
14 
Elastic scattering at high energies 

Elastic scattering is in some sense the most fundamental type of reaction, 
but it is also the most difficult to understand theoretically. There is a 
huge amount of spin-dependent data at low to medium energies, but little 
understanding of the mechanisms at work. In several instances, however, 
spin-dependent data have played a crucial role in nailing the coffin of a 
current theoretical picture. Somehow, simple-minded ideas, which succeed 
in explaining gross features of cross-sections, angular distributions etc., run 
aground when faced with the more probing questions involved in spin­
dependent reactions. Because of the lack of clear-cut theoretical ideas 
and because of the difficulty of the experiments there has generally been 
a lack of experimental effort in this field since the mid-1980s, but this 
situation is about to change with the commissioning of the RHIC collider 
at Brookhaven. There, besides a major programme of heavy-ion physics, 
it will be possible to study pp collisions, with both beams polarized and 
up to an energy of 250 Ge V per beam. Consequently we shall concentrate 
in this chapter on nucleon-nucleon scattering. 

Broadly speaking there are two kinematic regions of interest, small 
to medium values of momentum transfer and large momentum transfer. 
The first is, strictly speaking, in the domain of non-perturbative QCD, 
so there are no precise theoretical predictions, though there are very 
interesting suggestive hints. In the second region perturbative QCD ought 
to be applicable and, indeed, very powerful theoretical results have been 
derived. It is a well-known secret that there is a major disagreement 
between present data and these predictions. The usual argument for not 
therefore abandoning QCD, and it is a sound one, is that the data are 
not yet at large enough energy and momentum transfer to justify fully a 
perturbative treatment. With the increased kinematic range at RHIC we 
will thus be facing some very challenging questions: either the trend of 
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414 14 Elastic scattering at high energies 

the experimental results must begin to change or we must seriously begin 
to question the validity of QCD. 

14.1 Small momentum transfer: general 

Consider proton-proton elastic scattering with momenta as indicated: 

(14.1.1) 

There are five independent helicity amplitudes corresponding to the fol­
lowing transitions: 

<l>l=(++ITI++) </>2=(++1TI--) 
</>3=(+-ITI+-) </>4=(+-ITI-+) (14.1.2) 

</>s=(++ITI+-) 
Relations between these and any other helicity amplitude can be deter­
mined via the symmetry relations given in Section 4.2. Each of the </> 1 is 
a function of the Mandelstam variables 

(14.1.3) 

with 

s + t + u =4m2. (14.1.4) 

In the CM of the reaction, where the protons all have a magnitude of 
momentum p, one has 

s = 4 E 2 = 4(p2 + m2 ) 

t = -2p2(1 -cos 8) 

u = -2p2(1 +cos 8) 

where 8 is the CM scattering angle. 

(14.1.5) 

There is a large number of spin-dependent observables that one can 
measure. A comprehensive list is given in Table A10.4, and expressions for 
the observables in terms of the ¢1 are given in Tables A10.5 and A10.6. 

The conservation of angular momentum imposes restrictions on the 
helicity-flip amplitudes in the forward direction (Section 4.3), namely 

(14.1.6) 

as t ~ 0. 
In the region of very small t, as discussed in subsection 8.1.1, we have 

interference between the hadronic and electromagnetic amplitudes and we 
shall presently explain some new results in this field. Firstly, however, we 
shall summarize what is known about the hadronic amplitudes near the 
forward direction. It is convenient to analyse the high energy behaviour 
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14.1 Small momentum transfer: general 415 

of the ljJ j in terms of the quantum numbers of the system that can 
be exchanged between the protons, and the singularities at J = 1X(t) in 
the complex angular momentum plane associated with such a system. 
(For an introduction to the concept of complex angular momentum see 
Gasiorowicz, 1967, Chapter 28.) In this discussion it will be convenient to 
use helicity amplitudes normalized such that 

da 2n ( 2 2 2 2 2) 
dt = sz ll/J1I + ll/J2I + ll/J31 + ll/J41 + 41l/Jsl . 

Then, via the optical theorem, 

4n 
atot(s) = - Im [l/Jl(s, t) + 4J3(s, t)]t=O. 

s 

(14.1.7) 

(14.1.8) 

A singularity at J = 1X(t) then implies an asymptotic behaviour 

ll/J(s, t)l oc sa(t) as s ~ oo (14.1.9) 

up to possible logarithmic corrections. In this normalization, the rigorous 
Froissart-Martin bound (Froissart, 1961; Martin, 1966) reads 

ll/J1(s, t) + 4J3(s, t)lt=O ;S constant x sln2 s ass~ oo (14.1.10) 

or 

atot ;S constant x ln2 s ass~ oo (14.1.11) 

so that the leading J-plane singularity cannot lie above J = 1 at t = 0. 
A particular dynamical exchange mechanism is classified according to 

its quantum numbers: parity(&'), charge conjugation(~) and signature (r). 
An amplitude is called even or odd under crossing, i.e. under the analytic 
continuation 

