)$ for $1 \leq j \leq k$, the set X(I') is empty and so every member of $A^{I'}$ is good.

Let us apply the Good, the Bad, but no Ugly Lemma to $\{1, b\}^{I}$. For $h \in \{1, b\}^{I}$ and finite $I' \subseteq I$, define

$$\Gamma_{I'}^{h} := \{ (\boldsymbol{x} \upharpoonright_{I'}, \varphi(\boldsymbol{x})) \mid \boldsymbol{x} \in X \text{ and } \epsilon(\boldsymbol{x} \upharpoonright_{I'}) = \boldsymbol{h} \upharpoonright_{I'} \}.$$

Call $h \upharpoonright_{I'}$ 'good' if $\Gamma_{I'}^{h}$ is a subset of the graph of a *-preserving map defined on $\epsilon^{-1}(h \upharpoonright_{I'}) = \epsilon^{-1}(h) \upharpoonright_{I'}$; otherwise, call $h \upharpoonright_{I'}$ 'bad'. Let $I'' \subseteq I'$ and let π denote the natural restriction map from $\epsilon^{-1}(h) \upharpoonright_{I'}$ to $\epsilon^{-1}(h) \upharpoonright_{I''}$. If γ is an extension of $\Gamma_{I''}^{h}$ to a *-preserving map on $\epsilon^{-1}(h \upharpoonright_{I''})$, then $\gamma \circ \pi$ is an extension of $\Gamma_{I'}^{h}$ to a *-preserving map on $\epsilon^{-1}(h \upharpoonright_{I''})$. Hence 'badness' is hereditary in the sense required by the lemma. Thus, by the lemma, either

(a) there is a finite subset I' of I such that every member h' of $\{1, b\}^{I'}$ is good, or

(b) there exists $\mathbf{h} \in \{1, b\}^I$ such that $\mathbf{h}_{I'}$ is bad, for all finite $I' \subseteq I$.

Case (a). For each $\mathbf{h}' \in \{1, b\}^{I'}$, let $\psi_{\mathbf{h}'} : \epsilon^{-1}(\mathbf{h}') \to D_m$ be a *-preserving map which satisfies $\psi_{\mathbf{h}'}(\mathbf{x}_{1'}) = \varphi(\mathbf{x})$ for all $\mathbf{x} \in X$ with $\epsilon(\mathbf{x}_{1'}) = \mathbf{h}'$, and define $\psi' : D_m^{I'} \to D_m$ to be the union of the maps $\psi_{\mathbf{h}'}$ for $\mathbf{h}' \in \{1, b\}^{I'}$. We claim that ψ' is an \mathscr{X} -morphism. Let $\mathbf{x}'_1, \mathbf{x}'_2 \in \{1, b\}^{I'} = \operatorname{dom}_{\mathbf{D}_m^{I'}}(+)$. Thus as $Z \subseteq X$, there exist $\mathbf{x}_1, \mathbf{x}_2 \in \{1, b\}^{I} \subseteq X$ with $\mathbf{x}_i|_{I'} = \mathbf{x}'_i$. Thus $(\mathbf{x}_1, \mathbf{x}_2) \in \operatorname{dom}_{\mathbf{X}}(+)$ and so $\mathbf{x}_1 + \mathbf{x}_2 \in X$ and $(\mathbf{x}_1 + \mathbf{x}_2)|_{I'} = \mathbf{x}'_1 + \mathbf{x}'_2$. Define $\mathbf{h}' := \epsilon(\mathbf{x}_1 + \mathbf{x}_2)$ and $\mathbf{h}'_i := \epsilon(\mathbf{x}'_i)$. Thus

$$\psi'(\mathbf{x}'_1 + \mathbf{x}'_2) = \psi_{\mathbf{h}'}(\mathbf{x}'_1 + \mathbf{x}'_2) \qquad (\text{definition of } \psi')$$

$$= \psi_{\mathbf{h}'}((\mathbf{x}_1 + \mathbf{x}_2) \upharpoonright_{I'})$$

$$= \varphi(\mathbf{x}_1 + \mathbf{x}_2) \qquad (\text{definition of } \psi_{\mathbf{h}'})$$

