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Abstract

Background. Pediatric bipolar disorder (PBD) is characterized by abnormal functional
connectivity among distributed brain regions. Increasing evidence suggests a role for the lim-
bic network (LN) and the triple network model in the pathophysiology of bipolar disorder
(BD). However, the specific relationship between the LN and the triple network in PBD
remains unclear. This study aimed to investigate the aberrant causal connections among
these four core networks in PBD.
Method. Resting-state functional MRI scans from 92 PBD patients and 40 healthy controls
(HCs) were analyzed. Dynamic Causal Modeling (DCM) was employed to assess effective
connectivity (EC) among the four core networks. Parametric empirical Bayes (PEB) analysis
was conducted to identify ECs associated with group differences, as well as depression and
mania severity. Leave-one-out cross-validation (LOOCV) was used to test predictive accuracy.
Result. Compared to HCs, PBD patients exhibited primarily excitatory bottom-up connec-
tions from the LN to the salience network (SN) and bidirectional excitatory connections
between the default mode network (DMN) and SN. In PBD, top-down connectivity from
the triple network to the LN was excitatory in individuals with higher depression severity
but inhibitory in those with higher mania severity. LOOCV identified dysconnectivity circuits
involving the caudate and hippocampus as being associated with mania and depression sever-
ity, respectively.
Conclusions. Disrupted bottom-up connections from the LN to the triple network distinguish
PBD patients from healthy controls, while top-down disruptions from the triple network to
LN relate to mood state differences. These findings offer insight into the neural mechanisms
of PBD.

Introduction

Bipolar disorder (BD) is a severe neuropsychiatric disorder marked by alternating episodes of
mania and depression, with symptom-free periods of euthymia in between (Harrison, Geddes,
& Tunbridge, 2018). The latest World Mental Health surveys conducted between 2001 and
2022 reported that the lifetime prevalence of BD is approximately 2% (McGrath et al.,
2023; Nierenberg et al., 2023). The probability of first onset of BD peaked at around 15
years, with the median age of onset being approximately 20 years (McGrath et al., 2023).
When BD first emerges during childhood or pre-adolescence, it is referred to as pediatric
bipolar disorder (PBD) (Harrison et al., 2018).

BD is considered a disconnection syndrome (Perry, Roberts, Mitchell, & Breakspear, 2019;
Sha, Wager, Mechelli, & He, 2019), due to disruptions in large-scale networks, as assessed by
resting-state functional magnetic resonance imaging (rs-fMRI) (Wu et al., 2023). These dis-
ruptions can be further understood by the triple network model, which comprises the default
mode (DMN), salience (SN), and central executive (CEN) networks and has been suggested to
underlie the pathogenesis of BD (Menon, 2011; Zhang et al., 2022). Abnormal information
flow within the CEN and between the CEN and SN is thought to contribute to the working
memory deficits frequently observed in BD patients (Dima, Roberts, & Frangou, 2016). In add-
ition, hyperactivity in the DMN has been linked to suppressing task-irrelevant activity during
cognitive performance tasks (Zarp Petersen et al., 2022). Indeed, the model proposes that SN is
responsible for switching between the DMN and CEN (Goulden et al., 2014). For example, the
decreased connectivity between the anterior cingulate cortex (ACC) and insula in SN leads to
the abnormal activation of CEN, which compromises cognition and goal-directed behaviors
(Menon, 2011). These dysfunctional patterns of connectivity are a recognized cause of cogni-
tive deficits in various neuropsychiatric disorders, such as BD, schizophrenia, depression,
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anxiety, dementia, and autism (Sha et al., 2019). However, this
model remains under explained for the state switching in BD.

