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ABSTRACT

A distribution-free formula for the standard error of chain ladder reserve
estimates is derived and compared to the results of some parametric methods
using a numerical example.
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1. INTRODUCTION

The chain ladder method is probably the most popular method for estimating
IBNR claims reserves. The main reason for this is its simplicity and the fact
that it is distribution-free, i.e. that it seems to work with almost no assump-
tions. On the other hand, it is well-known that chain ladder reserve estimates
for the most recent accident years are very sensitive to variations in the data
observed. Moreover, in recent years many other claims reserving procedures
have been proposed and the results of all these procedures vary widely and also
differ more or less from the chain ladder result. Therefore it would be very
helpful to know the standard error of the chain ladder reserve estimates as a
measure of the uncertainty contained in the data and in order to see whether
the difference between the results of the chain ladder method and any other
method is significant or not.

Up to now only a few papers on claims reserving have been published which
also consider the calculation of the standard error of the reserve estimate: In
the papers by TAYLOR/ASHE 1983, ZEHNWIRTH 1985, RENSHAW 1989, CHRIS-
TOFIDES 1990, VERRALL 1990, VERRALL 1991 essentially the same method for
the calculation of the standard error is used, namely a least squares regression
approach which (with the exception of Taylor/Ashe) is applied to the loga-
rithms of the incremental claims amounts (i.e. assuming a lognormal distribu-
tion). Slightly different approaches have been proposed by WRIGHT (1990, via
a generalized linear model and the method of scoring) and MACK (1991, using
a gamma distribution and maximum likelihood estimation). All methods cited
require a rather high amount of programming in order to calculate the many
covariances between the parameter estimators.
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In the present paper, a very simple formula for the standard error of chain
ladder reserve estimates is developed. The decisive step towards this formula
was made by SCHNIEPER (1991). In order to calculate the rate for a casualty
excess of loss cover he used a mixture of the Bornhuetter-Ferguson technique
and the chain ladder method. Within this model he developed an approxima-
tion to the standard error of the estimated premium rate using a Taylor series
approximation.

The present paper adapts Schnieper's idea to the claims reserving situation
and contains the following additional points:

1. The model is specialized for the pure chain ladder case. This makes things
easier and also makes it possible to replace the Taylor series approximation
with a more exact procedure.

2. An estimate of the process variance is additionally included in the standard
error of the reserve estimate. This is necessary here because the claims
reserve is a random variable and not a parameter like the net premium
(= expected value).

3. Schnieper intuitively claimed that the chain ladder development factors
were " not strongly correlated ". We prove that they are in fact uncorrelated
and that therefore the reserve estimate is unbiased.

4. Besides the standard error for each accident year, a formula for the
standard error of the overall reserve estimator is given, too, which takes the
correlations between the estimates for the individual accident years into
account.

Finally, two numerical examples are given and the results are compared to
the results obtained by the aforementioned methods of Taylor/Ashe, Zehn-
wirth, Renshaw/Christofides, Verrall and Mack.

2. NOTATIONS AND BASIC RESULTS

Let Cik denote the accumulated total claims amount of accident year /,
1 < i < I, either paid or incurred up to development year k, 1 < k < I. We
consider Cik a random variable of which we have an observation if i+k < 1+ 1
(run-off triangle). The aim is to estimate the ultimate claims amount Cu and
the outstanding claims reserve

for accident year / = 2, . . . , / .
The basic chain ladder assumption is that there are development factors

/ i , . . . , / , _ i > 0 with

(1) E ( C K k + l \ C n , . . . , C i k ) = Cikfk, \<i<I, \<k<I-\.

The chain ladder method consists of estimating the fk by
I-k ,1-k

/
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and the ultimate claims amount Ci7 by

O r ~ C j , / + 1 - / " / / + 1 - 1 • • • • ' / / - 1 >

or equivalently the reserve /?, by

Because the chain ladder algorithm does not take into account any depen-
dencies between accident years, we can additionally assume that the variables
Cik of different accident years, i.e.

(2) {Cn , ..., C,7}, {Cfl , ..., Cj,}, i =h j , are independent.

This must be regarded as a further implicit assumption of the chain ladder
method. In practise, the independence of the accident years can be distorted by
certain calendar year effects like major changes in claims handling or in case
reserving.

