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Abstract
It is known that without synchronization via a global clock one cannot obtain common knowledge by
communication. Moreover, it is folklore that without communicating higher-level information one can-
not obtain arbitrary higher-order shared knowledge. Here, we make this result precise in the setting of
gossip where agents make one-to-one telephone calls to share secrets: we prove that “everyone knows that
everyone knows that everyone knows all secrets” is unsatisfiable in a logic of knowledge for gossiping. We
also prove that, given n agents, 2n− 3 calls are optimal to reach “someone knows that everyone knows all
secrets” and that n− 2+ (n

2

)
calls are optimal to reach “everyone knows that everyone knows all secrets.”

Keywords: Epistemic logic; gossip; higher-order knowledge; optimality

1. Introduction
Consider a group of agents that initially each know a unique secret. The agents then make one-
to-one telephone calls during which they always share all the secrets they know. So-called gossip
protocols in this simple model provide an efficient way to spread information using peer-to-peer
communication (Hedetniemi et al. 1988).

Even when the gossiping agents only exchange secrets and no knowledge about secrets, they
can obtain higher-order knowledge: they can get to know what other agents know, or even
what other agents know about yet other agents (van Ditmarsch et al. 2023). It is known that
without synchronization via a global clock one cannot obtain common knowledge by peer-to-
peer communication (Halpern and Moses 1990). Therefore, we also cannot obtain common
knowledge in gossiping. It is folklore that in gossiping only first-order shared knowledge can
be achieved when only exchanging secrets. In this article, we make this result precise using
epistemic logic.1

We start with some examples that illustrate how agents can obtain higher-order knowledge.

Example 1. Suppose we have a set of four agents {a, b, c, d}. Consider the sequence of calls
ab.cd.ac.bd.ad.bc.ab.cd and the results shown in Table 1. After the fourth call bd everyone is an
expert, that is, they know all secrets. In both of the last two calls ab and cd, the two agents involved
become so-called super experts, that is, they know that everyone knows all secrets. In this example,
two agents become super experts in the same call. This is not always the case.
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Table 1. Results of ab.cd.ac.bd.ad.bc.ab.cd. A lower case y in column xmeans x knows the secret of y; an upper case Y
means x knows that y is an expert. Therefore, “abcd” denotes an expert and “ABCD” denotes a super expert

a b c d Initial state
ab→ ab ab c d
cd→ ab ab cd cd
ac→ abcd A C ab abcd A C cd
bd→ abcd A C abcd B D abcd A C abcd B D Everyone is an expert
ad→ abcd A CD abcd B D abcd A C abcd AB D
bc→ abcd A CD abcd BCD abcd ABC abcd AB D
ab→ abcd ABCD abcd ABCD abcd ABC abcd AB D a, b become super experts
cd→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD c, d become super experts

Table 2. Results of ac.ad.ac.bc.ac including a lucky call

a b c d Initial state
ac→ a c b a c d
ad→ a cd b a c a cd
ac→ a cd b a cd a cd c learns d from a
bc→ a cd abcd BC abcd BC a cd
ac→ abcd ABC abcd BC abcd ABC a cd a is lucky about b

Table 3. Results of ab.cd.bd.ad.ac

a b c d
ab→ ab ab c d
cd→ ab ab cd cd
bd→ ab abcd B D cd abcd B D
ad→ abcd A D abcd B D cd abcd AB D
ac→ abcd ABCD abcd B D abcd A C abcd AB D a is lucky about b

More interestingly, an agent may learn that another agent is an expert without calling that
agent, both in a call wherein she becomes an expert but also when she already is an expert. We will
call this a lucky call, and this notion plays a key role in our contribution.

Example 2. Again suppose we have a set of four agents {a, b, c, d} and consider the call sequence
ac.ad.ac.bc.ac, with results shown in Table 2. Here, agent a learns in the final call ac that a, b, and
c are experts. Because b is not involved in this call we say that this is a lucky call and say that a is
lucky about b. We will show that this sequence is typical for a non-expert to be lucky.We will show
that multiple non-expert agents can be lucky in a call sequence, but each of them can be lucky at
most once.

Example 3. Once more consider four agents {a, b, c, d} and now call sequence ab.cd.bd.ad.ac, of
which the results are shown in Table 3. Agent d becomes an expert in the call bd. Agent a becomes
an expert in the call ad after that. In that call, she learns that d already was an expert so that there
must be yet another agent who is an expert. But she is uncertain whether this is agent b or agent c.
In final call ac, expert agent a calls the non-expert c, so she also learns in that call that from b and
c, agent b must have been the one who made d an expert. Therefore, agent a is lucky about b in
that call. Agent a also becomes a super expert in her lucky call. We will see that this rules out that
any other agent is subsequently lucky.
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In a synchronous setting where agents are aware when calls happen that do not involve them,
lucky calls are not a surprising phenomenon. A typical example is found in van Ditmarsch et al.
(2023, Example 12): given call sequence ab.ac.cd.ab.bc.ab, in the fourth call, ab agent a learns that
agent b was not involved in the third call that also did not involve her. Therefore, a learns that
the third call must have been cd, after which c and d became experts. Agent a is lucky twice in a
single call!

In the asynchronous setting, we consider here, where agents only observe their own calls, we
find the existence of lucky calls more surprising.

The existence of lucky calls makes it harder to get results for reaching higher-order epistemic
goals and to get results for optimality. If an agent is lucky in a call, she learns more than intuitively
expected from that call. There is information leakage. But is it leaking enough to reach higher-
order knowledge, if a sufficient number of agents are lucky often enough? Also, a lucky agent can
be saved by the effort of an additional call to the agent she is lucky about in order to get to know
that all agents are experts. Does this allow shorter call sequences for everybody to get to know that
all agents are experts, if a sufficient number of agents are lucky often enough? In this contribution,
we show that the answer to both questions is negative. Informally, we can say: being lucky does
not help.

This article is structured as follows. We discuss related work in Section 2 and provide the syn-
tax and semantics of our epistemic logic and other basic definitions, in Section 3. In Section 4,
we introduce notions describing how the calls in a given call sequence are causally related. In
Section 5, we then define and characterize lucky calls. This section is more structured than other
sections as it is longer. In particular, a great deal of effort goes into characterizing when expert
agents can be lucky. Using all these results, in Section 6, we show that “everyone knows that every-
one knows that everyone knows all secrets” is unsatisfiable, and finally in Section 7 that 2n− 3 calls
are optimal to reach the epistemic goal “someone knows that everyone knows all secrets” and that
n− 2+ (n

2
)
calls are optimal to reach the epistemic goal “everyone knows that everyone knows

all secrets.”

2. Related Work
The “gossip problem” as introduced above is also known as the “telephone problem” and goes back
(at least) to the article (Tijdeman 1971) from 1971. The main classical result is that only a linear
amount of calls, namely 2n− 4 if we have n≥ 4 agents, is needed to ensure that everyone knows
all secrets. We refer to Hedetniemi et al. (1988) for a survey of variants of the gossip problem, for
example, over different graphs or using broadcasting.

Most of the classical results assume a central scheduler, that is, an authority that decides in
which order calls should be made. More recently, decentralized gossip has been studied, where
agents decide on their own whom they should call next. Moreover, multiple logics have been
developed to analyze the gossip problem and protocols (Apt et al. 2015; Apt and Wojtczak 2017,
2018; Attamah et al. 2017; van Ditmarsch et al. 2019, 2020). Some of these logics include not
only statements to say that agents know a secret, but they also provide general “an agent knows
that ϕ” modalities common in epistemic logics and thereby allow us to discuss the higher-order
knowledge effects of gossip.

The logics available for the analysis of gossip differ in their semantics, and many of them come
with parameters to obtain different variants. For example, we need to decide whether callers only
know what set of secrets they hold after a call (merge-then-inspect) or whether they also know
what the other caller contributed to that output (inspect-then-merge), which is more informa-
tive (Apt et al. 2015, 2018; Attamah et al. 2014; van Ditmarsch et al. 2017). Here, we always assume
inspect-then-merge. Besides individual and shared knowledge, one can also consider common
knowledge in gossip (Apt and Wojtczak 2017, 2019), which we will not use here. Another crucial
parameter is the presence of a global clock: in synchronous gossip, agents know a lot more than in
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asynchronous, truly distributed systems (Apt et al. 2015; Apt and Wojtczak 2018; van Ditmarsch
et al. 2017). Here, we only consider the asynchronous case. Compared to related work, our focus
here is not the study of different protocols, but we still use epistemic logic to determine what
agents know, by reasoning about indistinguishable call sequences.

The question which higher-order knowledge can be achieved by communication between
agents goes back to the classic problem of the Byzantine Generals (Lamport et al. 1982). In general,
it is impossible to achieve common knowledge in an asynchronous distributed system, as shown
in Halpern and Moses (1990). However, shared knowledge can be achieved by messages of the
form “I know that this other agent knows that . . . ”. This has been studied in Herzig and Maffre
(2017) and Cooper et al. (2019), wherein agents inform each other what secrets other agents know
and who knows that, etc. Concretely, among n agents shared knowledge of level (depth) k can be
achieved by (k+ 1)(n− 2) many calls. It should be mentioned here that “agent a knows the secret
of agent b” is level 1 in their representation (as in some other works, such as Attamah et al. 2017),
whereas in our setting “agent a knows the secret of agent b” is represented as atomic information
of epistemic level/depth 0 (as in most other works on epistemic gossip, e.g., also in Apt et al. 2018,
Apt and Wojtczak 2017, and van Ditmarsch et al. 2017).

In our contribution, we only allow agents to exchange secrets and do not allow them to
exchange any other kind of information.

Our result is most related to Apt and Wojtczak (2018) and van Ditmarsch et al. (2020) who
both investigate when the truth of formulas stabilizes during gossip protocol execution, including
the case of the most general gossip protocol where any call can be made at any time and where
agents only observe their own calls (setting 〈•,♦, β〉 in van Ditmarsch et al. 2020, also called
asynchronous ANY in van Ditmarsch et al. 2023). That case is the same setting as ours.

By different methods, the authors of Apt and Wojtczak (2018) and those of van Ditmarsch
et al. (2020) demonstrate that making new calls no longer affects the truth of epistemic formulas
at some stage. Although the objectives of these publications were different, namely decidability of
logics for gossip or correctness of gossip protocols, there is some overlap in methods. They show
that in any (fairly scheduled) call sequence, with the standard call semantics that only secrets
are exchanged in a call, at some stage further calls have no informational effect – such calls are
redundant. This was relevant to observe for gossip protocols where the goal was that all agents
became experts, because it showed that, in principle, even if one were to consider epistemic goals
such as knowing that others are experts, things would eventually come to a stop. But they did not
consider any specific epistemic goals.

In Apt and Wojtczak (2018), only epistemic formulas of depth 1 were considered (the crucial
result is Apt and Wojtczak 2018, Lemma 21), but here we focus on depth 2 and higher which
in Apt and Wojtczak (2018) is mentioned as a generalization for future work.

The authors of vanDitmarsch et al. (2020) considered epistemic formulas of arbitrary epistemic
depth. However, there the comparison to our result stops: van Ditmarsch et al. (2020) (Prop. 5.5,
Cor. 5.6) shows that formulas of any epistemic depth remain true forever or false forever after call
sequences of certain length (bounded by a polynomial in terms of the number of agents). Hence,
in particular, the formula EEExpA which says “everyone knows that everyone knows that everyone
knows all secrets” must remain true forever or false forever after further extending call sequences.
But the authors of van Ditmarsch et al. (2020) did not investigate specific formulas. In particular,
they did not focus on the formula EEExpA. Here, we show that EEExpA remains false forever.