$$= \varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) \qquad (\text{as } \varphi \text{ preserves } +)$$

$$= \psi_{\mathbf{h}'_1}(\mathbf{x}_1 \upharpoonright_{I'}) + \psi_{\mathbf{h}'_2}(\mathbf{x}_2 \upharpoonright_{I'}) \qquad (\text{definition of } \psi_{\mathbf{h}'_1})$$

$$= \psi_{\mathbf{h}'_1}(\mathbf{x}'_1) + \psi_{\mathbf{h}'_2}(\mathbf{x}'_2)$$

$$= \psi'(\mathbf{x}'_1) + \psi'(\mathbf{x}'_2),$$

whence ψ' preserves +. By Lemma 6 applied to ψ' , it remains to show that $\psi'|_{Z'}$ preserves α , where $Z' := \bigcup \{\{1, a'b\}^{l'} \mid l \in \mathbb{Z}_m\}$. Let $x' \in Z'$ and define $h' := \epsilon(x') = \epsilon(\alpha(x'))$. Let $x \in Z$ with $x|_{I'} = x'$. Note that $x \in X$ as $Z \subseteq X$. Now

$$\begin{split} \psi'(\alpha(\mathbf{x}')) &= \psi_{\mathbf{h}'}(\alpha(\mathbf{x})\!\upharpoonright_{I'}) & (\text{definition of } \psi') \\ &= \varphi(\alpha(\mathbf{x})) & (\text{definition of } \psi_{\mathbf{h}'}) \\ &= \alpha(\varphi(\mathbf{x})) & (\text{as } \varphi \text{ preserves } \alpha) \\ &= \alpha(\psi_{\mathbf{h}'}(\mathbf{x}\!\upharpoonright_{I'})) & (\text{definition of } \psi_{\mathbf{h}'}) \\ &= \alpha(\psi_{\mathbf{h}'}(\mathbf{x}')) \\ &= \alpha(\psi'(\mathbf{x}')), \end{split}$$

and consequently ψ' preserves α on \mathbf{Z}' , as required. Thus $\psi' : \mathbf{D}_m^{I'} \to \mathbf{D}_m$ is an \mathscr{X} -morphism, as claimed.

Finally, let $\pi_{I'}: \underline{\mathbb{D}}_m^I \to (\underline{\mathbb{D}}_m^{I'})$ denote the restriction map. Then the map $\psi' \circ \pi_{I'}: \underline{\mathbb{D}}_m^I \to \underline{\mathbb{D}}_m$ is an \mathscr{X} -morphism which extends φ since $\psi(\mathbf{x}) = \psi'(\mathbf{x}|_{I'}) = \psi_{\epsilon(\mathbf{x}|_{I'})}(\mathbf{x}|_{I'}) = \varphi(\mathbf{x})$ for all $\mathbf{x} \in X$.

Case (b). Assume that $h \in \{1, b\}^I$ with $h \upharpoonright_{I'}$ bad, for all finite $I' \subseteq I$, that is, for every finite subset I' of I, the set

$$\Gamma_{I'}^{h} := \{ (\boldsymbol{x} \upharpoonright_{I'}, \varphi(\boldsymbol{x})) \mid \boldsymbol{x} \in X \text{ and } \epsilon(\boldsymbol{x} \upharpoonright_{I'}) = \boldsymbol{h} \upharpoonright_{I'} \}.$$

is not a subset of a *-preserving map defined on $\epsilon^{-1}(\mathbf{h} \upharpoonright_{l'})$. Define $X^0 := X \cup \epsilon^{-1}(\mathbf{h})$. Then X^0 is closed under * and, as in the simple-minded approach, we may apply the Pontryagin duality for abelian groups of exponent *m* to extend φ to a continuous *-preserving map $\varphi^0 : X^0 \to D_m$. Since $\epsilon(\mathbf{x} \upharpoonright_{l'}) = \epsilon(\mathbf{x}) \upharpoonright_{l'}$ and since $\epsilon^{-1}(\mathbf{h}) \subseteq X^0$, we have

$$\Gamma_{I'}^{h} = \{ (\mathbf{x} \upharpoonright_{I'}, \varphi(\mathbf{x})) \mid \mathbf{x} \in X \text{ and } \epsilon(\mathbf{x}) \upharpoonright_{I'} = \mathbf{h} \upharpoonright_{I'} \}$$