Recent research has identified the limbic network (LN) as a
core site of pathological alterations in BD, suggesting that disrup-
tions in the LN, along with frontal brain regions, play a central
role in both cognitive and emotional dysfunctions (Mesbah
et al., 2023). Specifically, aberrant interactions between the triple
network and LN provide crucial insights into BD symptoms.
However, the interaction mechanisms between the LN and the tri-
ple network model in PBD remain unclear. Magioncalda and
Martino (2022) emphasized that the aberrations in LN trigger
abnormal subcortical-cortical coupling, further destabilizing
network balance. This process contributes to abnormalities in
various dimensions of affectivity, thought, and psychomotor
function in different states of BD (Martino & Magioncalda,
2022). Several studies have provided tentative evidence for a top-
down pathological alteration from the triple networks toward the
LN. Specifically, patients in remission show hyperconnectivity
between the ACC/ventromedial PFC (vmPFC) and the LN
(Blond, Fredericks, & Blumberg, 2012; Blumberg et al., 2005),
while patients in the acute phase show hyperconnectivity between
the ACC/dorsomedial prefrontal cortex (dmPFC) and the LN
(Gusnard, Akbudak, Shulman, & Raichle, 2001). Most previous
studies were based on functional connectivity quantifying statis-
tical dependencies, yet these methods do not explain the causal
mechanisms of interaction.

A deeper understanding of the causal interactions between the
triple network and LN is essential for clarifying the underlying
pathological processes in BD. Considering that childhood and
adolescence are the time of increased vulnerability to BD
(McGrath et al., 2023) and the development and maturation of
brain intrinsic networks (Ahmed, Bittencourt-Hewitt, &
Sebastian, 2015), investigating the interaction mechanism of the
triple network and LN in PBD is particularly important.

Based on the above, we propose that a quadruple network
mechanism, integrating the triple network and the LN, underpins
the pathology of PBD. The interaction between these networks
could be disentangled into top-down and bottom-up processes
using spectral dynamic causal modelling (spDCM) (Sabaroedin
et al., 2023), shedding light on the debated interactions between
the triple network and the LN. Furthermore, parametric empirical
Bayes (PEB) can reveal distinct network connections between
PBD patients and healthy controls. What’s more, PEB can identify
different connections between PBD and healthy control (HC)
groups (Zeidman et al., 2019a, 2019b), as well as connections
associated with symptom severity (Bouziane, Das, Friston,
Caballero-Gaudes, & Ray, 2022). We hypothesize that (1) the
bottom-up connections from LN to triple networks may represent
trait-associated characteristics of PBD, as compared to HC, and
(2) top-down connections from triple networks to LN may be
associated with symptom-related factors.

Methods and materials

Dataset and participants

Adolescents diagnosed with BD (N = 92; age 11–21) (Sawyer,
Azzopardi, Wickremarathne, & Patton, 2018; Van Meter,
Moreira, & Youngstrom, 2011), were recruited from child and
Adolescent Psychiatry Clinics. Age- and sex-matched HC adoles-
cents (N = 40) were recruited primarily from public schools
through advertisements. Specific exclusion criteria can be found

in the supplementary material. All participants were fully informed
of the procedures, and their guardians provided informed consent.
This study was approved by the local research ethics board
(NJNU-2019-SYLL-018). Licenced child-adolescent psychiatrists
conducted semi-structured diagnostic interviews for all participants
using the Affective Disorders and Schizophrenia Scale for
School-Age Children-Present and Lifetime Version (K-SADS-PL).
All diagnoses were confirmed based on DSM-IV criteria.

Demographic and clinical assessments were performed on the
samedayasneuroimaging.Datawas acquired fromtwo siteswithdif-
ferent protocols: the Xiangya SecondHospital (XYH) protocol at the
Pediatric Psychiatry Clinic of Changsha Xiangya Second Hospital,
Hunan province (53PBD, 21HC), and the Nanjing Brain Hospital
(NBH) protocol at the Nanjing Brain Hospital Affiliated to
Nanjing Medical University in Jiangsu (39PBD, 19HC).

Medication and comorbidity

Across both sites, 49 participants were treated with one or more of
the following medications: lithium, valproate, second-generation
antipsychotics, and antidepressants. Reported comorbidities
included attention deficit hyperactivity disorder (ADHD, N = 7),
oppositional defiant disorder (ODD, N = 5), generalized anxiety
disorder (GAD, N = 3), and borderline personality disorder
(BPD, N = 1).

Clinical assessments

The Mood and Feelings Questionnaire (MFQ) and the Young
Mania Rating Scale (YMRS) were used to assess depression and
manic symptoms in 53 patients at XYH and 3 patients at NBH,
respectively. For the remaining 36 patients at NBH, the
Hamilton Depression Scale (HAMD) and the Mood Disorder
Questionnaire (MDQ) were used to evaluate depressive and
manic symptoms, respectively. To maintain the original distribu-
tion of scores, Min-Max Normalization (Jain, Nandakumar, &
Ross, 2005) was applied to standardize depression and manic
scores across a common range. This normalization process was
implemented in MATLAB using the code provided by
Friedman and Komogortsev (2019).