(14.1.12) 

for r = ±1, since 

(14.1.13) 

For nucleon-nucleon scattering there are three classes of exchange (Leader 
and Slansky, 1966), as indicated in Table 14.1, which also shows to which 

Table 14.1. Classification of exchanges and the amplitudes to which they 
contribute to in pp scattering 

Class 1 Class 2 Class 3 
r:=f!JJ=CC T = -f!JJ = -CC T = -f!JJ = CC 

amplitudes </J1 + </JJ, </Js, </J2 - ¢4 ¢1 - </J3 ¢2 + ¢4 
particles or mechanism P, 0, p, w,j, a2 a1 n,Yf,b 
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416 14 Elastic scattering at high energies 

amplitudes, or combination of amplitudes, each class contributes. Also 
shown in Table 14.1 are some particles whose quantum numbers coincide 
with each class. P, the pomeron and 0, the odderon are not particles, 
but label dynamical systems with the quantum numbers of the vacuum, 
f3> = +1,~ = +1,r = +1 (the pomeron), or f3> = +1,~ = -1,r = -1 (the 
odderon). 

The pomeron is important because if one single exchange mechanism 
dominates at asymptotic energies, it has to have the quantum numbers of 
the vacuum (Peierls and Trueman, 1964). 

The singularities associated with the other particles in Table 14.1 all 
lie well below J = 1 and the pomeron is supposed to have a singularity 
at J = 1 when t = 0 in order to explain the fact that both CJ PP and CJpp 

appear to be growing like ln2 s at the highest energies measured. 
The role of the odderon is interesting, because it is the quantum number 

~ that determines the relative sign of the contribution of a given exchange 
system to pp - pp and pp - pp: 

(14.1.14) 

It was believed for decades that asymptotically one had to have 

ass- oo (14.1.15) 

but Lukaszuk and Nicolescu (1973) pointed out that in fact 

APP - APP ~ 0 as s - oo (14.1.16) 

is compatible with all known general properties of field theory. The 
odderon is the name given to the putative mechanism responsible for this 
(Joynson, Leader and Nicolescu, 1975). 

If for example one has 

APP = Ap +Ao (14.1.17) 

then 

APP = Ap -Ao (14.1.18) 

and the analysis of Lukaszuk and Nicolescu showed that it was possible 
to have 

IAol ~o 
lAP I 

ass- oo. (14.1.19) 

The pomeron and odderon mechanisms are believed to reflect two­
gluon and three-gluon exchange in QCD. Although it is not possible to 
carry out a QCD calculation in the truly soft, non-perturbative, regime, 
powerful conformal field-theoretic methods have been utilized by Lipatov 
and co-workers (Lipatov, 1986; 1989; Braun, Gauron and Nicolescu, 1999) 
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14.1 Small momentum transfer: general 417 

to study fully interacting two- and three-gluon exchange dynamics just 
outside the soft region. The two-gluon dynamics leads to a system with 
a singularity just above J = 1 (often called the QCD pomeron), and the 
three-gluon case to a singularity with C(} = -1 just below but very close to 
J = 1, which is identified with the odderon. 

There is no convincing experimental evidence for the odderon though 
there are hints of a difference between dO" j dt for pp and pp at small t in the 
ISR data at JS = 53 GeV. But all in all the data on total cross-sections 
and on the ratio of real to imaginary parts of forward spin-averaged 
amplitudes suggest that the coupling of the odderon to c/J1 + cP3 at t = 0 
is much smaller that that of the pomeron: 

lc/J1 + cP3Io < 2o;; 
lc/J1 + cP3IP '"" o. 

(14.1.20) 

On the one hand, almost nothing is known about the coupling of P or 
0 to the other helicity amplitudes, though Hinotani, Neal, Predazzi and 
Walters (1979) claimed some evidence for a roughly energy-independent 
single-helicity-fiip amplitude. For a more modern assesment see Buttimore 
et al. (1999). 

On the other hand we do have some knowledge about the phases of the 
amplitudes. Because of the analytic properties of the scattering amplitude 
in the complex s-plane the phase of an amplitude, in the asymptotic regime, 
is governed by its energy dependence and its signature r (Eden, 1971). If 
the asymptotic behaviour due to an exchange system with signature r is 

IA,I ~ so:(lns)P 

then one has for r = + 1 

as s -4 oo 

A+~ so:(lns)Pe-ino:/2 (1- inp ) ' 
2lns 

whereas, for r = -1, the behaviour is 

A_~ iso:(lns)Pe-ino:/2 (1- inp ) . 
2lns 

(14.1.21) 

(14.1.22) 

(14.1.23) 

Measurements of spin-dependent observables often have helped and 
will continue to help to disentangle the dynamical effects. 