$$\subseteq \{ (\mathbf{x} \upharpoonright_{I'}, \varphi^0(\mathbf{x})) \mid \mathbf{x} \in X \text{ and } \epsilon(\mathbf{x}) \upharpoonright_{I'} = \mathbf{h} \upharpoonright_{I'} \}$$

$$= \{ (\mathbf{x} \upharpoonright_{I'}, \varphi^0(\mathbf{x})) \mid \mathbf{x} \in \epsilon^{-1}(\mathbf{h}) \}.$$

The set $\Gamma^0 := \{ (\boldsymbol{x} \upharpoonright_{I'}, \varphi^0(\boldsymbol{x})) \mid \boldsymbol{x} \in \epsilon^{-1}(\boldsymbol{h}) \}$ is easily seen to be a *-closed subset of $D_m^{I'} \times D_m$. Hence, if Γ_0 were the graph of a map, then it would be the graph of a *-preserving map defined on $\epsilon^{-1}(\boldsymbol{h}) \upharpoonright_{I'}$, contradicting the fact that $\boldsymbol{h} \upharpoonright_{I'}$ is bad. Thus there exist $\boldsymbol{y}, \boldsymbol{z} \in X$ (depending on I') such that $\boldsymbol{y} \upharpoonright_{I'} = \boldsymbol{z} \upharpoonright_{I'}$ but $\varphi^0(\boldsymbol{y}) \neq \varphi^0(\boldsymbol{z})$. This means that the continuous map φ^0 does not depend on any finite subset of I, a contradiction to the fact that every continuous map from a closed subspace of any power of $\underline{\mathbb{D}}_m$ into $\underline{\mathbb{D}}_m$ depends on only finitely many components. Hence, Case (b) cannot occur.

PROPOSITION 8. If **X** is a closed substructure of \mathbf{D}_m^l for some set *I* and $\mathbf{y} \in D_m^l \setminus X$, then there exists a continuous morphism $\psi : \mathbf{D}_m^l \to \mathbf{D}_m$ such that $\psi \upharpoonright_X = \mathbf{1}$ but $\psi(\mathbf{y}) \neq \mathbf{1}$, where $\mathbf{1}$ is the constant map onto *I*.

PROOF. Let **X** be a substructure of \mathbf{D}_m^l and let $\mathbf{y} \notin X$. If $\mathbf{y} \in Z$, say $\mathbf{y} \in \{1, a^l b\}^l$, then define $\mathbf{y}_1 \in \{1, b\}^l$ by

$$\mathbf{y}_1(i) = \begin{cases} 1 & \text{if } \mathbf{y}(i) = 1, \\ b & \text{if } \mathbf{y}(i) = a^l b. \end{cases}$$

Note that $\alpha^{l}(\mathbf{y}_{1}) = \mathbf{y}$ whence $\mathbf{y}_{1} \in \{1, b\}^{l} \setminus X$ (as X is closed under α). Since the Pontryagin duality for \mathscr{A}_{2} is as strong, there exists a continuous group homomorphism $\varphi_{1} : \{1, b\}^{l} \to \{1, b\}$ such that $\varphi_{1} \upharpoonright_{\epsilon(\mathbf{X})} = \mathbf{1}$ but $\varphi_{1}(\mathbf{y}_{1}) \neq 1$. As in the proof of Proposition 5, there exists an extension $\psi : \mathbf{D}_{m}^{l} \to \mathbf{D}_{m}$ with $\psi \upharpoonright_{\mathbf{X}} = \mathbf{1}$ and $\psi \upharpoonright_{\{1,b\}^{l}} = \varphi_{1}$. Suppose that $\psi(\mathbf{y}) = 1$; then

$$\varphi_1(\mathbf{y}_1) = \psi(\mathbf{y}_1) = \psi(\alpha^{m-l}(\mathbf{y})) = \alpha^{m-l}(\psi(\mathbf{y})) = \alpha^{m-l}(1) = 1,$$

a contradiction. Hence $\psi(\mathbf{y}) \neq 1$, as required.