3. Syntax and Semantics
We assume a finite set of at least four agents A= {a, b, c, d, . . . } throughout this article. This
assumption is needed for our main results. Some lemmasmay also hold for fewer than four agents.
Arbitrary agents are also denoted a, b, etc. We write A−a for A\{a} and A−ab for A\{a, b}. We
also write A+a for A∪ {a} and A+ab for A∪ {a, b}, and so on.
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Each agent holds a single secret. The agents communicate with each other through telephone
calls. During a call between two agents x and y, they exchange all the secrets that they knew before
the call.

A call is a pair of agents (a, b) ∈A×A, where a �= b, for which we write ab. Agent a is the caller
and agent b is the callee. Given call ab, call ba is the dual call. An agent a is involved in a call bc iff
a= b or a= c. In this contribution, the direction of the call does not matter, so it only matters if an
agent is involved in a call. We will therefore arbitrarily write ab or ba for the call between a and b,
where we often prefer the lexicographic order of agents. A call sequence is defined by induction:
the empty sequence ε is a call sequence. If σ is a call sequence and ab is a call, then σ.ab is a call
sequence. We write |σ | to denote the length of a call sequence.

If σ = ρ.τ , then ρ is a prefix of σ , denoted as ρ 	 σ , and τ is the complement of ρ in σ , where
τ is also denoted σ\ρ.

Given call sequences τ and σ , by induction on the length of σ , we further define that τ is
a subsequence of σ . This is the inductive definition: ε ⊆ ε, and if τ ⊆ σ then τ , τ .ab⊆ σ.ab and
τ , ab.τ ⊆ ab.σ .

Let σ , τ ⊆ ρ. Then, σ ∪ρ τ ⊆ ρ, the union of σ and τ with respect to ρ, is the subsequence of
ρ consisting of the calls occurring in σ or in τ ; and σ \ρ τ , the difference of σ and τ with respect
to ρ, is the subsequence of ρ consisting of the calls occurring in σ and not occurring in τ . We
similarly define σ1 ∪ρ . . .∪ρ σn for σ1, . . . , σn ⊆ ρ.

A given call sequence may contain multiple identical subsequences. So it does not suffice to say
“merge subsequences ac.ac and ad.bc of call sequence ac.ad.ac.bc.ac,” as the latter contains three
subsequences ac.ac. The definition above requires to select one of those three.

Definition 1. Language. For a finite set of agents A, the language L is given by ϕ ::= ba | ¬ϕ |
ϕ ∧ ϕ |Kaϕ where a, b ∈A. Let → and ∨ be defined as usual, and let K̂aϕ := ¬Ka¬ϕ.

The ϕ are called formulas. The atomic formula ba reads as “agent a has the secret of b” or “agent a
knows the secret of b.” The formula Kaϕ reads “agent a knows that ϕ is true.”

Although we write “know” in “agent a knows the secret of b” and in “agent a knows that ϕ is
true”, the former is an atomic formula and only the second is an epistemic formula. In the former,
we follow the convention in work on gossip.

For B⊆A, we define EBϕ := ∧
a∈B Kaϕ and read it as “everyone in B knows that ϕ.” For EAϕ,

we write Eϕ. This is also known as shared ormutual knowledge (for B, for all) of ϕ.
Agent a is an expert if she knows all the secrets, formally

∧
b∈A ba, abbreviated as Expa. For

B⊆A, ExpB := ∧
a∈B Expa, for everyone in B is an expert, where ExpA means that everyone is

an expert. (We let Exp∅ mean �.) Furthermore, NExpB := ∧
a∈B ¬Expa, for everyone is B is a

non-expert. Agent a is a super expert if she knows that everyone is an expert, formally KaExpA.
Therefore, EExpA means that everyone is a super expert and EEExpA means that everyone knows
that everyone is a super expert.

We slightly further generalize notation. Let non-empty B, C ⊆A. If all a ∈ B know the secrets
of all the agents in C, then we say that all B are C experts, denoted ExpB(C), where if C =A we
omit the parameter C. If a knows that all the agents in B know the secrets of all the agents in B, a
is a B super expert so that EBExpB(B) denotes that all agents in B are B super experts.

The epistemic relation defined belowmodels that agents only observe the calls they are involved
in. In particular, there is no global clock and the conditions are asynchronous, meaning agents do
not know how many calls have taken place.

Definitions 2 and 3 are done by simultaneous induction on call sequences.

Definition 2. Epistemic relation. Let a ∈A. The epistemic relation ∼a is the smallest equivalence
relation between call sequences such that:
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• ε ∼a ε
• if σ ∼a τ and a /∈ {b, c}, then σ.bc∼a τ
• if σ ∼a τ , and for all c, σ |= cb iff τ |= cb, then σ.ab∼a τ .ab

As we assume the asynchronous cases, in the last clause of Definition 2, there are infinitely
many such τ . This is not a problem for the formal semantics and our results here, but of course an
issue for practical implementations – see also van Ditmarsch et al. (2020), Gattinger (2023).

Definition 3. Semantics. Let call sequence σ and formula ϕ ∈L be given. We define σ |= ϕ by
induction on the structure of ϕ. Moreover, we define the valuation of atoms by induction on σ , for
any a, b ∈A:

ε |= ab iff a= b
σ.ab |= ca iff σ |= ca or σ |= cb for all c ∈A
σ.ab |= cb iff σ |= ca or σ |= cb for all c ∈A
σ.ab |= cd iff σ |= cd for all c, d ∈A with d /∈ {a, b}
σ |= ¬ϕ iff σ �|= ϕ

σ |= ϕ ∧ψ iff σ |= ϕ and σ |=ψ

σ |=Kaϕ iff τ |= ϕ for all τ such that σ ∼a τ

A formula ϕ is valid, notation |= ϕ, iff for all call sequences σ we have σ |= ϕ. We abbreviate the set
of secrets known by a after σ with a(σ ) := {c ∈A | σ |= ca}.

If in call ab agent a or b becomes an expert, then the other agent must also be an expert after this
call. In contrast, if in a call ab agent a or b becomes a super expert, then the other agent does not
have to become a super expert in this call.

4. Causal Relation and Causal Cone
We now introduce additional notation for specific subsequences of calls. The goal is to make it
easy to select and reason about those calls that are relevant for a specific subset of agents.

Definition 4. Causal relation. For any sequence σ and calls ab, cd ∈ σ , we write ab< cd iff σ has
shape σ1.ab.σ2.cd.σ3 (i.e., this occurrence of the call ab in σ is before this occurrence of the call cd
in σ ). We define the relation �0 over call occurrences in σ by ab�0 cd :⇔ ab< cd and {a, b} ∩
{c, d} �=∅. Let � be the reflexive transitive closure of �0. Calls ab and cd are causally related iff
ab� cd.

Definition 5. Causal cone. Given a call sequence σ and a set of agents B⊆A, the causal cone of σ
for the agents in B, denoted σB�, is defined by induction.

εB� := ε (σ.ab)B� :=
{
σ
B∪{a,b}
� .ab if a ∈ B or b ∈ B
σB� otherwise

For σ {a,b}
� we write σ ab� , etc. Furthermore, we let σB�� be the complement of σB� in σ .

Intuitively, given a call sequence σ.ab, the sequence σ ab� is the subsequence of σ of which all
calls are causally related to the final call ab (it is the causal cone of agents a and b); in other words,
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σ ab� is the subsequence consisting of all cd ∈ σ such that cd � ab in σ.ab. Also note that we can
identify σ a� with the causal cone of the last call in σ involving a. In other words, σ a� determines
what a knows after σ .

The complement σB�� are the calls that do not determine what a knows after σ . Sequence σB��
consists of all cd ∈ σ that do not determine what any agent in B knows after σ .

Observe that σ ∅� = ε for all σ .
If there are two or three agents, all calls in a call sequence are causally related.

Lemma 6. Let call sequence σ , group B⊆A of agents, and agent a ∈ B be given. Then (i) σ ∼a σB�
and also (ii) σ ∼a σB�.σB��.

Proof. We prove (i) by induction on the length of σ . Note that we declared B and a ∈ B after σ ;
hence, these may occur differently in our inductive assumption.

Case σ = ε. This is by definition as εB� = ε.
Case σ = τ .ab. By the definition of �, we have (τ .ab)B� = τB+b� .ab (we recall that a ∈ B). By

inductive assumption, we have τ ∼a τ
B+b� and also τ ∼b τ

B+b� so that agent b holds the same
secrets after both. Therefore, by definition of ∼a, we have τ .ab∼a τ

B+b� .ab. Combining this, we
obtain τ .ab∼a (τ .ab)B�.

Case σ = τ .bc with b, c �= a and b ∈ B or c ∈ B. By the definition of � and because b or c is
in B, (τ .bc)B� = τB+bc� .bc. By induction, τ ∼a τ

B+bc� , and from that, the fact that b, c �= a, and the
definition of ∼a, we also obtain τ .bc∼a τ

B+bc� .bc and therefore τ .bc∼a (τ .bc)B�.
Case σ = τ .bc with b, c /∈ B. We have that τ .bc∼a τ by the definition of ∼a, because b, c �= a.

By inductive assumption, τ ∼a τB�. By the definition of � and because b, c �= a, τB� = (τ .bc)B�.
Combining all this, we obtain τ .bc∼a (τ .bc)B�.

We now prove (ii). From σ ∼a σB�, it follows that σ ∼a σB�.σB�� by the definition of ∼a and the
observation that a does not occur in any call in σB��.

An instantiation of Lemma 6 is that σ ∼a σ
a�.σ a�� and σ ∼a σ

a�: a considers it possible that all
not causally related calls, if any, take place after her last call.

Moreover, note that we have (σ.ab)ab� = σ ab� .ab and (σ.ab)ab�� = σ ab�� by Definition 5. Hence,
Lemma 6 also implies the following corollary.

Corollary 7. Let call sequence σ and call ab be given. Then σ.ab∼a σ
ab� .ab.σ ab�� and also σ.ab∼a

σ ab� .ab.

Using the causal cone, we can show an elementary result about the limits of the knowledge of a
non-expert. The result is obvious, but it it shown to dispel any doubt

Lemma 8. An agent who is not an expert cannot know that another agent is an expert.

Proof. Let a ∈A and call sequence σ be given and assume σ �|= Expa. From Lemma 6, it follows
that σ ∼a σ

a�. Observe that for all agents b ∈A, if b occurs in a call in σ�, then b(σ a�)⊆ a(σ a�),
and if b does not occur in σ a�, then b(σ a�)= {b}: a considers it possible that b has not yet been
involved in a call. Therefore, in the first case, given a(σ a�)�A also b(σ a�)�A, whereas in the
second case, {b}�A. Either way σ a� �|= Expb. Therefore, σ �|=KaExpb.

Slightly more general than Lemma 8, a non-expert cannot know that another agent holds more
secrets than herself (even if that other agent is not an expert).
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Somewhat related to causality, the following Lemma 9 shows that if agent a considers it possible
that all agents in B are non-experts, then she considers a call sequence possible wherein all agents
in B hold the same secrets as in the actual call sequence right before they became experts. In
particular, for any agent in B that is not yet an expert, this means a considers their actual set of
secrets possible.

For any call sequence σ and agent b, let σ<b = σ whenever b is not an expert after σ , and
otherwise let σ<b be the prefix of σ up to (and excluding) the call wherein b becomes an expert.

Lemma 9. Let call sequence σ , B⊆A and a ∈A be given. If σ |= K̂aNExpB, then there is a τ such
that σ ∼a τ and for all b ∈ B, b(σ<b)= b(τ ).

Proof. The proof is by induction on the number of calls in σ involving agent a. Note that if
b(σ<b)= b(τ ) for all b ∈ B, then τ |=NExpB.

Basis Suppose agent a was not involved in any call in σ . Let τ = ⋃
σ {b ∈A | σ<b}. As agent a

is not an expert, we have that σ |= K̂aNExpA. As agent a does not occur in σ nor in τ , σ ∼a τ . By
the definition of τ , for all b ∈A, b(σ<b)= b(τ ). In particular, this holds for all b ∈ B⊆A.