A case in point is Regge pole theory. Many aspects of the behaviour 
of the small-t differential cross-sections, their shrinkage etc., in a wide 
range of reactions were well described by Regge pole exchange. There 
was even some success with polarizations since the Regge pole exchange 
amplitudes are not real and possess a natural phase needed to obtain 
non-zero polarization (see Table A10.5). But in n-p -4 n°n only one 
Regge pole can be exchanged, the p, so that both helicity-fiip and non-flip 
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418 14 Elastic scattering at high energies 

amplitudes have the same phase and the polarization vanishes (see Table 
A10.1). Nonetheless, significant polarizations were measured. 

Another aspect of Regge pole theory that runs counter to spin­
dependent results is the property of factorization (Fox and Leader, 1967). 
In pp ----+ pp, for example, one has 

(Jc~, A; IT l)q, A2J R.pole OC f3 A; AJ (t)/3 A;A2 (t)srx(t) (14.1.24) 

where the f3(t) are called residue functions. 
This, via (14.1.2), leads to 

(14.1.25) 

so that, from (14.1.6) 

as t ----+ 0. ( 14.1.26) 

(A comprehensive account of the spin properties of Regge poles is given 
in Leader (1969).) 

The vanishing of ¢2 at t = 0 would be a totally dynamic effect, but 
it and similar predictions do not seem to agree with the data, though it 
must be said that there is a real scarcity of data at really high energies. 

For instance, the transverse cross-section difference 11crr defined in 
(5.1.12) is proportional to Im ¢2 at t = 0. It is certainly not zero in the 
low to medium energy region, but the rather limited data do suggest that 

----------.-----,-----,--------·--r-
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~ 
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0 
<1 

! ! 
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PL (GeV/c) 

Fig. 14.1 The transverse cross-section difference dCJy for pp --+ pp. The 
line in the upper part of the graph gives CJtot (spin ave.). (From de Boer 
et al., 1975.) 
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14.1 Small momentum transfer: general 419 

it is decreasing rapidly with energy (see Fig. 14.1.) Another case is the 
longitudinal cross-section difference 11aL in (5.1.11): it is proportional to 
Im (<Pt -¢3) at t = 0. But factorization (14.1.24) together with a parity 

property of the contribution of a single Regge pole to the pp ~ pp helicity 
amplitudes, 

(14.1.27) 

leads to ¢ 1 = ¢ 3 for the dominant poles, which all have r{J/J = + 1. Hence 
one would expect 11aL to decrease with energy. 

As seen in Fig. 14.2, 11aL has a complicated structure at low-to-medium 
energies but is decreasing in magnitude fast with energy. 

From our present-day perspective, we prefer to think of a Regge ex­
change contribution as something more complex than a pole, perhaps 
a so-called cut or a pole-cut combination, with a characteristic energy 
dependence and phase but without the factorization property of its cou­
plings. The decrease of 11aL with energy is then quite compatible with its 
being controlled by an exchange system with the quantum numbers of the 
a1 (see Table 14.1), which is expected to have an effective a(O) ~ 1/2. 

The behaviour of 11ar is more interesting, since in principle it could 
receive contributions from both the pomeron and odderon, leading to its 
growing at higher energies. This will be studied at the RHIC collider and 
will provide important information about the spin couplings of pomeron 
and odderon. (A detailed analysis can be found in Leader and Trueman, 
2000.) 
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Fig. 14.2 Longitudinal cross-section difference AaL for pp---+ pp. (From 
Grosnick et al., 1997.) 
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420 14 Elastic scattering at high energies 

It turns out that the study of spin dependence is greatly facilitated by 
studying the Coulomb interference region, where the interference between 
the hadronic amplitudes and the known electromagnetic amplitude helps 
in the process of identifying the details of the hadron dynamics. 

14.2 Electromagnetic interference revisited 

We shall now explain the newly discovered fact (Buttimore et al., 1999) 
that pp elastic scattering is self-calibrating, in the sense that a sufficient 
number of measurements of spin-dependent observables at very small t, in 
the Coulomb interference region, allows one not only to determine most 
of the helicity amplitudes but also the polarization of the beam and target. 

It will be seen that the method involves the taking of several ratios 
of possibly very small quantities, so that the precision needed may be 
difficult to achieve experimentally. However, so little is known about the 
amplitudes at high energy that we are unable to quantify this matter. We 
shall follow the treatment of Buttimore et al. (1999). 