MRI data acquisition

During the MRI scans, participants were instructed to relax,
remain still with closed eyes, and stay awake. Foam padding was
used to minimize head movement. MRI data were collected from a
3 T Siemens scanner at the Magnetic Resonance Centers of both
NBHandXYH.Theparameters for the functional imageswere as fol-
lows: repetition time (TR) = 2000ms, echo time (TE) = 30ms,
30 slices, slice thickness = 4.00mm, gap = 0.4 mm, field of view
(FOV) = 240 × 240mm, matrix size = 64 × 64, and flip angle = 90°.
The scan lasted 500 s, capturing 250 volumes at NBH and 240 at
XYH.

Preprocessing of rs-fMRI

Preprocessing was performed using DPABI V7.0 (Yan, Wang,
Zuo, & Zang, 2016), as follows. The first 10 or 20 images (for
NBH and XYH, respectively) of each rs-fMRI session were dis-
carded to ensure steady-state longitudinal magnetization, leaving
230 rs-fMRI volumes for analysis. First, resting-state fMRI images
were slice-timing corrected using the central slice of each volume

4714 Rong Wang et al.

https://doi.org/10.1017/S0033291724002885 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724002885


as the reference. Next, images were realigned to the first functional
volume of each session. After realignment, functional and struc-
tural T1 images were manually corregistered and transformed
from the individual native space to the standard Montreal
Neurological Institute (MNI) space. The generated images were
spatially smoothed with a Gaussian kernel of 6 mm at full
width at half-maximum. The resulting fMRI data were linearly
trend removed and band-pass (0.0078–0.1 Hz) filtered to reduce
low-frequency drift and high-frequency noise (Almgren et al.,
2018). Subsequently, micro-head motion effects were regressed
using the Friston-24 head motion parameter model. Mean signals
from white matter and cerebrospinal fluid nuisance variables were
removed from the preprocessed time courses by multiple linear
regression analysis using the SPM12 software package (www.fil.
ion.ucl.ac.uk/spm/software/spm12).

For functional connectivity analyses of resting state data, it is
crucial to regress out motion and physiological parameters.
However, this step is not required for independent component
analysis (ICA) since it separates motion and physiological noise
as independent components (Goulden et al., 2014).

Independent component analysis

Independent component analysis (ICA) was carried out using the
Group ICA of fMRI toolbox (GIFT, http://mialab.mrn.org/
software/gift/) to identify independent components (ICs) across
all 132 participants. Dimension estimation was conducted using
the minimum description length criterion (Jafri, Pearlson,
Stevens, & Calhoun, 2008), to determine the optimal number of
ICs for the datasets from the three groups. A template-matching
procedure was then employed to select the components with the
highest spatial correlation to the DMN, CEN, SN, and LN.

The GIFT toolbox provides Resting State Network (RSN) tem-
plates derived from resting-state data. DMN, SN, and CEN tem-
plates were obtained from the Functional Imaging Unit at the
Neuropsychiatric Disorders Laboratory at Stanford University,
California (http://findlab.stanford.edu/functional_ROIs). In line
with previous studies (Bryant et al., 2005; Tost et al., 2010), the
LN template was constructed using the Wake Forest University
(WFU) PickAtlas utility (http://www.fmri.wfubmc.edu/). This
LN template included key regions such as the temporal pole, orbi-
tofrontal cortex (OFC) (Schaefer et al., 2018); hippocampus,
amygdala, parahippocampus, and striatum (Catani, Dell’Acqua,
& Thiebaut De Schotten, 2013).

To visualize the spatial distribution of each network’s inde-
pendent components across participants, one-sample t tests
were conducted using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/).

Dynamic causal modeling

DCM estimates the causal architecture (effective connectivity) of
distributed neuronal responses from observed BOLD (Blood-
Oxygen-Level-Dependent) signals recorded from fMRI.

For the preprocessed rs-fMRI data, fully connected intrinsic
DCMs were specified in SPM12 (v7771) (http://www.fil.ion.ucl.
ac.uk/spm,spm_dcm_specify.m) using 18 regions of interest
(ROIs), with 6 mm radius spheres centered on the ICA-derived
MNI coordinates. ComBat harmonization (Fortin et al., 2017,
2018; Johnson, Li, & Rabinovic, 2007) was applied to correct for
scanner site effects on the DCM indices after model specification.