Induction Let us now assume the property holds for σ and let ac be the next call involving a.
We distinguish cases by whether a and c were non-experts or experts before and after call ac.

Case agent a non-expert after call ac Let σ.ac |= K̂aNExpB. In this case, we even have that
σ.ac |= K̂aNExpA and σ |= K̂aNExpA. By induction, there is a τ such that σ ∼a τ and for all
b ∈A, b(σ<b)= b(τ ). From σ ∼a τ and c(σ<c)= c(σ )= c(τ ), we obtain that σ.ac∼a τ .ac. After
call ac, a(σ.ac)= c(σ.ac)= c(σ )∪ a(σ ), and because a(σ )= a(τ ) and c(σ )= c(τ ), from that we
also obtain a(σ.ac)= a(τ .ac) and c(σ.ac)= c(τ .ac). Furthermore, for all b ∈A−ac, it follows from
b(σ<b)= b(τ ) that b((σ.ac)<b)= b(τ .ac). The requirement is therefore met for all agents in A and
in particular for B⊆A (it does not matter whether a or c are in B).

Case agent a expert before call ac Let σ.ac |= K̂aNExpB. We distinguish the subcases where
before call ac agent c was a non-expert, an expert known by a, and an expert unknown by a. In the
latter two cases, we also refer to agent c as a known expert or unknown expert, respectively.

If c was a non-expert, then σ |= K̂aNExpB+c, and therefore by induction there is a τ such that
σ ∼a τ and for all b ∈ B+c, b(σ<b)= b(τ ). In particular, c(σ<c)= c(σ )= c(τ ) so that we also
have σ.ac∼a τ .ac. As no b ∈ B is involved in the call ac, for all b ∈ B it remains the case that
b((σ.ac)<b)= b(τ .ac), as required.2

If c was a known expert (by a), the set B of agents that a considers possible to be non-experts
need not change before and after call ac. Also, σ |= K̂aNExpB. From that, it follows by induction
that there is a τ such that σ ∼a τ and for all b ∈ B, b(σ<b)= b(τ ). As σ ∼a τ and c(σ )= c(τ )=A,
and also σ.ac∼a τ .ac. As no b ∈ B is involved in the call ac, for all b ∈ B it remains the case that
b((σ.ac)<b)= b(τ .ac).

If c was an unknown expert (by a), σ |= K̂aNExpB+c, by induction there is a τ such that σ ∼a τ

and for all b ∈ B+c, b(σ<b)= b(τ ) so that c(σ<c) �= c(σ ). As a was already an expert after σ , there
is a d �= a, c that a knows to be an expert. We now have that σ.ac∼a τ .cd.ac (from σ ∼a τ and
a �= c, d we obtain σ ∼a τ .cd, and from that and c(σ )= c(τ .cd)=A we obtain σ.ac∼a τ .cd.ac).
As no b ∈ B is involved in the calls cd and ac, for all b ∈ B, it remains the case that b((σ.ac)<b)=
b(τ .cd.ac).

Case agent a becomes expert in call ac Let σ.ac |= K̂aNExpB. As σ �|= Expa, σ |= K̂aNExpA. We
distinguish the subcases where before call ac agent cwas a non-expert, and an unknown expert (as
a was not an expert after σ , there is no case where c is known by a to be an expert).

Let σ |= ¬Expc. From σ |= K̂aNExpA, it follows by induction that there is a τ such that σ ∼a τ

and for all b ∈A, b(σ<b)= b(τ ). In particular, c(σ<c)= c(σ )= c(τ ) so that with σ ∼a τ we also
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have σ.ac∼a τ .ac. As no b ∈ B is involved in the call ac, for all b ∈ B it remains the case that
b((σ.ac)<b)= b(τ .ac).

Let now σ |= Expc. As σ |= K̂aNExpA, also σ |= K̂aNExpB. It follows by induction that there
is a τ such that σ ∼a τ and for all b ∈ B, b(σ<b)= b(τ ). From σ ∼a τ and c(σ )= c(τ )=A, we
obtain σ.ac∼a τ .ac. As no b ∈ B is involved in the call ac, for all b ∈ B it remains the case that
b((σ.ac)<b)= b(τ .ac).3

5. Lucky Calls
5.1 Introduction
In the introduction, we informally introduced the notion of a lucky call. We nowmake this notion
precise. The goal of this section is to characterize when lucky calls can happen.

Definition 10. An agent a is lucky in a call ab if she learns in that call that another agent c is an
expert. Formally, given all different agents a, b, c ∈A and a call sequence σ , agent a is lucky about c
in call ab iff σ �|=KaExpc and σ.ab |=KaExpc.

The characterization results in this section are obtained with combinatorial rather than logi-
cal means. Because the proofs are fairly long and the case distinctions multiple and even further
refined, the section consists of different subsections in order to make it more accessible to the
reader. Let us first provide an overview of these results.

In order to determine when an agent can be lucky in a call, we distinguish four cases: whether
the caller is an expert and whether the callee is an expert. The case where the caller is an expert
and the callee is a non-expert is the most complex case and is therefore distinguished in two
subcases. Altogether the cases are exhaustive and mutually exclusive. Additionally, we provide
several lemmas in order to show these cases. Having characterized all cases, we then show that an
agent can only be lucky once. An overview of cases and results is in Table 4.

In the cases where a is not an expert, σ �|= Expa, this already implies that σ �|=KaExpb by way
of Lemma 8. We found it more elegant to keep both assumptions explicitly. The case where a and
c are both experts comes logically last in the table but has results that are used in the case where
a is an expert but not c. The former is therefore presented before the latter (the reader may have
observed that 13< 29).

5.2 Non-expert to non-expert
It is easy to show that when two non-experts call they cannot be lucky.

Proposition 11. Non-expert to non-expert. An agent who is not an expert and calling another
non-expert is not lucky:

Let all different a, b, c ∈A and σ be given and suppose σ �|= Expa and σ �|= Expc. Then σ.ac �|=
KaExpb.

Proof. From Corollary 7, it follows that σ.ac∼a σ
ac� .ac. No call in σ ac� may contain an agent who

is an expert, as the causal relation would then have made a or c an expert before call ac. Therefore,
σ ac� �|= Expb for all b ∈A other than a or c, and because of that and the semantics of calls also
σ ac� .ac �|= Expb. From that and σ.ac∼a σ

ac� .ac, it follows that σ.ac |= ¬KaExpb.

From Proposition 11, it follows in particular that when two agents both become experts in a
call, they cannot be lucky. And as there are at least four agents, from that it then follows that
neither agent becomes a super expert in that call. They both remain uncertain whether the two or
more agents not involved in the call are experts.
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Table 4. Characterizing luck bymutually exclusive cases, given all differenta, b, c ∈ A, and call sequenceσ . PropertyKamagic
is the formula Ka

∨
d∈A (Expd ∧ ¬KaExpd). Note that σ �|= Expb already implies σ �|= KaExpb. Technical condition ( ∗ ) is made

explicit in Proposition 29

Assumptions Conclusion: σ.ac |= KaExpb iff . . . Pr.

σ �|= KaExpb

σ �|= Expa
σ �|= Expc . . . false 11

σ |= Expc . . . σ |= KaExpA−b(A−b) 12

σ |= Expa
σ �|= Expc

¬Kamagic . . . false 22

Kamagic . . . σ |= Expb ∧ Ka(Expb ∨ Expc) and ( ∗ ) 29

σ |= Expc . . . false 13

5.3 Non-expert to expert
We now characterize the case where a non-expert is lucky when calling an expert.

Example 4. We recall the call sequence ac.ad.ac.bc.ac from Example 2 (Table 2) wherein a’s final
call ac is lucky: a learns that b and c are experts in that call.

After the prefix ac.ad.ac, a is a super expert for all agents but one (for {a, c, d} but not b): a
knows that a, c, d know all the secrets of a, c, d. This allows a to learn in the final call ac that one
of a, c, d must have called agent b and as it was not herself, c or d must have called b. Note that a
does not learn that in fact c called b.

We now show that this typical case is also the only way for a non-expert to be lucky.

Proposition 12. Non-expert to expert. An agent who is not an expert is lucky iff she is a super
expert for all agents but one and calls an expert among those:

Let all different a, b, c ∈A and σ be given and suppose σ �|= Expa and σ |= Expc. Then σ.ac |=
KaExpb iff σ |=KaExpA−b(A−b).

Proof. First note that σ �|= Expa implies σ �|=KaExpb (Lemma 8). Second, observe that σ |= Expc
implies σ.ac |= Expa.

We now show the two directions.
(⇒ ): We show the contrapositive: if a is not a A−b super expert (σ �|=KaExpA−b(A−b)), then a
cannot be lucky about b (i.e., σ.ac �|=KaExpb).

Intuitively, there are two ways in which non-expert a can be not a A−b super expert: when she
does not know enough or when she knows too much. In the first case, a does not know the secret
of b but she is not a A−b super expert. In the second case, a knows the secret of b, as this is, in a
way, “more” than being an A−b super expert who is not an expert, which implies ignorance of b.
Case a does not know b. If σ |= ¬ba, then a considers it possible that b has not yet made a call
and thus only knows its own secret. In that case, as a is not a A−b super expert, then a considers
it possible that there is an agent d ∈A−b such that d does not know all of A−b’s secrets, that is,
then there is a e ∈A−b (where e may be a or c) such that d does not know the secret of e. Agent
a thus considers it possible that the next two calls are db.dc and that b is not involved in further
calls. After db, agent b is not an expert because neither b nor d know the secret of e. In dc, agent
d informs c of the secret of b. This can still be followed by any call sequence τ of calls between
the agents of A−ba making c expert before call ac. Altogether we get σ.ac∼a σ.db.dc.τ .ac and
σ.db.dc.τ .ac �|= Expb. Therefore, σ.ac �|=KaExpb.
Case a knows b. If σ |= ba, then a cannot also be a A−b super expert as this implies that a also
knows all other secrets and therefore is an expert, which contradicts our assumption. It remains
to show that σ.ac �|=KaExpb.

As non-expert a became expert in call ac, a learns a secret of some agent d in that call. As a
already knew the secret of b, we must have d �= b.

https://doi.org/10.1017/S0960129524000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000082


Mathematical Structures in Computer Science 671

First assume there is a last call in σ between a and b. In that call ab, a therefore did not learn
the secret of d. So after this call, a still considers it possible that d only knows its own secret.

• If after call ab agent a also knows the secret of c, then a considers it possible that c does
not know d. If then the subsequent calls are bc.cd and b was not involved in further calls,
then after call bc agent b still does not know d, so b is not an expert. The part bc.cd can still be
followed by any sequence τ of calls between the agents ofA−bamaking c expert before call ac.
Altogether we get σ.ac∼a σ.bc.cd.τ .ac and σ.bc.cd.τ .ac �|= Expb. Therefore, σ.ac �|=KaExpb.

• If after call ab agent a does not know the secret of c, then b also does not know c, and a
considers it possible that subsequently bd.cd took place. After bd agent b is not an expert
(because b still does not know c). Call cd informs c of the secret of b. This can still be followed
by any number of calls between the agents of A−bamaking c expert before call ac. Therefore,
σ.ac �|=KaExpb.

Second, assume there was no call in σ between a and b. Then, given that a knows b and thus
knows that a call took place between b and some agent e (where e may be c) in A−ba, we again
conclude that b did not know d after that call nor after any call before the last call by a in σ
(which happens to be the final call in σ a�). Agent a considers a call sequence possible (with prefix
σ a�) wherein after her last call b did not make further calls and that b’s secret was instead initially
spread by agent e among the A−ba, and so on until c became expert. Therefore, also in this case,
σ.ac �|=KaExpb.