At the very small values oft in which we are interested, the interference 
between the strong and electromagnetic forces can be taken into account 
by writing 

(14.2.1) 

where the ¢yM are the one-photon exchange amplitudes given in (8.1.5), 
multiplied by sl(2.jii). The Coulomb phase b was shown by Buttimore, 
Gotsman and Leader (1978) to be the same for all helicity amplitudes. It 
is very small and we shall ignore it in our approximate treatment. 

We assume the beam has polarization P and the target P'. In a pp 
collider it will be true to an extremely high degree of accuracy that P = 

±P', depending on the machine setting. We consider the experimentally 
measured asymmetries, which are given by P AdCJ I dt, P P' ANNdCJ I dt etc. 
These contain singular terms at t ~ 0 coming from interference between 
the one-photon and the hadronic amplitudes. To order rx the asymmetries 
involving ANN, Ass and ALL are singular like 1lt whereas A and AsL go 
like 11 J=i.1 From the work of Buttimore, Gotsman and Leader (1978) 
we can write, for very small t, 

m-J=i dCJ CJtot 
---P A- = rxaN + -bNt + .. · (14.2.2) 

CJtot dt 8n 
t 1 dCJ CJtot 

-P PALL-= rxaLL + -bLLt + .. · (14.2.3) 
CJtot dt 8n 

1 The connection between these asymmetry parameters and the CM parameters is given in Table 
A10.7, and the relation to the helicity amplitudes then follows via Table 10.5. Note that here A 

stands for A;:ia· 
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14.2 Electromagnetic interference revisited 421 

t 1 dCJ CJtot 
-P P ANN- = liaNN + -bNNt + · · · 
CJtot dt 8n 

(14.2.4) 

t 1 dCJ CJtot 
-PP Ass-= ll.ass + -bsst+ · ·· 
CJtot dt 8n 

(14.2.5) 

mFt 1 dCJ CJtot 
---P P AsL- = ll.asL + -bsLt + · · ·. 

CJtot dt 8n 
( 14.2.6) 

Expressions for the aJ and b1 are given in Table 14.2 in terms of the 
following rescaled amplitudes, which may be taken independent oft: 

where 

and 

. c/J~(s,t) 
R2 + z/2 = 2 Im c/J~(s) 

R~ + iL = c!Jl!_(s, t) 
Im c/J~(s) 

Rs + ils = (____!!!__) ¢f(s,t) 
Ft Im c/J~(s) 

¢~ (s, t) = ~ [ ¢f (s, t) ± ¢f (s, t)] 

N _ N S 
Im c/J+(s) = Im c/J+(s, t = 0) = Sn CJtot, 

(14.2.7) 

(14.2.8) 

(14.2.9) 

(14.2.10) 

(14.2.11) 

the latter via the optical theorem. Also, as usual, 

Re c/J~(s,O) 
p = Im c/J~(s, 0) · 

(14.2.12) 

In Table 14.2, terms of order lit are omitted. In this approximation 
ANN = Ass and measurement of these quantities could be used as a check 
on the validity of the approximations. Indeed, the entire procedure can 

Table 14.2. Expressions for the coefficients a j and b j in eqns 
(14.2.2) to (14.2.6). K is the anomalous magnetic moment of the 
proton 

Observable aj 

ANN PP'R2 
ALL PP'R_ 

AsL PP'~(R2+R-) 

A P[Is-~(l+Iz)] 

P P'[R2(p + JL) + /z(1 + L)] 
PP'[pR_ +L + R~ + Ii) 
P P'[Rs(R2 + R_) + Is(lz + L)] 
P [Is(P + R2)- Rs(1 +h)] 
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422 14 Elastic scattering at high energies 

be tested by checking whether the measured quantities in (14.2.2)-(14.2.6) 
are linear functions of t. 

In addition to the above observables we need to know the cross-section 
differences i}.(JL and i}.(Jy defined in (5.1.11) and (5.1.12). The measured 
observables we use are 

1 1 i1(Jy I 
?jy:=--PP-=PPh 

2 (Jtot 
(14.2.13) 

and 
1 IJ}.(JL 1 

?jL = -PP- = PP L. 
2 (Jtot 

(14.2.14) 

Having measured p, aNN, aLL, ?jL and ?jr we can substitute in the 
expression for b LL to obtain 

a~N + ?j} 
bLL = paLL+ ?jL + p p 1 (14.2.15) 

from which one obtains an expression for the polarization, 

2 ?j2 
ppl = aNN+ T 

bLL- paLL- ?jL' 
(14.2.16) 

whence, since it will be known whether P 1 = P or P 1 = -P, one can 
obtain P. The sign ambiguity should be innocuous. 

Knowing P P 1 one can now obtain the values of R2, h, R_, L from 
aNN, ?jy, aLL and ?jL respectively. 