The following theorem makes it clear that (1) and (2) are indeed, the implicit
assumptions of the chain ladder method.

Theorem 1: Let D = {Cik\i+k < 1+ 1} be the set of all data observed so far.
Under the assumptions (1) and (2) we have

Proof: We use the abbreviation

Then (2) and repeated application of (1) yield

E(Ca\D) = E,{CU)
= Ei(E(ClI\Cn,...,Cu.l))

= etc.
= Ei (Q , /+1 - ; ) / /+1 -1" • • • ' / / - 1

= Ci, /+1 - ui+1 -«••••• • / /-1 • n

This theorem shows that the estimator Cu has the same form as E(CjF\D)
which is the best forecast of Ca based on the observations D. The next theorem
shows that estimating / / + ,_,-•... • /}_ [ by / / + 1 _,--... •//_ 1 is indeed a reasonable
procedure.

Theorem 2: Under the assumptions (1) and (2) the estimators/^, 1 <k <I-\,
are unbiased and uncorrelated.
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Proof: Let

Bk = {CyU < k, i+j <I+l},l<k<I.

Then (2) and (1) yield

Bk)
 = E(Ct A+IIQI , . . . , Cik) = Cikfk.t k+i

We therefore have
I-k ,I-k

E{fk\Bk)= £ E(Clk+l\Bk) £ Cjk=fk,
j= i / j= i

which immediately gives the unbiasedness

E(fk) = E(E(fk\Bk)) =fk,l<k<I-\,

of the parameter estimates. Also, the fk are uncorrelated because for j < k

E(fjfk) = E(E{f]fk\Bk))
= E(fjE(fk\Bk))
= E(fj)fk

= E(fj)E(fk). •

The uncorrelatedness of the/^'s is surprising because fk-X and/^ depend on
the same data Clk+ ... -I- C/_t t . The foregoing proof of the uncorrelatedness
easily extends to arbitrary products of pairwise different fk, i.e. we have

E(fl+l-i' ••• 'fl-l) ~fl+l-i' ••• ' / / - I >

which shows that Ca = C(>/+ 1_i//+1_(--... •^_1 is an unbiased estimator of
E{Ca\D) = C, / + ! _ jfI+1 _,-... •//_ i. In the same way, the reserve estimator Rt

= C/7—C,/+I_, is an unbiased estimator of the true reserve /?, =.

3. CALCULATION OF MEAN SQUARED ERROR AND STANDARD ERROR

The mean squared error mse (C,7) of the estimator Ca of Ca is defined to be

mse(CiI) = E((CiI-CiI)
2\D)

where D = {Cik\i+k < /+ 1} is the set of all data observed so far. Note that we
are not using the unconditional mean squared error £((C,7— C,/)2) =
E(E((CiI-CiI)

2\D)) as this averages over all possible data D from the
underlying distribution. Instead, in practise, we are more interested in the
conditional mean squared error of the particular estimated amount Ca based
on the specific data set D observed and therefore have to use E((Ci{~Ca)

2\D)
which just gives us the average deviation between Ca and Ca due to future
randomness only.

First, we see that

) = E({R~Rd2\D) = E((Cu-Ca)
2\D) = mse{Cu).
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Next, because of the general rule E(X-a)2 = Var (X) + (E(X)-a)2 we
have

which shows that the mean squared error is the sum of the stochastic error
(process variance) and of the estimation error.

In order to further calculate the mse we need a formula for the variance of
Cik. From the fact that fk is the CiVt-weighted mean of the individual
development factors CukJrX\Cik, \<i<I—k, we can induce that
Var (C,_k+\/Cik\Cn, ..., Cik) should be inversely proportional to Cik, or equiv-
alently

(3) Var (C,- k+ ,|C,, , . . . , Cik) = Cikal, 1 < i < I, 1 < k < 7 - 1 ,

with unknown parameters ak, 1 < k < I- 1. This is the variance assumption
which is implicitly underlying the chain ladder method.

Later on, we will need an estimator for ak. Similarly as for fk it can be
shown that

I-k , „

I-k-l t=\ \ Cik

is an unbiased estimator of CT^, l<k<I—2. We still lack an estimator for
O7_i. If//-i = 1 and if the claims development is believed to be finished after
I- 1 years, we can put <T7_ X = 0. If not, we extrapolate the usually exponen-
tially decreasing series <?!,..., (T7_3, <T7_2 by one additional member, for
instance by loglinear regresssion or more simply by requiring that

holds at least as long as 6,^ 3 > <r7 2. This last possibility leads to

61-i = min (<r7_2/<77_3, min (CT7_3, <?7-2))

which has been used in the examples.