After extracting the rs-fMRI time series from the ROIs, we
used cross-spectral DCM (Zeidman et al., 2019a; spm_dcm_fit.m)

to estimate each subject’s pairwise effective connectivity.
The theoretical foundation and optimization process of DCM
are provided in the supplementary materials. We performed a
diagnostic test for each DCM (spm_dcm_fmri_check.m) to evalu-
ate both model convergence and accuracy of the model inversion
by assessing the percentage of variance explained by the DCM
model when fitted to the observed cross-spectral data. All models
showed reliable results, with no participant having less than 10%
variance explained (Zeidman et al., 2019a).

PEB for group DCM

After inverting each subject’s fully connected DCM, a Parametric
Empirical Bayes (PEB) analysis was conducted to estimate group-
level effective connectivity (EC), group differences, and the linear
relationship between symptom severity reports and each EC link
(Zeidman et al., 2019b; spm_dcm_peb.m). This was done using a
general linear model (GLM) based on subject-specific parameters.
The expected values and the associated uncertainty (posterior
covariance) of the parameters for each connection were then ana-
lyzed at the between-subject or group level (Zeidman et al.,
2019b). Further details of these analyses are provided in the
supplementary materials.

To assess effective connectivity strength from a network
perspective, Bayesian contrasts were used to compute the averaged
network ECs, taking into account the full posterior distribution of
each EC parameter rather than relying on the arithmetic mean
of parameter expectations (Nicenboim, Schad, & Vasishth, 2023,
https://github.com/bnicenboim/bcogsci). This approach was also
applied in previous studies (Zhang et al., 2022; Zhou et al., 2018).
Please see the supplementary for specific procedure.

Leave-one-out cross validation analysis

We tested whether depression and mania scores, as well as group
differences, could be predicted from subject-specific estimates of
effective connectivity (EC) using a leave-one-out cross-validation
(LOOCV) analysis (Friston et al., 2016; Zeidman et al., 2019b),
implemented in SPM12 (spm_dcm_loo.m). To focus on the EC
parameters with the strongest evidence of being non-zero, we applied
a threshold of 95% posterior probability for inclusion, following pre-
vious approaches. The parameters were estimated using Bayesian
Model Averaging (BMA); further details can be found in the supple-
mentarymaterials. In each iteration, one participant was left out, and
a PEBmodel was inverted to predict the left-out subject’s score based
on the selected EC connections (Bouziane et al., 2022).

NeuroSynth

Cognitive terms associated with the brain regions most predictive
in the LOOCV analysis were identified using the NeuroSynth
database based on a set of 400 topic terms (https://github.com/
neurosynth/neurosynth). An automated parsing method, relying
on multiple association metrics, was applied to extract psycho-
logical and cognitive terms from this pool. The results were orga-
nized using a posterior probability matrix (Lu et al., 2022).

Results

Demographic variables

Table 1 summarizes the demographic and clinical characteristics
of the participants. There were no significant differences in age
or gender distribution between the PBD and HC groups.
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Resting state network spatial distribution map

ICA revealed 25 independent components, five of which were
identified as corresponding to the DMN (r = 0.47), left and
right CEN (r = 0.37 for both), SN (r = 0.42), and LN (r = 0.19),
based on template matching analysis. The spatial distribution of
these five RSNs was illustrated by the results of a one-sample
t test (Fig. 1). The DMN ROIs consisted of subgenual ACC
(sgACC, anterior DMN), angular and combined posterior cingu-
late cortex-precuneus (PCC-Precun) (posterior DMN), according
to Clancy et al. (2023); Yokoyama et al. (2018); Zhang and Raichle
(2010). The ROIs of the CEN were located in dorsolateral frontal
(including middle frontal gyrus, MFG) and parietal (including
parietal lobule, IPL) neocortices (Feng et al., 2021; Liu et al.,
2021; Seeley et al., 2007). The SN was anchored by the dorsal ACC
(dACC) and the anterior insula (AI) (Hogeveen, Krug, Elliott, &
Solomon, 2018; Seeley et al., 2007). The LN included the hippocam-
pus, amygdala, and caudate (Lim et al., 2013; Ong et al., 2012).
The key brain regions included in each network are listed in Table 2.