In practice, it may turn out that the errors on P P 1 obtained from 
(14.2.16) are unacceptably large. In that case there is an alternative pro­
cedure, which should be more accurate. 

The analysing power of the reaction is given by 

rn~ Ad(J = (~2 -Is+ ~2h) 
(Jtot dt 

(Jtot + Sn [Rs(1 +h)- Is(p + R2)] t (14.2.17) 

and this is expected to be very largely dominated by the term ~e/2. Thus 
the other terms in (14.2.17) are small corrections and large errors on 
them may be unimportant. We already have values for p, R2 and h. 
There is a lengthy algebraic procedure for estimating Rs and Is from 
the measurement of asL, bsL, aN and bN and which uses (14.2.16). One 
finds 

Is= ~ (bsL _ bN) / ( ?jr + ?jL _ bN/aN- p- aNN01) 
2 asL aN aNN+ aLL 1 + ?jrOt 

(14.2.18) 
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14.3 Elastic scattering at large momentum transfer 423 

R5 = ~ bsL _ f>r + f>L 15 
2 asL aNN +aLL 

(14.2.19) 

where 0 1 is the estimate for P P' given in (14.2.16). 
Using these should provide a relatively accurate estimate of the analysing 

power, after which the reaction can be used directly to measure the proton 
polarization. 

A more accurate treatment of the problem, including a discussion of 
the role of the Coulomb phase, can be found in Buttimore, Leader and 
Trueman (1999). 

It turns out that the measurement of spin-dependent observables in the 
interference region could also be helpful in trying to understand the role 
of the odderon; in particular ANN is sensitive to it. A detailed discussion 
of this issue is given in Leader and Trueman (2000). 

14.3 Elastic scattering at large momentum transfer 

Considered as a QCD reaction, elastic proton-proton scattering is man­
ifestly a very complex process. Even in its simplest version, taking into 
account only the valence quarks, one has to deal with a six-quark ---+ six­
quark reaction. Examples of Feynman diagrams for such an interaction 
are shown in Fig. 14.3 (the Brodsky-Lepage hard-scattering mechanism) 

Fig. 14.3 A Brodsky-Lepage diagram for large-momentum-transfer 
pp - pp (Brodsky and Lepage, 1980). 
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424 14 Elastic scattering at high energies 

Fig. 14.4 A Landshoff diagram for large-momentum-transfer pp--? pp 
(Landshoff, 1974.) 

and in Fig. 14.4 (the Landshoff mechanism). Despite the complexity it 
turns out that one can deduce powerful results for the spin dependence 
in the asymptotic limit where lsi and ltl are ~ m2. The problem, as will 
become clear, is precisely where one can expect the asymptotic behaviour 
to set in. It will be seen that the present experimental data badly contra­
dict these asymptotic predictions but that there are theoretical arguments, 
indicating many subtle effects, which suggest that the present-day experi­
ments are still far from the asymptotic regime. However, while these effects 
alter the momentum-transfer dependence, it is far from clear whether they 
affect the spin dependence significantly. Hopefully the RHIC collider, if 
it can probe large enough momentum transfer, will help to resolve the 
matter. 

14.3.1 The asymptotic behaviour 

For an exclusive reaction we need the actual wave function of the quarks 
that make up a hadron. That is, we require to know the amplitude, shown 
in Fig. 14.5, for the hadron, momentum P, helicity A, to break up into 
quarks of momentum qj and helicity Aj. We are considering only reactions 
with large PT· 

hadron 
P,A. 

Fig. 14.5. Wave function for three quarks in a hadron. 
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14.3 Elastic scattering at large momentum transfer 425 

I 
I 

Non-pert. ,' Pert. 
_,· 

Fig. 14.6. Mechanism for generating a quark with large transverse 
momentum. 

It is believed that the most efficient way to produce large Pr is for 
each hadron to produce a beam of essentially parallel quarks, which then 
get a high-pr kick via a perturbative QCD interaction, shown in Fig. 
14.6. So, roughly speaking, the only non-perturbative input is the soft 
amplitude, or wave function, where P and each q1 are essentially parallel, 
say along OZ as shown in Fig. 14.7. Although we cannot compute this soft 
amplitude we can deduce an important piece of information, as follows. 
Since all momenta are along OZ any orbital angular momentum must be 
perpendicular to OZ. Thus the only angular momentum along OZ is spin 
angular momentum. Conservation of lz then implies 

A. = A.1 + A.2 + A.3 

for each hadron in the reaction. 