Now, we are able to state and prove the main result

Theorem 3: Under the assumptions (1), (2) and (3) the mean squared error
mse(Rl) can be estimated by

7 - 1 „ -

l +
V&.-i A2 \cik '-*

7 = 1

where Cik = C, / + j _ , / / + 1 _,--... -fk_ {, k> I+l — i, are the estimated values of
the future Cik and C, / + 1 _ , = C , / + 1 _ , .
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Proof: We use the abbreviations

We start from

mse(R,) = Var (CU\D) + {E(Ctl\D) - C,v)2.

Repeated application of the basic chain ladder assumption (1) and of the
above variance assumption (3) yields for the first term of mse (R,)

Var (Ca\D) = Var,. (C,-7)

= Et (Var ( Q I Q . . . . . C , , ,_,)) +

= E, (Q 7_,) aj., + Var,. (C,- ,_,)//-1
= E, (C,- ,_ 2)/7_2 <x2_, + £, (C, 7_ 2) <T/2_ 2 / /_,

= etc.

= Q,/+l-( ^ f]+\-i---fk-\akfk+\---fl-\
*=/+l-l

because of Var, (C, /+1 _,) = 0.
Due to Theorem 1 we obtain for the second term of mse (R)

In practice, we must find estimators for these two terms of mse (R). For the
first term this will be done by replacing the unknown parameters / j . and al with
their estimators fk and a\, i.e. we estimate Var {Cn\D) by

, 7+1-1
V f f 2 7-2 }2
/ _ , J l + l - i ' • • • ' J k - \ ' a k ' J k + l ' • • • 'Jl-

where we have used the notation Cik introduced in the theorem.
But in the second term (*) of mse (Rt) we can not simply replace fk with fk

because this would yield 0. We therefore use a different approach. We can
write

F = fl+ 1 - i • • • • ' / / - 1 ~fl+ 1 - 1 " • • • ' / / - 1

with
Sk ~fl+l-i' ••• 'fk~l(fk~fk)fk+\ ' ••• 'fl-\
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and therefore

219

Now we replace SJ with E{Sl\Bk) and SyS*,./ < A:, with E(SjSk\Bk). This
means that we approximate 5^ and SjSk by averaging over as little data as
possible such that as many values Cik as possible from the observed data are
kept fixed. Because of E(fk -fk\Bk) = 0 (see the proof of Theorem 2) we obtain
E(SjSk\Bk) = 0 for j < k. Because of

l-k

7=1

we obtain

Var(C,.t.
I 7 = 1

l-k

y c
7=1

E(Sk\Bk) — / / + ! - , • . . . ~fk-lakfk+\ ' ••• 'fl-l

Taken together, we replace F2 = (L Sk)
2 with T,kE(Sk\Bk) and because all

terms of this sum are positive we now can replace all unknown parameters fk,
ak with their unbiased estimators fk, ak. Altogether, we estimate F2 =
( / /+ , - , - . . . • / ,_ , - / /+ , - . - • • • • / / - i ) 2 by

J-k/ -I

I
k=l+\-i

7 / + 1 - / " • • • ' J k - \ ' ( J k 7 / c + l " ••• / / -
7=1

~ 2 ^ 2 X"1 k I.
= fl+ 1 -1 • • • • " / / - 1 2 J T^fc^

; 2 , ? 2

7=1

This finally leads to the estimator stated in the theorem. •

The square root s.e. (R,) of an estimator of the mean squared error is defined
to be the standard error of Rt.