If $y \notin Z$, then, as in the proof of Proposition 5, we may assume that $Z \subseteq X$. Since **X** is a closed subspace of \mathbb{D}_m^I and $y \notin X$, there exists a finite subset I' of I such that $\mathbf{x} \upharpoonright_{I'} \neq \mathbf{y} \upharpoonright_{I'}$ for all $\mathbf{x} \in X$. Let $\mathbf{h} := \epsilon(\mathbf{y}), \mathbf{y}' := \mathbf{y} \upharpoonright_{I'}$ and $\mathbf{h}' := \mathbf{h} \upharpoonright_{I'} = \epsilon(\mathbf{y}')$. Since the Pontryagin duality for \mathscr{A}_m is strong, there exists a *-preserving map $\psi_{\mathbf{h}'} : \epsilon^{-1}(\mathbf{h}') \rightarrow \mathbb{D}_m$ such that $\psi_{\mathbf{h}'}(\mathbf{x} \upharpoonright_{I'}) = 1$ for all $\mathbf{x} \in X$ with $\epsilon(\mathbf{x} \upharpoonright_{I'}) = \mathbf{h}'$ while $\psi_{\mathbf{h}'}(\mathbf{y} \upharpoonright_{I'}) \neq 1$. Define $\psi' : D_m^{I'} \rightarrow D_m$ by

$$\psi'(z) = \begin{cases} 1 & \text{if } z \notin \epsilon^{-1}(\boldsymbol{h}'), \\ \psi_{\boldsymbol{h}'}(z) & \text{if } z \in \epsilon^{-1}(\boldsymbol{h}'), \end{cases}$$

and let $\psi := \psi' \circ \pi_{I'}$. Clearly, $\psi : \mathbf{D}_m^I \to \mathbf{D}_m$ preserves * and $\psi \upharpoonright_Z$ preserves α (since $Z \subseteq X$ and $\psi(X) = \{1\}$). Thus, Lemma 6(c), with $\mathbf{X} = \mathbf{D}_m^I$, implies that ψ preserves α . Finally, $\{1, b\}^I \subseteq Z \subseteq X$ implies that ψ takes the constant value 1 on $\{1, b\}$ and so preserves +. Thus ψ is the required \mathscr{X} -morphism.

This concludes the proof of Theorem 2. We close the paper with an interesting special case of the problem stated in the introduction.

PROBLEM. Does every finite metacyclic group admit a duality? In particular, does every dihedral group of order 2m, with m even, admit a duality. Indeed, does \underline{D}_4 admit a duality?

NOTE ADDED IN PROOF. Cs. Szabo and the second author have shown that no finite, non-abelian nilpotent group admits a duality.

References

- D. M. Clark and B. A. Davey, 'The quest for strong dualities', J. Austral. Math. Soc. (Series A) 58 (1995), 248–280.
- [2] _____, 'When is a natural duality 'good'?', Algebra Universalis 35 (1996), 237-267.
- [3] —, 'Natural dualities for the working algebraist', in preparation.
- [4] B. A. Davey, 'Duality theory on ten dollars a day', in: Algebras and orders (I. G. Rosenberg and G. Sabidussi, eds) NATO Advanced Study Institute Series, Series C, Vol. 389 (Kluwer, 1993) pp. 71–111.
- [5] _____, 'Dualizability of finite abelian groups and some other finite algebras', preprint, 1994.
- [6] B. A. Davey and H. Werner, 'Dualities and equivalences for varieties of algebras', in: *Contributions to lattice theory (Szeged, 1980)*, (A. P. Huhn and E. T. Schmidt, eds.) Colloq. Math. Soc. János Bolyai, Vol. 33 (North-Holland, Amsterdam, 1983) pp. 101–275.
- [7] L. G. Kovács, 'Free groups in a dihedral variety', Proc. Roy. Irish Acad. 89A (1989), 115-117.
- [8] H. Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebeite 37 (Springer, Berlin, 1967).

La Trobe University Bundoora VIC 3083 Australia e-mail: davey@latcs1.lat.oz.au University of Manitoba Winnipeg Manitoba Canada R3T 2N2 e-mail: qbush@ccu.umanitoba.ca