(⇐ ): Suppose σ |=KaExpA−b(A−b). Note that we not only have σ �|= Expa but also σ |=
Ka¬Expa. Moreover, we claim that σ |= Expc. To see this, note that after σ agent a is an A−b
super expert, so a knows that c knows all secrets except b. Therefore, if a becomes expert in the
last a call with c, then cmust have learnt another secret. This can only be the secret of b. Therefore,
a learnt that c was an expert after any τ ∼a σ .

In order to show σ.ac |=KaExpb, let τ be arbitrary such that τ .ac∼a σ.ac. By definition of ∼a,
we have τ ∼a σ . From σ |= Expc, we get c(τ )= c(σ )=A. It remains to show that τ |= Expb. Also
note that c(τ )=A implies τ |= bc.

From τ ∼a σ as well as σ |=KaExpA−b(A−b) and σ |=Ka¬Expa, we get τ |= ExpA−b(A−b)
and τ |= ¬Expa.

These two imply that τ a� |= ¬bd for any d �= b (b does not occur in τ a�) and therefore in
particular that τ a� |= ¬bc.

From τ a� |= ¬bc whereas τ |= bc, it follows that τ a�� must contain a call bd involving b and some
agent d where either d = c or there is a subsequent call ce involving c (where d, e �= a). Because
d(τ a�)=A−b for any such d, in the call bd agent b becomes an expert. (Also, ce explains how
agent c became an expert.)

Therefore, τ |= Expb, and as τ was arbitrary such that τ .ac∼a σ.ac this shows that σ.ac |=
KaExpb.

Although we assume in Lemma 12 that there are at least four agents, it also holds for three
agents.

Example 5. Consider three agents a, b, and c. In call sequence ac.bc.ac, the third call is lucky and
a then learns that c and b are experts. In the first call, a becomes a {a, c} super expert. In the second
call ac, agent a learns that c must have called b and thus learns that b and c are experts and thus
becomes a {a, b, c} super expert.

https://doi.org/10.1017/S0960129524000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000082


672 H. van Ditmarsch and M. Gattinger

We can conclude from Lemma 12 that if σ |= EA−bExpA−b(A−b), so when all agents in A−b
are A−b super experts, and if also no agent in A−b is an expert, all but one of those can be lucky
in the same call sequence. To see this, after σ let some agent c call b. Let now all agents in A−bc
call c. Then they all also learn in that call that b is an expert. Given |A| = n agents, we therefore get
n− 2 many lucky calls.

Example 6. With four agents we can have two lucky calls by non-experts. Recall ac.ad.ac.bc.ac
from Example 2 wherein a learns that b and c are experts in the final call ac. Now consider the
expanded sequence ac.ad.ac.cd.bc.ac.cd: after ac.ad.ac.cd, all of a, c, d know that all of a, c, d know
all secrets of a, c, d. In penultimate call ac, a learns that b and c are experts, and in final call cd, d
learns that b and c are experts.

Similarly, with 1000 agents we can have 998 lucky calls by non-experts.

5.4 Expert to expert
We now deal with calls between two experts and will show that they cannot be lucky. In the later
Sections 5.5–5.7, we then consider calls between experts and non-experts, where we will show
that the expert can be lucky. We investigate expert-to-expert calls first because they are easier and
because we use results about them to prove our results for expert-to-non-expert calls.

Proposition 13. Expert to expert. An agent who is an expert and who calls another expert is not
lucky:

Let all different a, b, c ∈A and σ be given and suppose σ |= Expa, σ |= Expc, and σ �|=KaExpb.
Then σ.ac �|=KaExpb.

Proof. As σ |= Expa, there must have been a call in σ wherein a became expert. Let σ = τ .ad.ρ
where in call ad agent a became expert. As σ �|=KaExpb, d �= b.

The proof is by induction on the numberm of calls involving a in subsequence ρ.
(m= 0) We distinguish case d = c from case d �= c.
(d = c) From σ �|=KaExpb, that is, τ .ac.ρ �|=KaExpb, it follows that there is σ ′ such that

τ .ac.ρ ∼a σ ′ and σ ′ �|= Expb. As τ .ac.ρ ∼a τ .ac (as a is not involved in a call in ρ), also τ .ac∼a σ ′
and we can assume that σ ′ has shape τ ′.ac where τ ∼a τ ′, so that τ .ac.ρ ∼a τ ′.ac. From τ .ac.ρ ∼a
τ ′.ac and c(τ .ac.ρ)= c(τ ′.ac)=A, we obtain that σ.ac= τ .ac.ρ.ac∼a τ ′.ac.ac. As τ ′.ac �|= Expb,
also τ ′.ac.ac �|= Expb, so that σ.ac �|=KaExpb.

(d �= c) In this, case σ.ac= τ .ad.ρ.ac. We obtain similarly to the previous case that there is
τ ′ ∼a τ such that τ .ad ∼a τ ′.ad and τ ′.ad �|= Expb. It then follows that τ ′.ad.cd.ac �|= Expb, where
σ.ac= τ .ad.ρ.ac∼a τ ′.ad.cd.ac so that again σ.ac �|=KaExpb. In other words, agent a considers it
possible that c called d immediately after ad and that a then called c immediately after that. As
neither call involved b, this does not affect what secrets are known by b, who therefore still is not
an expert.

(m≥ 1) We now have that σ = τ .ad.ρ1.ae.ρ2, where a is not involved in a call in ρ2 and where
we may assume by induction that τ .ad.ρ1.ae �|=KaExpb, from which it follows that e �= b. We
obtain similarly to the previous case that σ.ac �|=KaExpb, because a considers it possible that no
calls took place after that call ae, in case e= c; or that only call ce took place after that call ae, in
case e �= c.

5.5 Expert to non-expert – preliminaries
We proceed by investigating when experts can be lucky. This will be surprisingly more com-
plex than the other cases. In this preparatory subsection, we introduce more terminology for
calls and several detailed examples in order to provide the reader with intuitive guidance. The
characterization of lucky experts and proofs are then in the following subsections.
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In Example 3 (p. 662) analyzing call sequence ab.cd.bd.ad.ac, before a was lucky in the final
call ac, she became an expert in call ad by calling an agent who already was an expert. This is a
necessary condition for any call sequence wherein an expert a is later to be lucky. Such a call is
called amagic call, and the property thus obtained is calledmagic (for agent a).

Intuitively, magic means that a knows that some agent is an expert of which a does not know
that it is an expert. Formally, we define it as follows.

Definition 14. Magic call, magic property. Let unequal a, b ∈A and a call sequence σ be given.
The magic property for a is the formula Kamagic :=Ka

∨
d∈A (Expd ∧ ¬KaExpd). Consider the

call sequence σ.ab. If we have σ �|= Expa, σ |= Expb, and call ab is not lucky, then we say that ab is a
magic call.

Lemma 15. If call ab is magic in σ.ab, then: (i) σ.ab |= Expa, (ii) σ �|=Kamagic, and (iii) σ.ab |=
Kamagic.

Proof. (i): If a non-expert a calls an expert, then a is an expert after that call. (ii): The magic
property states that any call sequence considered possible by agent a contains an expert. However,
a non-expert considers it possible that all agents are non-experts (see Corollary 7, and Lemma 8
including its generalization): this follows from σ �|= Expa (so that a(σ )�A), σ ∼a σ

a� (so that also
a(σ a�)�A), and c(σ a�)⊆ a(σ a�) for all agents c �= a (so that c(σ a�)�A for all c ∈A). Therefore, a
cannot know that there is an expert; thus, magic cannot hold. (iii): In call ab, agent a learns that
b was an expert before the call. Any call sequence considered possible by agent a must therefore
contain a call wherein b and another agent both became experts. As a was not lucky in call ab, she
does not know who that agent was.

In other words, a magic call for a is a call in which Kamagic becomes true, and it is a call that
creates magic. Apart from wordplay, let us explain by way of typical examples what is magical
about magic calls.

Example 7. We recall Example 3 (Table 3) for the four agents a, b, c, d and the call sequence
ab.cd.bd.ad.ac. Call ad is a magic call wherein a becomes an expert and d already is an expert.

Before call ad, a was not an expert and therefore considers it possible that all other agents are
also not experts. Therefore, after call ad, agent a knows that three agents are experts, namely her-
self, agent d, and the agent involved in the call with dmaking d an expert. However, a is uncertain
whether b or c are experts. In the final call ac, agent a finds out that c was not an expert. Therefore,
she learns that b is an expert. Therefore, the last call is lucky.

If the final call had been ab instead of ac, agent a would have learnt that b already was an expert
and would therefore still have been uncertain whether c is an expert. A further call ac would have
been necessary to determine that. So she would then not be lucky. Luck is never guaranteed.

After a magic call for agent a, the magic property implies that a knows that there is one more
expert agent than she knows about. This can also be described in familiar “de re”/“de dicto”
terms (Jamroga and van der Hoek 2004). After a magic call, agent a knows “de dicto” that there are
three experts, that is, a knows that there are three agents that are experts. Whereas a only knows
“de re” that there are two experts (and does not know “de re” that there are three experts); in other
words, there are two agents such that a knows that they are experts (and there are no three agents
such that a knows that they are experts). The magic property implies that the agent knows more
experts “de dicto” than “de re.”

The lucky call need not be straight after the magic call. In Example 7, the next call can be a
lucky call because there are only four agents. In general, this can take much longer. As long as
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magic is preserved, there is somem< n such that a knows “de dicto” but not “de re” that there are
m< n agents who are experts, and luck may happen whenm= n− 1.

Example 8. Let there be 1000 agents including a, b, c, d and assume that a becomes an expert in
a call ad to an expert d, wherein she is not lucky, so that it is a magic call. Agent a now knows
(de dicto) that there are three experts but only knows (de re) of two, namely a and d. Let now a
after call ad call 996 non-experts. After the 996th of those calls a knows that there are 999 experts
but only knows of 998. Suppose that at this stage she is still uncertain whether b and c are experts
but knows that they cannot both be non-experts. Then, if a’s next, 997th, call is ac and a then
observes that c is not an expert, she learns in that lucky call that bmust be an expert. Again, a now
is a super expert.

What if after a magic call for a she calls an expert before she is lucky? If a already knew this
agent to be an expert (we will call this agent a known expert), then this call is not informative and
magic is then not lost. However, if after a magic call agent a calls an agent she did not yet know to
be an expert, then this almost always rules out that a can be lucky ever after. A simple example was
the alternative call ab in Example 7 to an expert b. Five agents allow more interesting scenarios.

Example 9. Consider five agents a, b, c, d, e, and call sequence ab.cd.bd.de. After this, agents d and
e are experts, and a, b, c are non-experts.

Let now call ae happen. This is a magic call. After this call agent a is still uncertain whether
b, c, d are experts.

Any call involving a can now take place: if again call ae is the next call, then this is not infor-
mative, and magic is preserved; if the next call is ab, then a remains uncertain whether c and d are
experts, and magic is preserved; if the next call is ac, then this is similar to a next call ab only now
a remains uncertain whether b and d are experts; however if the next call is ad, agent a learns that
d was an expert, and she now knows that there are three experts and considers possible that the
remaining agents b, c are all non-experts. Magic is therefore lost.

The calls preserving magic affect each other in the following sense. Suppose the next call is
ab, that is, consider the sequence ab.cd.bd.de.ae.ab. Then subsequent calls ab, ae would not be
informative, and call ad would still kill the magic, but call ac would now be lucky.

It is also easy to see that oncemagic is lost, it is lost forever. For example, after ab.cd.bd.de.ae.ad,
if a subsequently calls an expert, either this is a known expert, or, if it is an unknown expert, she
considers it possible that this agent was made an expert by e after call ae. This does not bringmagic
back. Whereas if a subsequently calls a non-expert, b or c, that agent could have obtained those
secrets before call ad when nobody was an expert (as shown later).

Let us now continue on the lead suggested by “almost always.” Interestingly enough, magic is
not always lost when subsequently to a magic call wherein an agent becomes an expert, that agent
later calls an expert.