(14.3.1) 

Since each quark that interacts perturbatively conserves its helicity (see 
Section 10.4) we end up with a remarkable result, due to Brodsky and 
Lepage ( 1980): in any exclusive reaction 

A+B---+C+D+E+··· 

one has 

AA + A.s = A.c + A.v + AE + · · ·, ( 14.3.2) 

that is, total initial helicity equals total final helicity. 
More precisely, what plays the role of the soft wave function is the 

distribution amplitude 

2 {Q2 2 
<f>(x, Q ) = Jo d krlp(x, kr ), 

hadron -~--~--~~~~---~·~~····=····=·····=·······::::·····== qj = Xl"'··-·-·-·-_. Z 
p 

(14.3.3) 

Fig. 14.7 Soft wave function with all quarks essentially parallel to the 
parent hadron. 
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426 14 Elastic scattering at high energies 

i.e. the wave function integrated over a region of the transverse compo­
nents of the quark momenta. Although the quarks are not strictly parallel 
to the hadron in this, the integral over ky has the effect of eliminating 
any part of the wave function having Lz f. 0. Thus (14.3.1) and (14.3.2) 
continue to hold. 

Consequences abound! Perhaps the most dramatic example is that the 
analysing power A in pp ~ pp should vanish because it is proportional to 
the single-flip helicity amplitude ¢ 5 : 

dCJ [ * l A dt =- Im <f>s((Pt + </>3 + </>2- ¢4) . (14.3.4) 

The vanishing of A follows since ¢5 corresponds to the transition 

11/2, 1/2) ~ 11/2,-1/2) 

so that the initial total helicity ( = 1) is not equal to the final total helicity 
(= 0). 

Quite contrary to this prediction the analysing power in elastic pp 
scattering is large all the way out to p} ~ 8 (GeV jc)2. The results of 
experiments at CERN (Antille et al., 1981) and at the Brookhaven AGS 
(Crabb et al., 1990) can be seen in Fig. 14.8. (Recall that for pp ~ pp the 
analysing power A is the same as the polarizing power P .) 

0.3 

0.2 

A 

-0.2 

-0.1 

· 24GeV CERN 
• 28GeV}AGS 
e 24 GeV 

2 4 

Pr coevtc)2 
6 8 

Fig. 14.8. Analysing power for pp ~ pp. (From Crabb et al., 1990.) 
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This contradiction between theory and experiment is usually glossed 
over by claiming that PT is too small to expect the asymptotic predictions 
to hold. This may well be correct, though many papers have pointed 
out that other 'asymptotic' predictions, in inclusive and semi-inclusive 
reactions, seem to work at precociously low scales, 1-2 (GeV jcf In fact, 
as we shall briefly explain, the asymptotic behaviour in exclusive reactions 
should be expected to be less precocious, but if the trend in A shown in 
Fig. 14.8 continues to much larger values of p} we will seriously have 
to question whether our QCD picture of the strong interactions is really 
correct. 

14.3.2 Complications of exclusive reactions 

The proton-proton amplitude is immensely complicated: there are some 
100000 Feynman diagrams of the Brodsky-Lepage type. Hence most 
analyses of the relevance of the asymptotic description have focussed 
on the much simpler question of electromagnetic form factors at large 
momentum transfer. A very clear discussion can be found in Kroll (1994) 
and Jakob and Kroll (1993), whose treatment we follow. 

Consider, for simplicity, the pion electromagnetic form factor Frc(Q2). 

The asymptotic behaviour, as Q2 ----+ oo, is supposed to be controlled by the 
Feynman diagram in Fig. 14.9, where TH is the hard scattering amplitude 
shown in Fig. 14.10 and the hadron ----+ quark, antiquark vertices are soft 
wave functions analogous to those in Fig. 14.7. This leads, in its simplest 
form, to the remarkable result (Brodsky and Lepage, 1980) 

(14.3.5) 

where fn = 133 MeV. 

p y 

Fig. 14.9. Hard-scattering diagram for pion form factor. 
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+ 

Fig. 14.10. Lowest-order Feynman diagrams for TH, Fig. 14.9. 

A major criticism of this approach was put forward by Isgur and 
Llewellyn-Smith (1989). Firstly, they showed that in the asymptotic cal­
culation a very large fraction of the result was actually generated from 
a kinematic region that is not perturbative. The point is that the gluon 
virtuality in THis of order xx'Q2, not Q2, so that, for part of the range of 
integration x and x' are small, we are in a region of small virtuality and a 
perturbative treatment cannot be justified. A priori this is not surprising. 
What is a shock is the magnitude of the inconsistency. For example, for 
Fn(Q2 ) at Q2 = 4 (GeV jc) 2 only 13% of the result comes from a region 
where the gluon virtuality is> 1 (GeV jc) 2. 