Similarity and group comparison of the causal connections
across HCs and PBDs

The group-mean effective connectivity results are shown in panels
A and B(a) of Fig. 2 (free energy threshold, Bayesian posterior
probability > 0.95). In the triple network model, the connections
between the CEN and DMN and from the CEN to the SN were
generally inhibitory. Specifically, inhibitory connections were
observed from the right MFG to the sgACC and dACC, from
the left IPL to the right angular gyrus, and from the
PCC-Precun to the IPL. In contrast, connections between the
DMN and LN, the CEN and LN, and the SN and LN shared simi-
lar excitatory patterns, suggesting that the triple networks may
interact collectively with the LN.

Panels A and B(b) of Fig. 2 (free energy threshold, 95%)
show group-specific differences in effective connectivity. In
the PBD group, dysfunctional connections were observed
from the LN to the SN, within the SN, and between the DMN
and SN.

Table 1. Demographic and clinical characteristics of participants

Characteristics PBD (N = 92) HC (N = 40) t/χ2 p

Age (years) 16.21 ± 2.40* 16.05 ± 2.94* 0.32a 0.75

Gender (F/M) 62/30 29/11 0.34b 0.56

Comorbidity (T/F) 16/76 NA NA NA

Medicine (T/F) 49/43 NA NA NA

raw HAMD/MFQ 32.14 ± 10.10* (N = 36)/14.66 ± 13.99* (N = 56) NA NA

normalization HAMD/MFQ 0.52 ± 0.23* (N = 36)/0.28 ± 0.29* (N = 56) NA NA NA

raw MDQ/YMRS 5.54 ± 3.00* (N = 36)/14.45 ± 13.53* (N = 56) NA NA NA

Normalization MDQ/YMRS 0.43 ± 0.23* (N = 36)/0.31 ± 0.31*(N = 56) NA NA NA

Abbreviation: PBD, Pediatric Bipolar Disorder; HC, healthy control; HAMD, Hamilton depression scale; MDQ, Mood Disorder Questionnaire; MFQ, Mood and Feelings Questionnaire; YMRS,
Young Mania Rating Scale.
*Mean ± S.D.
aThe p value was obtained by a two-sample t test.
bThe p value was obtained by a χ2 test.

Figure 1. Results of one-sample t test in 5 RSNs of all subjects, shown by BrainNet Viewer. (a), (b), (c), (d), AND (e) respectively demonstrates the DMN, left/right
CEN, SN, LN ( p < 0.05, FEW corrected).
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Changes in effective connectivity with depression and mania
scores

Panel C of Fig. 2 shows the specific connections significantly asso-
ciated with depression and mania scores. To visualize the changes
at the network level, average values within each submatrix were
calculated using Bayesian contrasts (see panel D of Fig. 2).

In subjects with higher depression severity, connections within
the CEN, DMN, and LN were more excitatory, while inter-
network connections among the triple networks were more
inhibitory. Additionally, connections from the triple networks
to the LN were more excitatory. In contrast, patients with higher
mania scores exhibited an almost opposite polarity (see panel
D(c) of Fig. 2).

Both manic and depressive symptoms showed a similar pattern
in terms of LN-to-triple network connections. Specifically, the LN
exerted inhibitory effects on the DMN and SN but excitatory
effects on the CEN, as shown in panel D(d) of Fig. 2.

Cross validation

In the LOOCV of all connections significantly associated with
depression or mania scores or showing significant group differ-
ences, several connections were found to predict depression and
mania scores, as well as group differences, at a significance level
of α = 0.05 (see online Supplementary SI Table S2, Fig. 3).
The dysconnectivity circuits in PBD, compared to HCs, were pre-
dominantly related to the LN, which accounted for 3/4 of the sig-
nificant connections.

The LOOCV analysis for predicting mania severity revealed
that 5 out of 6 connections were associated with the caudate,
involving mutually inhibitory relationships between the caudate
and angular gyrus, as well as between the caudate and hippocam-
pus. Similarly, the LOOCV analysis for predicting depression

severity indicated that the hippocampus was the only region
with abnormal connectivity across all three networks (see online
Supplementary Fig. S1).