Example 10. Consider five agents a, b, c, d, e, and call sequence bc.cd.bc.ab.ac.ce.ac.be.ab.ad. We
show the results in Table 5.

After the first occurrence of call ac, agent a knows that agents b and c (and therefore also
agent a herself) know all secrets except e. In call ce agent c becomes an expert, and in the second
occurrence of call ac agent a learns that c is an expert: this is a magic call. The second call ab is a
call between experts. Agent a can now reason as follows:

Can it be that agent b was the agent who made agent c an expert? I know that they both
already knew all secrets except e before I became an expert. If they only knew that, then
they would not become experts when calling each other.

https://doi.org/10.1017/S0960129524000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000082


Mathematical Structures in Computer Science 675

Table 5. Results of bc.cd.bc.ab.ac.ce.ac.be.ab.ad, followed by the results of the shorter sequence bc.cd.bc.ab.ac.ce.ac.ad
where we only showed the final two rows, for comparison. Both sequences are the same until the horizontal line

a b c d e
bc→ a bc bc d e
cd→ a bc bcd bcd e
bc→ a bcd bcd bcd e
ab→ abcd abcd bcd bcd e
ac→ abcd abcd abcd bcd e KaExpabc(A−e)
ce→ abcd abcd abcde C E bcd abcde C E Expc, Expe
ac→ abcde A C abcd abcde A C E bcd abcde C E Magic call, Expa
be→ abcde A C abcde B E abcde A C E bcd abcde BC E Expb
ab→ abcde ABC abcde AB E abcde A C E bcd abcde BC E b is close
ad→ abcde ABCDE abcde AB E abcde A C E abcde A D abcde BC E Lucky call, Expd

...
ac→ abcde A C abcd abcde A C E bcd abcde C E Magic call, Expa
ad→ abcde A CDE abcd abcde A C E abcde A D abcde C E Lucky call

The only way for b to make c an expert is that b learns the secret of e, which could have
happened in two ways. (i) If b called e, then b and e both became experts so then after
call bc there were already three experts, namely b, c, e, before I called c. (ii) If b learned
e’s secret by e calling d, after which e and d remained non-experts, followed by call bd,
then there are once again three experts, namely b, c, d before I called c. Therefore, apart
from b, c and myself, one of d or emust also be an expert, but I do not know which one.

So magic is preserved after calling an expert. The last call, ad, is a lucky call. Agent a is now a super
expert.

Similarly, if there are 1000 agents, it may happen that agent a knows that all agents except two
know all secrets except the secret of one of those two, that one of those 997 then becomes expert
and after that calls a in a lucky call. If a then keeps calling the remaining 996 such agents and keeps
finding out that they are experts in such calls, then she can still be lucky in the end about one of
those two agents (as shown later).

The final two rows of Table 5 show the execution of bc.cd.bc.ab.ac.ce.ac.ad (where it differs from
the execution of bc.cd.bc.ab.ac.ce.ac.be.ab.ad). In call ad, agent a is lucky about e. This is because
a learns in that call:

Agent d does not know the secret of e; therefore, d and e did not call each other. Agent d
is not an expert, so b or emust have made c an expert. If bmade c an expert, then emust
also be an expert (and b cannot have learnt e’s secret earlier, from d), whereas if e made
c an expert, then b need not be an expert. Either way, a learns that e is an expert.

Observe that a is not yet a super expert and that b is not an expert. Indeed, we will show that an
expert a can be lucky at any stage.

We find the phenomenon described in Example 10 a surprising exception to the usual loss of
magic in a call between experts. Given a magic call ac an agent b is close if prior to the magic call
agent a knows that a, b, and c are experts for all agents except one. Call ab above where b is close
and is an unknown expert to a preserves magic.
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Definition 16. Known expert, unknown expert, close, distant. Let a, b, c ∈A be all different agents
and consider a call sequence σ.ac.τ .ab where ac is a magic call for a and such that σ.ac.τ |= Expb.

If σ.ac.τ |=KaExpb, then b is a known expert (to a) in call ac, and otherwise b is an unknown
expert.

If there is a d ∈A such that a knows that b knows all secrets except that of d, then the agents in
the set C = {c ∈A | σ |=KaExpc(A−d)} are called close (to being an expert) and the agents in A\C
distant.

We also apply the same terminology to call sequences extending σ.ac.

We note that an agent c can only be close or distant with respect to three agents with their roles
given in Definition 16: a knows that b knows all secrets except that of d. If the set of close agents C
is empty, everyone is distant. If C is nonempty and b is close, then amust also be close (because all
secrets known by b are also known by a) and d must be distant (because otherwise, Expd(A− d)
means that dmust be an expert, as d always knows it own secret, and therefore a would also be an
expert).

Let us summarize what may be going on before an agent who is an expert becomes lucky. If
following a magic call for agent a she calls a non-expert, a known expert, or an unknown close
expert (a close call), magic is preserved and she can still eventually be lucky. Whereas whenever
she calls an unknown distant expert (a distant call), she can no longer eventually be lucky. If
agent a knows that there is at most one distant non-expert but is uncertain between two, then
if she receives a call from the non-expert between them, she learns that the other agent she was
uncertain about is an expert: she is lucky.

We now proceed to prove all this.

5.6 Expert to non-expert – without magic
We first show that once magic is lost, it is lost forever. We prove a slight generalization of that,
namely that whenever agent a is an expert and Kamagic is false, it remains false. The condition
that a is an expert is relevant, because before a is an expert Kamagic is also false (but a magic call
may then still happen). This covers all cases in which a could have become an expert, also those
where magic never held sway.

Lemma 17. ¬Kamagic is equivalent to
∨

B⊆A (KaExpB ∧ K̂aNExpA\B).

Note that Bmay be the empty set, in which case agent a is not an expert (where Exp∅ = �).

Proof. We have that Kamagic is by definition Ka
∨

d∈A (Expd ∧ ¬KaExpd), such that its negation
is equivalent to K̂a

∧
d∈A (Expd →KaExpd). Assume some call sequence σ satisfies the latter. Then

there is a τ ∼a σ such that for all d ∈A, τ |= Expd →KaExpd. Let now B= {d ∈A | τ |= Expd},
then τ |=KaExpB and τ |=NExpA\B. Therefore, σ |=KaExpB and σ |= K̂aNExpA\B so that σ |=∨

B⊆A (KaExpB ∧ K̂aNExpA\B). The other direction is similar and left to the reader.

So if magic is false, agent a considers a call sequence possible wherein all agents she is uncer-
tain about are non-experts. In combination with Lemma 9, this implies that she considers a call
sequence possible wherein all non-experts hold the same secrets as in the actual call sequence. As a
consequence, a can never be surprised by later finding out in a call howmany secrets a non-expert
actually holds, a property that will be used frequently in later proofs.

Lemma 18. Consider a sequence σ.ab such that in the last call a and b become experts. Then σ.ab |=
¬Kamagic.

https://doi.org/10.1017/S0960129524000082 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000082


Mathematical Structures in Computer Science 677

Proof. By Proposition 11, we get σ.ab |= K̂aNExpA−ab. Together with σ.ab |=KaExpab, we can
apply Lemma 17 choosing B= {a, b} to get σ.ab |= ¬Kamagic.

Lemma 19. Let σ.ab be given wherein a became expert in the lucky call ab. Then σ.ab |= ¬Kamagic.

Proof. Suppose that a was lucky about agent c. Then σ.ab |=KaExpabc ∧ K̂aNExpA−abc. Now by
using Lemma 17 for B= {a, b, c}, we get σ.ab |= ¬Kamagic.

Lemma 20. Let σ |= Expa and τ with σ 	 τ be given. If σ �|=Kamagic then τ �|=Kamagic.

Proof. Given σ |= Expa and σ �|=Kamagic, there is a non-empty B⊆A such that a knows that all
agents in B are experts and considers it possible that all agents not in B are non-experts. The proof
is now by induction on the numberm of calls involving a in τ\σ .
Base case

If m= 0, then τ ∼a σ . As K̂a
∧

d∈A (Expd →KaExpd) is equivalent to KaK̂a
∧

d∈A (Expd →
KaExpd), σ |= ¬Kamagic is equivalent to σ |=Ka¬Kamagic, from which it follows that
τ |= ¬Kamagic, that is, τ �|=Kamagic.
Induction step

Now assume τ\σ containsm> 0 calls involving a. By induction, we assume that all but the last
preserve ¬Kamagica. Let ab be the last call by a. We need to distinguish three cases.
Case b is a known expert: A call to a known expert is not informative. Let τ = σ.τ1.ab.τ2,
then we assume σ.τ1 |=KaExpb. We may assume by induction that there is a τ3 such that
σ.τ1 ∼a τ3 and τ3 |= ExpB ∧NExpA\B, where a, b ∈ B⊆A. As τ3 |= ExpB, also τ3.ab |= ExpB.
Furthermore, as τ3 |=NExpA\B and a, b /∈A\B, from the semantics of calls we obtain τ3.ab |=
NExpA\B. Therefore, τ3.ab |= ExpB ∧NExpA\B. From that and σ.τ1.ab∼a τ3.ab, it then follows
that σ.τ1.ab |= ¬Kamagic.
Case b is an unknown expert:Agent a now considers it possible that b became an expert by calling
an agent c that a already knew to be expert. Therefore, if before call ab agent a knew that all agents
in B are experts and considered it possible that all agents in A\B are non-experts, after the call ab
agent a knows all agents in B+b are experts and considers it possible that the remaining agents, in
(A\B)−b, are non-experts, and Kamagica is still false.

Formally, we proceed as in the previous case and assume by induction that there is a τ3 such that
σ.τ1 ∼a τ3 and τ3 |= ExpB ∧NExpA\B, where in this case c ∈ B and b ∈A\B. Except that we now
use this to argue that σ.τ1.ab∼a τ3.bcbcbc.ab, which brings us from τ3 |= ExpB ∧NExpA\B to τ3.bc |=
ExpB+b ∧NExpA\(B+b). Further details are left to the reader.
Case b is a non-expert: By inductive assumption, there is a τ3 with σ.τ1 ∼a τ3 and τ3 |=NExpA\B.
From Lemma 9, we may assume some such τ3 for which, for all c ∈A\B, c(τ3)= c((σ.τ1)<c).
In particular, for b= c, b(τ3)= b((σ.τ1)<b)= b(σ.τ1). From b(τ3)= b(σ.τ1) and τ3 ∼a σ.τ1, we
obtain that τ3.ab∼a σ.τ1.ab. For all c ∈A\B with c �= b, we have that c(τ3.ab)= c((σ.τ1)<c.ab),
as c is not involved in call ab. We now have that τ |=KaExpB+b ∧ K̂aNExpA\(B+b) so that τ |=
¬Kamagic.

From Lemmas 18, 19, and 20, we immediately obtain:

Corollary 21. Any extension of a call sequence wherein an agent a became expert by calling another
non-expert or became expert in a lucky call satisfies ¬Kamagic.

Finally, we now proceed with the characterization of lucky calls. In this subsection, we
considered the case where expert amakes a call and magic does not hold (see Table 4).
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Proposition 22. Expert to non-expert without magic. Let σ |= Expa, σ �|=KaExpb, σ �|= Expc, and
suppose that σ �|=Kamagic. Then σ.ac �|=KaExpb.

Proof. From σ �|=Kamagic, it follows by Lemma 17 that there is a B⊆A such that σ |=KaExpB ∧
K̂aNExpA\B. From assumption σ �|=KaExpc and together with assumption σ �|=KaExpb, we
deduce that b, c /∈ B, that is, b, c ∈A\B. From Lemma 9, we obtain a τ such that σ ∼a τ , b(σ<b)=
b(τ ), and c(σ<c)= c(τ ). As σ �|= Expc, c(σ<c)= c(σ ). From σ ∼a τ and c(σ )= c(τ ), we obtain
σ.ac∼ τ .ac. As τ |= ¬Expb and b �= a, c, also τ .ac |= ¬Expb. From σ.ac∼a τ .ac and τ .ac |= ¬Expb,
it follows that σ.ac �|=KaExpb.