Secondly, Isgur and Llewellyn-Smith pointed out that the contribution 
from the overlap of initial and final soft wave functions (see Fig. 14.11), 
given a reasonably gaussian kr-dependence corresponding to a hadron 
radius of order 1 fm, is much larger that the asymptotic result (14.3.5). 
The reason is that even if the kr-dependence of the wave function cuts off 
like a gaussian, the overlap only decreases as an inverse power of Q, the 
precise behaviour depending on the x-dependence of the wave function. 

Their astounding conclusion was an estimate that for nN ~ nN the 
asymptotic behaviour would only set in for p} 2: 108 (GeV/c) 2 ! 

This, however, is not the end of the story. 
In a series of groundbreaking papers Sterman and collaborators (Botts 

and Sterman, 1989; Li and Sterman, 1992; Li, 1993) demonstrated that it 
is important to take into account the transverse momentum dependence 
in TH (neglected in deriving (14.3.5)) and at the same time to include 

~ q 

p P' 

Fig. 14.11. Wave function overlap contribution to the pion form factor. 
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the effects of so-called Sudakov suppression (Sudakov, 1956), which we 
shall explain presently. This has a major effect, on the one hand largely 
negating the Isgur and Llewellyn-Smith criticisms, on the other hand 
making the treatment of elastic scattering vastly more complicated than 
in the asymptotic approach. 

To understand the physics of Sudakov suppression, recall that in classi­
cal electrodynamics the scattering amplitude for non-forward e+e---+- e+e 
is exactly zero. The reason is that an accelerated electron always radiates 
photons, so the pure process ee ---+- ee cannot occur. 

The field-theoretic analogue is that e + e ---+- e + e is highly suppressed 
at large momentum transfer by a 'Sudakov double logarithm'. For exam­
ple, for the electromagnetic form factor of an electron at large Q2 the 
suppression in the amplitude is (Sudakov, 1956) 

(14.3.6) 

which goes to zero faster that any inverse power of Q. 
Because of the running coupling in QCD, the analogous suppression 

for the elastic form factor of a quark gets softened to (Mueller, 1981; Sen, 
1983) 

{ -4Cp (Q2) (Q2)} 
exp 11 _ (2/ 3)nf ln ,P ln ln A.2 (14.3.7) 

where A. is an infrared cut-off, and Cp = 4/3 for QCD. 
In the electron case the probability of emission of a finite number of 

photons in total is also highly suppressed, but the probability to emit any 
number of photons within some specified energy range is less suppressed, 
and is the quantity that would be relevant, given the finite energy resolution 
of any electron detector. But, in the case of the elastic form factor of a 
hadron the scattered quarks cannot radiate gluons, since in the final state 
they have to combine to produce the lowest Pock state of the hadron. 
At first sight, therefore, it seems that the full suppression (14.3.7) should 
apply. 

However, just as an electrically neutral point particle does not suffer 
the suppression (14.3.6) so a colour-neutral point-like object will not be 
suppressed by (14.3.7). Hadrons are, of course, colour neutral, but they 
are extended objects, not point-like. It is then intuitively clear what to 
expect. For small separations of the constituents, i.e. in the region where 
perturbative QCD is reliable, there will be little suppression, whereas in 
the non-perturbative region of large separations the Sudakov factor will 
drastically suppress the contribution. 
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The relevant separation turns out to be in a direction perpendicular to 
the hadron momentum, so one introduces the b-space transform of the 
wave function, 

A( b)_ 1 jd2k -ib·kr ( k ) 
tp X, - (2n)2 ye tp X, T ' (14.3.8) 

and the dominant term in the Sudakov suppression factor then takes the 
form 

exp --ln lnln -lnln { 2 ( xQ ) [ ( xQ ) ( 1 ) l } 
3fh .j2AQcD .j2AQcD bAQcD 

(14.3.9) 

forb:::;; 1/AQcD, where fit= (33- 2nt)/12. 
The expression in (14.3.9) decreases to zero as b grows from zero 

to 1/ AQcD and is taken as equal to zero for b > 1/ AQCD· Thus the 
non-perturbative region of large b is damped out. Moreover it can be 
shown that the scale to use in a8 (J12) in TH is not !12 = xx'Q2 but, 
rather, max { xx'Q2, 1/b2}, so that a8 remains perturbatively small in the 
calculation. 

The net result is that the perturbative calculation, of course vastly more 
complicated now, should be trustworthy for Q2 ~ 4 ( Ge V j c) 2. 

Analogous considerations apply to elastic scattering at large momentum 
transfer, usually expressed in terms of scattering at fixed angle e in the 
CM. 

The naive perturbative treatment of the Brodsky-Lepage diagrams 
leads to cross-sections that obey the dimensional counting-rules (ignoring 
logarithms) 

da (AB --+ CD) = as(Pr) f(O) [ 2] n-2 

dt s 
(14.3.10) 

where n is the total number of partons in the lowest Fock states of all the 
particles. Thus for nN--+ nN we haven= 10, implying an s-8 behaviour, 
whereas for NN--+ NN we haven= 12, yielding s-10. 