Often the standard error of the overall reserve estimate R = R2+ ... + R[ is
of interest, too. In this case we cannot simply add together the values of
(s.e. (R^i)2, 2 < i < I, because they are correlated via the common estimators fk

and ak. We therefore proceed as before and obtain:
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Corollary: With the assumptions and notations of Theorem 3 the mean
squared error of the overall reserve estimate R = R2+ ... + ^ / can be esti-
mated by

/ / i I v / - I ~

ms
i = 2

c
I

Proof: We have

mse

-̂ z
= Var [ g Ctf|/)j + W Z C'̂  - Z C") •Z C")

The independence of the accident years yields

Var X O H = Z Var(C,7|D),
\ /-2 / /-2

whose summands have already been calculated in the proof of Theorem 3.
Furthermore

El £ Ca\D\ - g Cu g
(E(CU\D) - Ca)

hi

with

Observing

mse (R,) = Var (C,7|Z>) + (C,- / + , _,F,)2

(cf. (*) in the proof of theorem 3) we see that

i \ i

mse | £ A,, = X
1 = 2 ( = 2 2<i<j<l
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An analogous procedure as for F2 in the above proof yields for FtFj, i <j,
the estimator

/ - I

2_i fl+i-j' •••'fl-ifl+l-i' •••'fk-l^kfk+l' • • • " / / - I I 2. ,

I
This completes the proof.

I-k

«=1

•

4. EXAMPLES

In the first example we use the TAYLOR/ASHE (1983) data, which were also
used by VERRALL (1990, 1991).

TABLE 1

RUN-OFF TRIANGLE (ACCUMULATED FIGURES)

Ca C/4 Cl5 C,6 C,l

1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463
2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085
3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315
4 310608 1418858 2195047 3757447 4029929 4381982 4588268
5 443160 1136350 2128333 2897821 3402672 3873311
6 396132 1333217 2180715 2985752 3691712
7 440832 1288463 2419861 3483130
8 359480 1421128 2864498
9 376686 1363294
10 344014

This yields the following parameter estimates (k = 1, ..., 9):

fk: 3.49, 1.75, 1.46, 1.174, 1.104, 1.086, 1.054, 1.077, 1.018
(T^/1000: 160, 37.7, 42.0, 15.2, 13.7, 8.19, 0.447, 1.15, 0.477

TABLE 2

ESTIMATED RESERVES RJ IN 1000 s

; = 2
i = 3
i = 4
i= 5
!=6
i = 7
i = 8
i = 9
i= 10

overall

Chain
ladder

95
470
710
985
1419
2178
3920
4279
4626

18681

Verrall
1991

96
439
608
1011
1423
2150
3529
4056
4340

16652

Renshaw
Christofides

111
482
661
1091
1531
2311
3807
4452
5066

19512

109
473
648
1069
1500
2265
3731
4364
4965

19124

Mack
1991

93
447
611
992
1453
2186
3665
4122
4516

18085

Taylor
Ashe

298
600
745
1077
1788
2879
4221
4866
5827

22301
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TABLE 3

STANDARD ERROR IN % OF Rt

i = 2
/ = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
/ = 10

overall

Chain
ladder

80%
26%
19%
27%
29%
26%
22%
23%
29%

13%

Verrall
1991

49%
37%
30%
27%
25%
25%
27%
30%
38%

15%

Renshaw
Christofides

54%
39%
32%
28%
26%
26%
28%
3 1 %
40%

16%

49%
35%
29%
25%
24%
24%
26%
30%
39%

16%

Mack
1991

40%
30%
24%
2 1 %
20%
20%
2 1 %
24%
3 1 %

Taylor
Ashe

27%
20%
18%
16%
16%
14%
14%
14%
14%

9%

Comments:

The results for ' Taylor/Ashe' and 'Verrall 1991' have been taken from these
papers. Taylor/Ashe produced much lower standard errors than the other
methods. This is due to the fact that their reserve estimates employed only 6
parameters (as compared to 19 of the other methods) and that they addition-
ally used the information on the numbers of claims finalized.

Renshaw and Christofides describe the same loglinear regression method
which is also identical to Verrall's (1990) Bayesian approach without any prior
information. Therefore the results for ' Renshaw/Christofides' have been taken
from VERRALL (1990), Table 2.

The results for ' Zehnwirth' have been obtained by using his ICRFS software
package version 6.1 employing one of his fixed parameter development factor
models which he calls 'chain ladder model'. We have used it without any
further adjustment. It should be remarked that this is not what Zehnwirth
intends, as his software package is a modelling framework and any initial
model should be further adjusted interactively with the help of the indications
and plots given by the program. Without any further adjustment this 'chain
ladder model' is identical to the Renshaw/Christofides model, i.e. it is a
loglinearized approximation of the usual chain ladder model. The fact that it
leads to slightly lower results is attributable to using a different estimator for
the model variance.