5.7 Expert to non-expert – with magic
We recall formula Kamagic is defined as Ka

∨
d∈A (Expd ∧ ¬KaExpd). This formula becomes true

after any call sequence σ.ab, wherein a non-expert a becomes an expert by calling an expert b.
If everyone is close except d (with respect to a, see Definition 16), then call ab was lucky.

Otherwise, a later call involving a is lucky if a knows that all but two distant agents are experts,
magic holds, and a then calls a distant agent who is a non-expert. This is independent from the
number of close agents that a is uncertain about at that stage. So, amay be lucky from the moment
she became expert until the moment she became super expert and at any time in between as well
(after which she may still have to call the close agents that she does not know to be expert). The
remainder of the section consists of proving all this.

Lemma 23. Kamagic is equivalent to Ka
∨

B⊆A (ExpB ∧ ¬KaExpB ∧NExpA\B).

Proof. Let σ be arbitrary.
(⇒) Assume σ |=Ka

∨
d∈A (Expd ∧ ¬KaExpd) and τ such that τ ∼a σ . Then there is a d ∈A

such that τ |= Expd ∧ ¬KaExpd. From τ |= ¬KaExpd, we further obtain that there is a ρ ∼a τ with
ρ �|= Expd. Let B= {c ∈A | τ |= Expc}. Then τ |= ExpB ∧NExpA\B. As d ∈ B and ρ �|= Expd, we also
have ρ �|= ExpB, and from that and ρ ∼a τ , we obtain τ |= ¬KaExpB. Altogether we obtained τ |=
ExpB ∧ ¬KaExpB ∧NExpA\B. As τ ∼a σ was arbitrary, it follows that σ |=Ka(ExpB ∧ ¬KaExpB ∧
K̂aNExpA\B).

(⇐) Now assume σ |=Ka
∨

B⊆A (ExpB ∧ ¬KaExpB ∧NExpA\B), and τ such that τ ∼a σ . Then
there is a B such that τ |= ExpB ∧ ¬KaExpB ∧NExpA\B. From τ |= ExpB ∧ ¬KaExpB, it follows
that there is a d ∈ B with τ |= Expd ∧ ¬KaExpd, and from that we almost directly obtain σ |=
Ka

∨
d∈A (Expd ∧ ¬KaExpd).

Lemma 23 by itself should not impress. Once I have made even a single call, I even consider it
possible that everyone is an expert (A= B) without knowing it. The interest is in the minimal B
for which it holds. For this, we first need to investigate the magic call.

Lemma 24. Let a become expert in magic call ab. Then for all distant c �= a, b, a considers it possible
that b and c became expert in the previous call.

Formally, let σ |= ¬Expa ∧ Expb and σ �|= ∨
d∈A KaExpbc(A− d). Then there is a τ such that

τ .bc.ab∼a σ.ab and τ |= ¬Expb ∧ ¬Expc.

Proof. The proof is by case distinction on what a knows about b and c. In the proof we use that,
as b was an expert in magic call ab, agent a must have known at least one other secret than her
own, because otherwise b could not have become an expert. So call sequence σ preceding abmust
contain at least one call involving a. We can then let the other agent involved in that call take the
place of agent a in the hypothetical reasoning below (concerning extensions not involving a of call
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sequences). We cannot use a herself, as agent a is aware of all calls involving her, so she does not
consider it possible that she made more calls than she actually did.

Case b /∈ a(σ ) and c /∈ a(σ ): Note that |a(σ )| ≥ 2 as ab was magic (see above). Following σ a�, let
all agents in a(σ ) except a call all agents in A−abc until they are all A−abc experts. As this must
involve an agent who already called a, the secret of a is also passed along. This is call sequence σ1.
Pick any d ∈A−abc. Let then c call d and after that b call c. In the final call bc, non-experts b, c
become experts. We now have that σ.ab∼a σ

a�.σ1.cd.bc.ab. (Note that σ a�.σ1.cd.bc.ab |= Expabc ∧
NExpA−abc.)

Case b /∈ a(σ ) and c ∈ a(σ ): Following σ a�, we now let all in A−ab call each other, let this be σ2,
and let then b call c. In this case, σ.ab∼a σ

a�.σ2.bc.ab.

Case b ∈ a(σ ) and c /∈ a(σ ): Following σ a� we now let all in A−ac call each other, let this be σ3,
and let then b call c. In this case, again, σ.ab∼a σ

a�.σ1.bc.ab.

Case b ∈ a(σ ) and c ∈ a(σ ): Because of the assumption σ �|= ∨
d∈A KaExpbc(A− d), it is not the

case that a(σ )= b(σ )= c(σ )=A−d. It must therefore be the case that c(σ )�A−d or that b(σ )�
A−d so that b or c know fewer secrets than present in a(σ ).

First assume c(σ )�A−d. Now if c(σ )=A−bd, we execute (σ a� ∪σ σ c�).cd.bc in which case in
call bc agents b and c become experts and we also have σ.ab∼a (σ a� ∪σ σ c�).cd.bc.ab. Otherwise,
let e �= a, b, c, d be such that e /∈ c(σ ) and e ∈ a(σ ). Note that there must then be at least five agents.
Following σ a�, we now first let c call d (e remains unknown to either), let then all agents in A−acd
call each other, let this be σ4, and finally let c call b. If c was the only agent, apart from a herself,
knowing the secret of a, then in that call bc agent c informs b of new secrets a and d. Otherwise,
b already knew a and was only informed of d. We now have that σ.ab∼a σ

a�.cd.σ4.bc.ab.
Next assume b(σ )�A−d. This case is similar to the previous case.

Corollary 25. Let agent a become expert in magic call ab. Then for all close agents c �= a, b, agent a
knows that b and c did not both become expert in the previous call.

However, it may well be that b became expert in a previous call with a close c in which c was
already an expert. That is because the only way a close c can make close b an expert is by making
b learn the secret of the d that both do not know. But for that to happen, c must know d and
therefore is already an expert.

Corollary 26. Let a become expert in magic call ab. Then for all distant c �= a, b, a considers it
possible that c is the only unknown expert.

Given σ and a, let us call a set B distant-minimal if σ |= K̂a(ExpB ∧ ¬KaExpB ∧NExpA\B) but
for all distant c, σ �|= K̂a(ExpB−c ∧ ¬KaExpB−c ∧NExpA\(B−c)). If B is distant-minimal, there is a
single distant d ∈ B that is an unknown expert for a.

Lemma 27. Let σ be given with σ |=Kamagic. Then for all distant-minimal B⊆A, there is a
τ ∼a σ such that for all c ∈A\B, c(σ<c)= c(τ ).

Proof. We prove this by induction on the number of calls involving a in σ after which a is an
expert.

Basis Magic is established in a magic call ab. We may assume that σ = σ.ab where σ |=
¬Expa ∧ Expb (strictly, we should assume σ = σ.ab.ξ where ξ contains no call involving a; how-
ever, as we prove something about the knowledge of a, and σ.ab∼a τ if σ.ab.ξ ∼a τ for all ξ , we
assume ξ = ε).
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As call ab was magic, σ.ab |=Ka
∨

B⊆A (ExpB ∧ ¬KaExpB ∧NExpA\B) (Lemma 23). We now
choose ρ and distant-minimal B such that ρ.ab∼a σ.ab and ρ.ab |= ExpB ∧ ¬KaExpB ∧NExpA\B.
From Lemma 9, it follows that there is a τ .ab∼a σ.ab with for all c ∈A\B, c(τ .ab)= c((σ.ab)<c).
This does not seem to rule out that there may be more non-experts in τ than those in A\B.
However, we can rule this out given our previous results. From τ .ab∼a σ.ab and again apply-
ing Lemma 23, it follows that there must be a C such that τ .ab |= ExpC ∧ ¬KaExpC ∧NExpA\C.
As B was distant-minimal, we cannot have that C� B and therefore C = B. (Every expert in τ is
also an expert in ρ.) This fulfills the proof requirements.

Induction Let us now assume σ = σ.ab and σ.ab |=Kamagic. If σ �|=Kamagic, then σ.ab �|=
Kamagic (Lemma 20). Therefore, we may assume that σ |=Kamagic. Let B be distant-minimal
such that σ.ab |= K̂a(ExpB ∧ ¬KaExpB ∧NExpA\B).

We now show that if b is a non-expert, a known expert, or an unknown close expert, the proof
requirements are met for σ.ab, whereas if b is an unknown distant expert, σ.ab �|=Kamagic.

Case non-expert As b is now expert, b ∈ B, and therefore, as b was a non-expert, σ.ab |=
K̂a(ExpB ∧ ¬KaExpB ∧NExpA\B) iff σ |= K̂a(ExpB−b ∧ ¬KaExpB−b ∧NExpA\(B−b)). Suppose
toward a contradiction that B−b is not distant-minimal. Then there is a d ∈ B−b and a call
sequence ρ′ such that σ ∼a ρ′ and σ |= ExpB−bd ∧ ¬KaExpB−bd ∧NExpA\(B−bd). We would
then have that σ.ab∼a ρ′.ab and ρ′.ab |= ExpB−d ∧ ¬KaExpB−d ∧NExpA\(B−d), contradicting the
distant-minimality of B.

As B−b is distant-minimal, by inductive hypothesis there is a τ such that τ ∼a σ and for all
c ∈A\(B−b), c(σ<c)= c(τ ). In particular, it follows that b(σ<b)= b(σ )= b(τ ). From that and
τ ∼a σ , we obtain that τ .ab∼a σ.ab. It remains the case that for all c ∈A\B, c(σ<c)= c(τ ). As c is
not involved in call ab, for all c ∈A\B we also have c((σ.ab)<c)= c(τ .ab), as required.

Case known expert As b already was known by a to be an expert, σ.ab |= K̂a(ExpB ∧
¬KaExpB ∧NExpA\B) iff σ |= K̂a(ExpB ∧ ¬KaExpB ∧NExpA\B), and therefore B was already
distant-minimal. By inductive assumption, there is a τ ∼a σ such that for all c ∈A\B, c(σ<c)=
c(τ ) and therefore also c((σ.ab)<c)= c(τ .ab).

Case unknown close expert If b is an unknown close expert, magic is not lost as b cannot have
been the sole unknown expert after σ (see Lemma 17 and next case). So it is consistent to assume
that σ.ab |=Kamagic. Given that, and Lemma 23, let τ be given with τ .ab∼a σ.ab and τ .ab |=
ExpB ∧ ¬KaExpB ∧NExpA\B. From τ .ab∼a σ.ab, b(τ )= b(σ )=A, and σ.ab |= ExpB ∧NExpA\B,
it follows that τ ∼a σ and also τ |= ExpB ∧NExpA\B. Furthermore, as σ.ab |= ¬KaExpB, also σ |=
¬KaExpB. The set B must still be distant-minimal. Now using the inductive hypothesis, for all
c ∈A\B, c(σ<c)= c(τ ). As none of these c is involved in call ab, also c((σ.ab)<c)= c(τ .ab). This
fulfills the proof requirements.

Case unknown distant expert Let now b be an unknown distant expert. By induction, we may
assume that a considers it possible there is a distant-minimal B⊆A and a τ such that σ ∼a τ , b ∈ B
the unique unknown expert (as B is distant-minimal and b is distant), and τ |= ExpB ∧ ¬KaExpB ∧
NExpB\A. Therefore, σ |=KaExpB−b. From σ ∼a τ and b(τ )= b(σ )=A, we obtain that σ.ab∼a
τ .ab. Also, τ .ab |= ExpB ∧NExpB\A. From that and σ |=KaExpB−b, we further obtain that σ.ab |=
KaExpB, so that σ.ab |=KaExpB ∧ K̂aNExpA\B. Therefore, σ.ab �|=Kamagic (Lemma 17).