Meta-analysis cognitive terms relevant to caudate and
hippocampus

Cognitive associations related to the caudate and hippocampus
were identified through automatic parsing in NeuroSynth.
The different top terms generated may suggest distinct aspects
of symptoms in PBD, as reflected by the two sets of coordinates
(Fig. 4 and online Supplementary SI Fig. S2), corresponding to
mania and depression, respectively.

Discussion

PBD is widely recognized as a dysconnectivity disorder, as sup-
ported by numerous (Luciano et al., 2023). However, a detailed
characterization of the causal influences in PBD and their correla-
tions with symptoms has been lacking. This study demonstrated
that the core pathological alteration in PBD lies in the disruption
of bottom-up connections from the LN to the SN, as well as in
the connections between the SN and DMN, compared to HC.
Additionally, significant correlations between brain activity and
mood states – specifically depression and mania – were primarily
observed in the hippocampus and caudate regions. The differences
between brain activity related to depression and mania were pre-
dominantly found in the top-down connectivity from the triple net-
work to the LN. Furthermore, we replicated the previously reported
bidirectional abnormal interactions within the triple network
model (Lopez-Larson et al., 2017; Zhang et al., 2022).

We observed that the four core networks shared similar inter-
action patterns across HCs and PBD patients. The connection

Table 2. The peak MNI coordinates of the 18 group-level regions of interest

Network num Brain region MNI coordinates (x,y,z) t value p FWE−corr

DMN 1 sgACC 3, 36, −9 13.33 < 0.001

2 PCC-Precun −3, −54, 9 19.94 < 0.001

3 Angular_R 45, −66, 30 17.94 < 0.001

4 Angular_L −42, −66, 33 11.75 < 0.001

CEN 5 MFG_R 39, 27, 30 18.53 < 0.001

6 MFG_L −39, 30, 33 12.51 < 0.001

7 IPL_R 51, −45, 45 25.15 < 0.001

8 IPL_L −45, −51, 42 19.84 < 0.001

SN 9 dACC_R 6, 27, 21 21.05 < 0.001

10 dACC_L −6, 30, 21 20.45 < 0.001

11 AI_R 39, 12, 0 17.04 < 0.001

12 AL_L −36, 12, 0 17.66 < 0.001

LN 13 Caudate_R 12, 9, 3 21.79 < 0.001

14 Caudate_L −12, 12, 0 18.85 < 0.001

15 Hippocampus_R 33, −18, −6 11.03 < 0.001

16 Hippocampus_L −21, −21, −12 9.95 < 0.001

17 Amygdala_R 27, 6, −15 12.22 < 0.001

18 Amygdala_L −24, 0, −12 13.94 < 0.001
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between the DMN and CEN exhibited a mutual inhibitory influ-
ence, which is in line with previous findings in healthy volunteers
(Sharaev, Zavyalova, Ushakov, Kartashov, & Velichkovsky, 2016;

Uddin, Clare Kelly, Biswal, Xavier Castellanos, & Milham, 2009;
Zhou et al., 2018) and BD patients (Zhang et al., 2022). It is
widely accepted that the DMN is a distributed network of brain

Figure 2. Effective connectivity.
Panel A shows the group-common and group-differences effects of EC (Hz) where the posterior probability exceeds 95% (strong evidence). Panel B shows the mean
effective connectivity values from Panel A, viewed from a network perspective and calculated using Bayesian contrast, with an estimated error of less than 0.05.
Panel C shows the relationship between symptom severity and EC in the PBD group (N = 92), where the posterior probability is greater than 95% (strong evidence).
Panel D represents symptom severity associated with the averaged EC in PBD, computed through Bayesian contrast, with an estimated error of less than 0.05.
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Figure 3. The results of LOOCV.
Left panel: Several connections were found to predict depression and mania scores, and group differences at a significant level of α = 0.05.
Right panel: Distributions of certain ECs with significant prediction ability. (a) Shows the excitatory EC from the left Amygdala to the right dACC in HC and PBD
groups. (b) Relationship between excitatory EC from left hippocampus to MFG and depression scores. The scatter points and regression line (90% confidence inter-
val, shaded area) depict the association. (c) Relationship between inhibitory EC from right caudate to right angular and mania scores, illustrated by scatter points,
regression line, and 90% confidence interval.
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regions more active during rest than during the performance of
many attention-demanding tasks (Menon, 2023; Mittner,
Hawkins, Boekel, & Forstmann, 2016; Whitfield-Gabrieli & Ford,
2012). Conversely, as part of a complex high-level cognitive net-
work, the CEN shows increased activation during stimulus-driven
cognitive or affective processing (Cole & Schneider, 2007;
Dosenbach et al., 2007; Sridharan, Levitin, & Menon, 2008). Thus,
an anticorrelation relationship between the DMN and CEN is com-
monlyobserved (Fox et al., 2005; Greicius, Krasnow, Reiss, &Menon,
2003; Kucyi & Davis, 2014; Molnar-Szakacs & Uddin, 2022).