There is not a great deal of data on large-momentum-transfer elastic 
scattering, but what does exist is in reasonable agreement with the counting 
rules. 

However, the Landshoff-type diagrams, Fig. 14.4, lead to a slower 
decrease with sat fixed e (Landshoff, 1974). For example, for NN--+ NN 
the behaviour is s-8. It was argued, however, that the normalization of 
these contributions would be much smaller than that of the Brodsky­
Lepage diagrams (Brodsky and Lepage, 1980). In fact Botts and Sterman 
(1989) demonstrated that Sudakov suppression is very important for the 
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Landshoff diagrams and they estimated that for N N ~ N N the naive 
behaviour is modified to s-9·66, quite close to the dimensional counting-rule 
result s-10. 

So, as regards cross-sections, although it has not yet been possible to 
calculate the hundreds of thousands of Feynman diagrams involved, at 
least for the broad pattern of decrease with increasing momentum transfer 
there seems to be agreement between theory and experiment. Moreover, 
the inclusion of Sudakov effects negates much of the criticism against the 
premature use of the perturbative results. There has thus been considerable 
progress in understanding, at a deeper level, the large-pr dependence. 

14.3.3 Summary 

Where does all this leave the problem of the analysing power in pp ~ pp? 
At first sight we are no better off than before, since the sophisticated 
ingredients now included appear to have no effect upon the helicity rule 
(14.3.2). However, an interesting development was the discovery by Gous­
set, Pire and Ralston (1996), in the context of meson-meson scattering, 
that the Landshoff-type diagrams permit wave functions with non-zero 
Lz, which are not suppressed by 1/s as they are in the Brodsky-Lepage 
hard scattering diagrams. There is some suppression, but it is much milder, 
~ s-0·55 . This would imply that the helicity rule (14.3.2) only becomes valid 
at extremely large momentum transfer. Unfortunately this discovery does 
not directly resolve the problem of the proton-proton analysing power, 
since it turns out that the permitted change in total helicity has to be an 
even number, at least for the meson-meson case studied. 

It is hoped, though not yet demonstrated, that this kind of mechanism 
will lead to the possibility of single helicity-flip in the Landshoff diagrams 
for pp ~ pp. There remains the question of generating a phase difference 
between the flip and non-flip amplitudes in (14.3.4). The Sudakov factors 
indeed possess a non-zero phase, but whether there is a significant differ­
ence between the phase of 4>5 and the non-flip amplitudes is unclear. Our 
own, perhaps simplistic, guess is that there will be no difference of phase. 

It is also possible to generate a single helicity-flip if the nucleon is 
regarded as a quark-diquark system that includes a component in the 
wave function corresponding to a spin-1 vector diquark. In this way, Kroll 
and collaborators (see e.g. Jakob, Kroll, Schiirmann and Schweiger, 1993) 
have been able to obtain, amongst other things, a reasonable description 
of the Pauli electromagnetic form factor F2(Q2) of the proton, which 
involves a nucleon single helicity-flip matrix element. 

Goloskokov and Kroll (1999) have attempted to estimate the analysing 
power in pp ~ pp using the quark-diquark picture. The helicity non­
flip amplitude is modelled phenomenologically so that it corresponds 
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to what one might expect from multiple pomeron exchange (Section 
14.1). The helicity-flip amplitude </>s is calculated perturbatively using 
two-gluon exchange diagrams. The proton Fock state contains both scalar 
and vector diquarks, but to simplify the calculation only the scalar is used 
in estimating the non-flip vertex in </>s, and only the vector in the flip 
vertex. 

With all the approximations made, this model is not expected nor tuned 
to agree with the data, but numerical studies show that it does provide an 
acceptable, approximately energy-independent, analysing power, which, 
however, eventually decreases with increasing momentum transfer and 
finally merges into the Brodsky-Lepage hard scattering result. 

The quark-diquark picture is best regarded as a model for higher-twist 
effects and as such would lead to an analysing power that ultimately 
decreases like 1/ s at fixed angle. In the Gousset et al. picture, if it can 
really produce a non-zero analysing power, that too will eventually tend 
to zero, but probably more slowly than 1/s. 

In either case it seems unavoidable that ultimately QCD demands that 
A~ 0 as PT increases. But we have no concrete predictions for A nor for 
the scale at which the decrease should begin to be seen. Given the exciting 
experimental possibilities about to open up at the RHIC collider, this is, 
alas, a most frustrating state of affairs and we can only hope for a major 
theoretical breakthrough. 
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