Corollary 28. Let σ be given with σ |=Kamagic. If b is an unknown distant expert, σ.ab �|=
Kamagic.

In the magic call agent a learns that there are three experts, of which she only knows two. In
each subsequent call to a non-expert, an unknown close expert, or an unknown distant expert,
she learns that there is one more expert, whereas a subsequent call to a known expert makes no
difference for the count. If magic holds, a subsequent call to an unknown distant expert destroys
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it. So as long as magic still holds, she keeps updating the counter until she knows that all distant
agents but one are experts and remains uncertain which of two distant agents are experts. She may
at that stage know or be ignorant about any number of close agents. If the next call is then with a
distant non-expert, she is lucky.

In the following proposition, the condition that b, c are distant implies that if there is a non-
empty D⊆A such that σ<a |=KaExpD(A−b) or σ<a |=KaExpD(A−c), then c, d /∈D.

Proposition 29. Expert to non-expert with magic. An agent who is an expert is lucky iff she knows
that all distant agents but one are experts and calls the non-expert.

Let all different a, b, c ∈A and σ be given and suppose σ |= Expa, σ �|= Expc, σ �|=KaExpb, and
σ |=Kamagic.

Then σ.ac |=KaExpb iff σ |= Expb, σ |=Ka(Expb ∨ Expc), and b, c distant.

Proof. (⇒) We show this by contraposition. We need to consider three cases.
Case 1: If σ �|= Expb, also σ.ac �|= Expb and therefore σ.ac �|=KaExpb.
Case 2: If b or c are close, the assumption of magic makes us derive a contradiction. Agent a is then
uncertain about at most one distant agent. Suppose b is distant and c close. By magic (Lemma 27),
there is a distant-minimal B containing b with σ |= ExpB ∧ ¬KaExpB; however, satisfying such
ignorance requires a distant-minimal C not containing b with σ |= ExpC ∧ ¬KaExpC, but as C is
distant-minimal, it must contain a distant c �= b. So amust be uncertain about at least two distant
agents b, c, contradicting our assumption. This situation cannot exist if magic holds.
Case 3: If σ �|=Ka(Expb ∨ Expc) where b, c are distant, then a does not know that at most one dis-
tant agent is non-expert while remaining uncertain about two and therefore considers it possible
that two or more distant agents are non-experts while remaining uncertain about three or more:
Lemma 27. There is then a distant-minimal B of size at most |A| − 2 with b, c ∈A\B and a τ ∼a σ
with τ |= ExpB ∧NExpA\B and in particular b(τ )= b(σ<b) and c(τ )= c(σ<c)= c(σ ). Therefore,
σ.ac∼a τ .ac. From that and τ .ac �|= Expb, we then obtain σ.ac �|=KaExpb.

(⇐) Assume σ |= Expb, σ |=Ka(Expb ∧ Expb) and recall that we also assume that σ �|= Expc. Let
τ ′ be such that τ ′ ∼a σ.ac, then we may assume that τ has shape τ ′ = τ .ac where c(τ )= c(σ ) and
τ ∼a σ . From τ ∼a σ and σ |=Ka(Expb ∨ Expb), it follows that τ |= Expb ∨ Expb. From σ �|= Expc
and c(τ )= c(σ ), it follows that τ �|= Expc. From τ �|= Expc and τ |= Expb ∨ Expc, it follows that τ |=
Expb, and therefore also τ .ac |= Expb. As τ was arbitrary, we get σ.ac |=KaExpb, as required.

An expert a is lucky because she considers it possible that the agent she is lucky about was
involved in a call with the agent of the magic call and that both then became expert. Therefore,
she now considers it possible that she knows all the agents who are experts. Therefore:

Corollary 30. Given σ.ac |=KaExpb wherein expert a is lucky about b when calling non-expert c,
magic is lost: σ.ac �|=Kamagic.

After the lucky call, agent amay remain uncertain whether an arbitrary number of close agents
are experts. As she can no longer be lucky, she has to call them one by one to confirm whether
they are experts (and if not they become experts in such calls), until she is a super expert. If there
are no close agents, or if she already knew that all close agents are experts, she is a super expert
after making the lucky call.

5.8 An agent can only be lucky once
In this short final subsection, we present one eye-catching result of our characterization efforts.

Theorem 1. An agent can only be lucky once.
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Proof. Fix any agent a and distinguish two cases, depending on whether a is an expert at the first
(and, as we will show, only) time she is lucky.

First case: If a is lucky as a non-expert, then she becomes an expert in the lucky call. Suppose
a is lucky again later, then as an expert. This cannot happen in a call between a and another
expert because by Proposition 13 expert-to-expert calls are never lucky. Hence, it must be when
a calls a non-expert. However, Corollary 21 implies that we do not have magic, and therefore
Proposition 22 implies that any call by a to a non-expert cannot be lucky.

Second case: Suppose a is already an expert when she is lucky the first time, and again suppose
a is lucky again later. As in the first case, Proposition 13 rules out that a is lucky again when calling
another expert, so it must be when a calls a non-expert. But now by Corollary 30, we also here do
not have magic, and therefore Proposition 22 implies that also a call by a to any non-expert cannot
be lucky.

As a was chosen arbitrarily, each agent can only be lucky once.

6. Second-order Shared Knowledge of all Secrets is Unsatisfiable
With all these preparations concerning lucky calls, we now can prove that second-order shared
knowledge of all secrets is unsatisfiable (|= ¬EEExpA, Theorem 2). Some additional lemmas are
again required.

Lemma 31. An agent cannot become an expert and a super expert in the same call.

Proof. Suppose a becomes expert in ac, that is, σ �|= Expa and σ.ac |= Expa. We need to show that
σ.ac �|=KaExpA. From σ �|= Expa, we know there must be a d ∈A such that σ |= ¬da. As there
are at least four agents, there must be a b �∈ {a, c, d}. From σ |= ¬da, we get σ �|= Expa(A−b) and
thus σ �|=KaExp(A−b)(A−b). Now by Proposition 12, we have σ.ac �|=KaExpb. This implies σ.ac �|=
KaExpA.

In particular, if a becomes an expert by calling another non-expert she will not be lucky
(Proposition 11), because she then only learns that two out of at least four agents are experts.
However, note that we did not need to use Proposition 11 in the proof, but only Proposition 12.

We point out that Lemma 31 is the only place in this section where we need a result about
lucky calls, and that we only use the characterization of lucky non-experts. The much more com-
plex characterization of lucky experts is not needed in this section, but only to obtain results on
optimality in Section 7.

Lemma 32. An agent becoming a super expert considers it possible that the other agent involved in
that call did not become a super expert.

Proof. Let σ.ab be a call sequence wherein agent a becomes super expert in final call ab. From
Lemma 31, we conclude that a was already expert after σ .

Suppose that b became expert in the call ab. Then also from Lemma 31, we conclude that b did
not become a super expert in the call ab. As a considers the actual call sequence possible, we infer
that agent a then considers it possible that agent b is not a super expert after σ.ab.

Thus, we can assume that b already was an expert after σ . As a was an expert before call ab, a
became a super expert by learning in call ab that b is an expert.

Suppose a considers it possible that non-expert bmade a lucky call in σ . The lucky call was not
with a, as awould then already have known that b is an expert. So let that call be bcwith some agent
c �= a. Assume that in that call b also learns that d is an expert. If d = a, then (by Lemma 31) there
must be an e �= c, a such that b is uncertain whether e is an expert, and this property is preserved
in σ , as a considers it possible that bmade no further calls. Otherwise, if d �= a, c, then a considers
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it possible that the call instead of bc was bd. In call bd, agent b only learns that d is an expert (we
recall that by Lemma 12 agent b must have been an A−d super expert before that call) and does
not learn that c is an expert. So a considers a call sequence possible wherein b was not lucky when
he became expert, and therefore when becoming expert remained uncertain whether some other
agent c is an expert.

We continue the argument by reasoning about this agent c.
Suppose a learnt that c is an expert in lucky call ad. Then a considers possible that all further

calls involving cwere instead involving d except for further calls ac. After this call sequence, b does
not know that c is an expert, so b is not a super expert, so a considers possible after σ.ab that b is
not a super expert.

Now suppose that ac is the first call in σ after which a knows that c is an expert. We now
distinguish four cases by whether c and b are experts before the call ac.
1 Suppose c was already expert before that call ac.
1.1 If b became expert before call ac in call bd with d �= c, b was ignorant whether c is an expert
after that call (we assumed bd was not lucky), replace bd by bd.cd in the call sequence between bd
and ac, and replace all further occurrences of c except in further calls ac by d. This call sequence is
indistinguishable for a and preserves that b does not know that c is an expert (after final call ab).
Therefore, a considers possible after σ.ab that b is not a super expert.
1.2 If b became expert after call ac in call bd with d �= c, replace all subsequent occurrences of c
except in calls ac by d. (We need not change any calls between ac and bd, as we assumed that b
does not learn whether any other agent than d is an expert in call bd, which includes agent c.)
Then b does not know after final call ab that c is an expert. Therefore, a considers possible after
σ.ab that b is not a super expert.
2 Suppose c became expert in that call ac.
2.1 If b became expert before ac in bd with d �= c, agent a considers possible that all further calls
after ac involving c were instead by d, except for further occurrences of ac. We need not change
any calls involving c between bd and ac: note that this cannot have been bc as that would have
made c expert before ac contrary to our assumption. This call sequence preserves that b does not
know whether c is an expert after final call ab. Therefore, a considers possible after σ.ab that b is
not a super expert.
2.2 If b became expert after ac in bd with d �= c, agent a considers possible all further calls after bd
involving c were instead by d except for future occurrences of ac. Now consider the calls involving
c between ac and bd: we need not change any of those as we assumed that b only learnt that d is
an expert in call bd. This call sequence preserves that b does not know whether c is an expert after
final call ab. Therefore, a considers possible after σ.ab that b is not a super expert.

We have exhaustively investigated all cases and this ends the proof.

In Lemma 32, it is important to observe that the agent c that agent a remains uncertain about is
different from the agent b involved in the call wherein she became a super expert. This will be used
in Theorem 2.

Example 11. Recall the sequence ab.cd.ac.bd.ad.bc.ab from Example 1 wherein a and b become
super experts in the last call. It is indistinguishable for a from call sequence ab.cd.ac.bd.ad.ab
(where we deleted bc) after which b is not a super expert. Instead of deleting bc, we could also
replace it by bd in the original sequence.

With Lemma 32, we can now prove the main result of this section.

Theorem 2. EEExpA is unsatisfiable.

Proof. Let ρ be an arbitrary call sequence. We show that ρ �|= EEExpA. If ρ �|= EExpA, then clearly
ρ �|= EEExpA. Hence, we assume that ρ |= EExpA.
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Consider any agent a becoming a super expert in ρ; in other words, choose σ and τ such that
ρ = σ.ab.τ where in call ab agent a becomes a super expert. We will show that ρ �|=KaKbExpc for
some c ∈A.

From Lemma 32, it follows that after σ.ab agent a considers possible a call sequence σ ′.ab after
which b is not a super expert. Therefore, b considers possible a call sequence σ ′′.ab that does
not satisfy ExpA, that is, σ ′′.ab does not satisfy Expc for some c ∈A. Clearly, we must have that
c �= a (because b learnt that a is an expert in the call ab). Formally, we have: σ.ab∼a σ ′.ab and
σ ′.ab∼b σ

′′.ab and σ ′′.ab |= ¬Expc. The last implies σ ′′ |= ¬Expc.
The sequence σ.ab.τ is indistinguishable for a from σ.ab.τ ′ where τ ′ is τ without all calls involv-

ing b but not a. This is because no secrets are exchanged in any call in τ , because all agents are
already experts (because a is a super expert after σ.ab).