Importantly, the bidirectional connections between the DMN
and LN, CEN and LN, and SN and LN were similarly excitatory.
This consistent pattern suggests that the LN may interact with the
triple network model as a unified system. One potential explan-
ation for this interaction is the functional differences between
these regions. Previous studies have shown that activations in
LN with subcortical regions are primarily involved in generating
and modulating emotions, while cortical regions play a crucial
role in regulating and controlling emotional responses (Bi, Che,
& Bai, 2022; Dickstein et al., 2010).

Intrinsic large-scale networks are crucial for understanding the
brain alterations in PBD, making group differences particularly
important. Compared to HCs, several connections between cor-
tical (DMN, CEN, SN) and subcortical (LN) regions were identi-
fied as dysfunctional in PBD patients, primarily in bottom-up
connections from the LN to the SN. Notably, these included exci-
tatory connections from the hippocampus and amygdala to the
dACC and from the caudate to the AI. The LN has been identified
as a core site of pathological alteration in BD, driving abnormal
subcortical-cortical coupling and changes in network activity
(Magioncalda & Martino, 2022). Furthermore, the SN is built
around limbic structures, particularly the dACC and insula
(Craig, 2002; Critchley, 2005; Damasio, 2000; Mesulam, 1998),

which integrate highly processed sensory data with visceral, auto-
nomic, and hedonic markers (Damasio, 2000; Seeley et al., 2007).
These brain regions significantly contribute to psychiatric disor-
ders by linking subcortical and cortical areas (Rocchi et al.,
2020). Therefore, we propose that this abnormal process reflects
the LN driving network activity changes through the SN, consist-
ent with the three-dimensional model for BD suggested by
Martino and Magioncalda (2022) and the triple network model
proposed by Menon (2011).

Consistent with prior research, PBD patients primarily exhib-
ited abnormal effective connectivity (EC) between the DMN and
SN compared to HCs, particularly in the inhibitory connection
from the sgACC to the dACC, and excitatory connections from
the PCC to the dACC, the right dACC to the right angular
gyrus, and from the AI to the sgACC. These findings are broadly
in line with previous studies reporting atypical increases in func-
tional connectivity between the DMN and SN in both resting-
state and task-based fMRI, involving regions such as the dACC,
PCC, AI, and mPFC (sgACC) (Dickstein et al., 2007; Gogtay
et al., 2007; Lyoo et al., 2006; Murray, Wise, & Graham, 2017;
Najt et al., 2007; Pavuluri, O’Connor, Harral, & Sweeney,
2007; Wilke, Kowatch, DelBello, Mills, & Holland, 2004). We
speculate that the disrupted development of spatially segregated
networks, such as the SN and DMN, in PBD patients may reflect
delayed brain maturation compared to healthy children and ado-
lescents (Fair et al., 2009; Lopez-Larson et al., 2017; Power, Fair,
Schlaggar, & Petersen, 2010). For instance, alterations in the con-
nections between the ACC and PCC could lead to excessive focus
on external stimuli, potentially contributing to manic phases
(Magioncalda et al., 2015; Rey et al., 2016; Zovetti et al., 2020).

Cross-validation using a PEB framework tested whether group
differences could be predicted based on the effective connectivity
estimates of individual subjects (Bouziane et al., 2022; Friston

Figure 4. Cognitive terms of hippocampus (A, B) and caudate (C, D). Specific coordinates were selected by independent component analysis in Table 2.
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et al., 2016). Notably, 16 individual connections from the four
core networks significantly predicted group differences, indicating
that EC accounted for a substantial portion of the between-group
variance. Crucially, 12 out of the 16 connections involved regions
within the LN, further emphasizing the central role of the LN
in PBD.