The results for 'Mack 1991' have been obtained according to a previous
paper (MACK (1991)) of the author but additionally an estimate of the process
variance has been included, as this is the case with all the other methods.

The estimated reserves of all methods except 'Taylor/Ashe' differ by less
than 20% and are therefore according to Table 3 within one standard error.
For the chain ladder method neither the reserve estimates nor the standard
errors are systematically higher or lower than for the other methods (except
'Taylor/Ashe'). The reason for the comparatively high chain ladder standard
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error of 80 % for accident year 2 is the fact that the reserve R2 itself is very low
in comparison to the other reserves ^ 3 , ..., Rw: If we look at the sequence
RID, R<),..., R4, R^ we see that ^,-_1 is always greater then Rt/2 but R2 is
smaller than R3 /4. This fact is very well reflected by the high standard error of
80%.

A closer look at the Taylor/Ashe data shows that the individual development
factors Cik+\/Cik, 1 <i<I—k, do not fluctuate much around their mean
value fk so that the whole triangle can be considered as relatively regular.
Therefore Taylor/Ashe were able to dispense with taking logarithms and thus
avoided the problem of transforming back the result into the original data
space. We therefore give a second example, which is less regular and where the
claims amounts of the most recent accident years are much lower than in the
previous years. These data (mortgage guarantee business) were compiled from
a competition presented by SANDERS (1990).

TABLE 4

RUN-OFF TRIANGLE (ACCUMULATED FIGURES)

Ci2 C, Cf4 Qm

476599 1027692 1360489 1647310 1819179 1906852 1950105
984288 2142656 2961978 3683940 4048898 4115760
1522637 3203427 4445927 5158781 5342585
2900301 4999019 6460112 6853904
2920745 4989572 5648563
4210640 5866482
1954797

1
2
3
4
5
6
7
8
9

58046
24492
32848
21439
40397
90748
62096
24983
13121

127970
141767
274682
529828
763394
951994
868480
284441

Parameter estimates (k = 1, ..., 8):

fk: 11.1, 4.09, 1.71, 1.28, 1.14, 1.069, 1.026, 1.023
^ : 1787, 977, 194, 42.8, 27.0, 5.57, 1.26, 0.285

TABLE 5

ESTIMATED RESERVES R/ IN 1000 s

Chain
ladder

Renshaw
Christofides Zehnwirth Mack

1991

/ = 3
i = 4
i = 5

93
265
834
1568
3696
3487
2956
1647

91
275
818
1979
5497
6650
4331
2339

87
262
778
1884
5231
6328
4122
2226

62
199
682
1639
4420
5378
3143
1555

overall 14547 21980 20919 17078
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TABLE 6

STANDARD ERROR IN % OF Rt

Chain
ladder

Renshaw
Christofides Zehnwirth Mack

1991

i = 3

i = 6
i = 7

65%
53%
38%
38%
28%
37%
6 1 %

133%

90%
60%
5 1 %
48%
46%
47%
50%
66%

80%
53%
45%
42%
4 1 %
42%
47%
64%

60%
4 1 %
37%
35%
33 %
34%
36%
47%

overall 26% 24%

Here all results have been calculated by the author. In comparison with the
standard errors of the first example, the chain ladder standard errors now
reflect very well the generally higher uncertainty of this second triangle and
especially the uncertainty of the last two accident years where the relative
standard errors are very high because the reserve estimates are comparatively
low. The most extreme deviation between the reserve estimates of the different
methods is for accident year 7 where the ' Renshaw/Christofides' reserve
exceeds the chain ladder reserve by 2.5 standard errors.

Altogether, if the impressions of these two examples can be taken as typical,
we can conclude that the standard errors are of about the same size for the
chain ladder as with the other methods, although they do not show such a
smooth pattern as these because the other methods use only one a2 parameter
as compared to /— 1 of chain ladder. But this could also be achieved for the
chain ladder method by smoothing out the CT^'S by means of an exponential
function exp (a — bk).

Finally, we must bear in mind that these standard errors can only reflect the
estimation error and the statistical error, but not the specification error, i.e. the
fact that the model chosen can be wrong or that the future development may
not be in accordance with past experience.
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