For the same reason, σ.ab.τ ′ is indistinguishable for b from σ.ab.τ ′′ where τ ′′ is τ ′ restricted to
calls involving b. Call sequence τ ′′ is a finite and possibly empty sequence consisting only of calls
ab. We can write abn for that, where n ∈N is the number of occurrences of ab in τ (and τ ′).

First, from σ.ab∼a σ.ab (reflexivity of ∼a), τ ∼a τ ′, and the fact that all are experts before τ
and τ ′ (so no new secrets are learnt in calls), we get σ.ab.τ ∼a σ.ab.τ ′. Then, from the assumption
σ.ab∼a σ ′.ab, τ ′ ∼a τ ′ (reflexivity of∼a again), and that all are experts before τ ′, we get σ.ab.τ ′ ∼a
σ ′.ab.τ ′. Finally, from σ.ab.τ ∼a σ.ab.τ ′ and σ.ab.τ ′ ∼a σ ′.ab.τ ′ and transitivity of∼a, we then get
σ.ab.τ ∼a σ ′.ab.τ ′.

Similarly, from σ ′.ab∼b σ
′.ab and τ ′ ∼b τ

′′ we get σ ′.ab.τ ′ ∼b σ
′.ab.τ ′′, from σ ′.ab∼b σ

′′.ab
and τ ′′ ∼b τ

′′ we get σ ′.ab.τ ′′ ∼b σ
′′.ab.τ ′′ (although c is not an expert in σ ′′, a and b are, so as

above no new secrets are learnt in calls in τ ′′), and therefore from both we obtain σ ′.ab.τ ′ ∼b
σ ′′.ab.τ ′′.

From σ ′′ �|= Expc and σ ′′.ab.τ ′′ = σ ′′.abn+1, we obtain σ ′′.ab.τ ′′ �|= Expc. Finally, in view of the
above σ ′.ab.τ ′ �|=KbExpc, and also σ.ab.τ �|=KaKbExpc.

This implies ρ �|= EEExpA and because ρ was an arbitrary call sequence, we have shown EEExpA
must be unsatisfiable.

In the proof above, the agent a who is a super expert can be chosen arbitrarily, as all agents
become a super expert at some stage.We have therefore also shown the following, which is slightly
stronger (proving that EEExpA is unsatisfiable only requires that KaEExpA is unsatisfiable for
some agent).

Corollary 33. For all agents a the formula KaEExpA is unsatisfiable.

7. Optimality
In this section, we determine the minimum number of calls to reach EExpA (everyone knows that
everyone knows all secrets) and the minimum number of calls to reach KaExpA (someone knows
that everyone knows all secrets – namely agent a). Although it is easy to come up with optimal call
sequences, it is nontrivial to prove that they are optimal, given the phenomenon of lucky calls.

Lemma 34. If a is lucky about b then b has to call a for b to learn that a is an expert.

Proof. If a non-expert a is lucky about b, then a became expert in a call to a close agent c
(KaExpA−b(A−b) was true before a became expert), where we recall that a learns in that lucky
call that bmust have become an expert by calling a close agent d ∈A−b, where dmay have been c.
We refer to the proof of Lemma 12 for details. As b became expert by calling another non-expert,
magic does not hold after that call (Lemma 18), so it will not ever hold afterward (Lemma 20). So
b cannot be subsequently lucky about a. Therefore, agent b has to call agent a in order to get to
know that a is an expert.
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If an expert a is lucky about b, then a became expert in a magic call to an agent c, where, if the
set of close agents is non-empty, c is close (KaExpD(A−d) is true before a became expert, where
D are the close agents and where d may be b or another distant agent). In the lucky call, a learns
that one of the two remaining far agents is a non-expert and that therefore the other far agent is
an expert. Recalling the proof of Proposition 29 characterizing lucky experts, a learns in that call
that b became an expert by calling non-expert c before the magic call ac, or by calling one or more
close agents who subsequently called c. Either way, b became an expert in a call with another non-
expert. We now proceed as in the other case. As b became expert by calling another non-expert,
magic does not hold after that call (Lemma 18), so it will not ever hold afterward (Lemma 20). So
b cannot be subsequently lucky about a. Therefore, agent b has to call agent a in order to get to
know that a is an expert.

Finally, we recall that an agent can only be lucky once, as a non-expert or as an expert
(Theorem 1).

Theorem 3. n− 2+ (n
2
)
calls are optimal to reach EExpA.

Proof. We show that at most n− 2+ (n
2
)
calls are needed to reach EExpA (upper bound) and that

at least n− 2+ (n
2
)
calls are needed to reach EExpA (lower bound). As the lower bound is the upper

bound, n− 2+ (n
2
)
is optimal.

Upper bound: Call sequences of length n− 2+ (n
2
)
to reach EExpA are given in van Ditmarsch et al.

(2023, Prop. 16). A simple protocol to realize this goal is to extend a well-known gossip protocol
to reach ExpA in 2n− 4 calls (an execution for four agents is found in Example 1). Choose four
agents a, b, c, d and consider ab.cd.ac.bd. Given one of those, say a, let a call all remaining n− 4
agents before the four calls of ab.cd.ac.bd and let amake those n− 4 calls again after those calls. In
the first n− 2 of these 2n− 4 calls, none becomes an expert. In the second n− 2 of these 2n− 4
calls, everyone becomes an expert. These count toward the required

(n
2
)
calls after which the callers

are experts. Now execute the remaining
(n
2
)
calls.

Therefore, at most n− 2+ (n
2
)
calls are needed to reach EExpA.

Lower bound: It follows from Lemma 34 that whenever an agent a is lucky about an agent b,
whether a is an expert or not in the lucky call, the call ab still has to be made for b to get to know
that a is an expert. Therefore, all

(n
2
)
calls need to be made such that after a call both agents are

experts (even though they may not have been experts before the call).
Also, the minimum number of calls for an agent to become an expert is n− 1: this is the min-

imum number of links to connect n points. Therefore, given such a sequence, the first n− 2 calls
are not enough for any agent to become an expert, whereas in the final call n− 1 of that sequence
the calling agents become experts. That call counts as one of

(n
2
)
calls after which agents are experts.

Therefore, at least n− 2+ (n
2
)
calls are needed to reach EExpA.

Theorem 4. 2n− 3 calls are optimal to reach KaExpA.

Proof. We show that at most 2n− 3 calls are needed to reach KaExpA (upper bound) and that
at least 2n− 3 calls are needed to reach KaExpA (lower bound). As the lower bound is the upper
bound, 2n− 3 is optimal.

Upper bound: In van Ditmarsch et al. (2023, Prop. 15), it is shown that 2n− 3 calls are sufficient
to make an agent a super expert. A very simple protocol to realize this goal is to let an agent a first
call all other agents (n− 1 calls) and then call all other agents again, except for the last one in the
first round (n− 2 calls). Altogether these are 2n− 3 calls.

Therefore, at most 2n− 3 calls are needed to reach KaExpa.
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Lower bound: The proof is by induction on n (for n≥ 4).
Base case
For the base case with n= 4 agents, we use the model checker GoMoChe (Gattinger 2023) to

show that there is no sequence of 2n− 4= 4 calls that reaches KaExpA. The following command
checks all the 124 = 20736 relevant sequences in less than 1 minute:

all (\ sigma -> not $ (ASync, totalInit 4, sigma) |= K 0 anyCall allExperts)

(sequencesUpTo anyCall (ASync, totalInit 4, []) 4)

We refer to van Ditmarsch et al. (2023) for further examples and for instructions on how to use
GoMoChe.

Inductive case
For the inductive step, we distinguish cases based on whether a is lucky or not and split the

lucky case based on whether a is an expert or not when making the lucky call.
1.1 If a is lucky as a non-expert, she must be a super expert for all agents except one agent, b.
We now use the inductive hypothesis that this requires 2(n− 1)− 3 calls. Recalling Lemma 12 at
least two more calls are needed after that: a call between an agent c �= a, b and agent b, followed
by the call between a and c, after which a knows that a, b, c are experts. As there are at least four
agents, at least one more call is needed for a to become a super expert. Altogether this makes
2(n− 1)− 3+ 2+ 1= 2n− 2 calls. Therefore, this cannot be done in 2n− 4 calls.
1.2 If a is lucky as an expert, we recall the circumstances needed for that to happen. First, a
must have become an expert in a magic call ad to an agent d who already was an expert. This
requires n− 1 calls for d to become an expert plus one for the magic call ad. Second, the proof
of Proposition 29 (including the lemmas on which it depends, and see also Example 8) demon-
strated that at least n− 3 subsequent calls to non-experts or close experts are then needed for a to
be lucky in the final call. This makes (n− 1)+ 1+ (n− 3)= 2n− 3 calls. Therefore, this cannot
be done in 2n− 4 calls.4
2 If a is not lucky, we can proceed as follows. We recall that 2n− 4 calls are needed for all agents
to become experts (Tijdeman 1971).

As an agent cannot become an expert and a super expert in the same call (Lemma 31), we
therefore only need to show that in any such a call sequence, if the final call involves an agent who
already is an expert, that agent cannot become a super expert in that call.

We name the calls by their order in the call sequence.
Assume toward a contradiction that agent a becomes a super expert in the final call 2n− 4 of

the sequence. Note this call must involve a non-expert b (otherwise, it could have been deleted).
Consider the penultimate call 2n− 5. Some agent must become an expert in call 2n− 5

(otherwise it could have been deleted). If a is not involved in call 2n− 5, neither agent in call
2n− 5 is also involved in the final call 2n− 4. However, as call 2n− 5 does not involve a, a con-
siders it possible that call 2n− 5 did not take place, and therefore a cannot know that everybody
is an expert. Therefore, amust also be involved in call 2n− 5.

If awas not an expert before call 2n− 5, she would have had to make at least three calls, includ-
ing call 2n− 5 to become a super expert: a is not lucky, and there are at least four agents; and after
call 2n− 5 agent a knows that there are two experts and remains uncertain whether the remaining
agents, of which there are at least two, are experts. She therefore has to make two more call. But
only one is vailable to her. So amust have been an expert before call 2n− 5.

By iterating this argument, we can conclude that a must have been involved in the final n− 1
calls of the sequence of 2n− 4 calls and becomes an expert in the first of those. On the other hand,
n− 1 calls are needed for a to become an expert (to connect n points we need at least n− 1 links).
This requires (n− 1)− 1+ (n− 1)= 2n− 3 calls (the call wherein a becomes an expert is the first
of the final n− 1 calls to all other agents), in contradiction to our assumption that the sequence
contains 2n− 4 calls.

Therefore, this cannot be done in 2n− 4 calls.
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8. Conclusion
We have shown that “everyone knows that everyone knows all secrets” (EExpA) is the maximum
level of shared knowledge of all secrets that can be reached in asynchronous gossip. In other words,
“everyone knows that everyone knows that everyone knows all secrets” (EEExpA) is unreachable.
We have also shown that n− 2+ (n

2
)
calls are optimal to reach this epistemic goal EExpA and that

2n− 3 calls are optimal to reach the goal “some agent knows that everyone knows all secrets”
(KaExpA).
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Notes
1 This work extends conference publication van Ditmarsch and Gattinger (2022). Beyond the results presented there, we
provide a characterization of lucky calls and optimality results.
2 If σ.ac |=KaExpA (a is a super expert), then Bmust be ∅. But before call ac agent a considered it possible that c was not an
expert, as in fact c was not an expert. It plays no role in the proof whether expert a was lucky when calling non-expert c (see
Section 5). If a was lucky about agent d in call ac, then d /∈ B, and therefore also d /∈ B+c.
3 It plays no role in the proof whether non-expert awas lucky about expert c in the call ac (see Section 5). If awas lucky about
d, then d /∈ B.
4 This means lucky experts can, theoretically, become super experts in an optimal way. In fact, in Example 3, the lucky expert
agent a optimally becomes a super expert in the lucky call.
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