PBD patients with higher levels of depression exhibited more
excitatory causal connections from the triple networks to the
LN. In contrast, those with higher levels of mania showed more
inhibitory causal connections from the triple networks to the
LN. These reversed polarity connections were primarily observed
in connections from DMN and SN with LN.

Previous studies have reported changes in resting-state func-
tional connectivity (rsFC) between the DMN and LN (Liu et al.,
2013; Liu, Pu, Wu, Zhao, & Xue, 2019; Phillips, Drevets, Rauch,
& Lane, 2003; Wu et al., 2023), and between the SN and LN
(Chang, Wang, Wu, Lin, & Wang, 2023; Magioncalda &
Martino, 2022; Martino & Magioncalda, 2022), in manic and
depressive states. However, these studies primarily focused on
undirected functional connectivity and rarely examined the inter-
actions from a network perspective. The findings of this study
suggest that state-related differences in brain regions occurred
predominantly in the top-down connections from the triple
networks to LN.

The LOOCV analysis for predicting mania severity revealed
that 5 out of 6 significant connections were related to the caudate
(see online Supplementary Fig. S1). To our knowledge, few studies
have examined causal connectivity associated with mania in BD.
The strong link between mania severity and caudate-related causal
connectivity identified here may align with evidence suggesting a
central role for the caudate in the pathogenesis of mania
(Starkstein et al., 1990, 1991). A consistent finding derived from
traditional symptom localization in brain lesion studies – which
also provides causal inferences (Fox, 2018), revealed a close
relationship between caudate lesions and mania symptoms
One possible explanation is that, in the neurobiology of BD, the
striatum integrates cognitive and affective processes within
cortico-striatal-limbic loops, including the circuits that support
emotion regulation (Lei et al., 2023; McKenna & Eyler, 2012).
The caudate is a key node within this striatal circuitry, neurobio-
logically involved in disturbed emotional reactivity, impaired
emotion regulation, and impulse control (Phillips & Swartz,
2014; Swann, Lijffijt, Lane, Steinberg, & Moeller, 2009; Wessa,
Perlini, & Brambilla, 2015).

The LOOCV analysis for predicting depression severity
revealed that the hippocampus was the only region exhibiting
abnormal connectivity with all three networks (see online
Supplementary Fig. S1). Treatments targeting the hippocampus,
such as ketamine and electroconvulsive therapy, have been
shown to be effective in treating depression in BD (Wade et al.,
2022). Causal structural covariance network analysis, using
Granger causality on sequenced T1-weighted images, demon-
strated that depression-related alterations often originate from
the hippocampus and causally influence the dlPFC and DMN
(Han et al., 2023; Li et al., 2019). Additionally, the insula is crucial
in mediating the modulation of the precuneus by the hippocam-
pus. Intervention studies, such as transcranial magnetic stimula-
tion (TMS), further support the causal link between activity in
these connections and depression symptoms (Philip et al., 2018).

The meta-analysis results also confirmed the relevance of the
caudate and hippocampus to mania and depression severity,
respectively (Fig. 4). For instance, cognitive terms associated

with the caudate included risk-taking, goal-directed activity, BD,
and emotion. In contrast, terms linked to the hippocampus
included affective processes, BD, depression, emotion, DMN,
and emotional regulation.

There are some limitations in our study. First, while this
research provides new insights into alterations in causal connec-
tions among the four core networks in PBD patients, the key
nodes of each network were selected based solely on previous
studies of PBD due to computational constraints. Additionally,
since several PBD patients were on medication, and although
regression was performed to account for this as a nuisance covari-
ate, further investigation into the specific effects of treatment on
EC is warranted.

Conclusion

In summary, the relationship between the triple network and the
LN may reflect an essential marker of PBD. The group differences
observed are linked to an abnormal process, primarily driven by
the LN, which triggers changes in network activity, particularly
through its bottom-up influence on the SN. More importantly,
the differences in brain activity between depressive and manic
mood states are predominantly found in the top-down connectiv-
ity from the triple network to the LN. Additionally, the aberrant
effective connectivity, particularly involving the hippocampus and
caudate, may have pathophysiological relevance for the severity of
depression and mania.
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be found at https://doi.org/10.1017/S0033291724002885
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