
3

General Relativity

In order to discuss the occurrence of singularities and the possible
breakdown of General Relativity, it is important to have a precise
statement of the theory and to indicate to what extent it is unique.
We shall therefore present the theory as a number of postulates about
a mathematical model for space-time.

In § 3.1 we introduce the mathematical model and in § 3.2 the first
two postulates, local causality and local energy conservation. These
postulates are common to both Special and General Relativity, and
thus may be regarded as tested by the many experiments that have
been performed to check the former. In § 3.3 we derive the equations
of the matter fields and obtain the energy-momentum tensor from a
Lagrangian.

The third postulate, the field equations, is given in § 3.4. This is not
so well established experimentally as the first two postulates, but we
shall see that any alternative equations would seem to have one or
more undesirable properties, or else require the existence of extra
fields which have not yet been detected experimentally,

3.1 The space-time manifold

The mathematical model we shall use for space-time, i.e. the collection
of all events, is a pair (JK, g) where JK is a connected four-dimensional
HausdorfF C00 manifold and g is a Lorentz metric (i.e. a metric of
signature + 2) on <Jt.

Two models (~^,g) and (^ ' ,g ' ) will be taken to be equivalent if
they are isometric, that is if there is a diffeomorphism 6: Jt ->Ji'
which carries the metric g into the metric g', i.e. #*g = g'. Strictly
speaking then, the model for space-time is not just one pair (JK, g)
but a whole equivalence class of all pairs {Jt\ g') which are equivalent
to {JK, g). We shall normally work with just one representative mem-
ber (,Jf, g) of the equivalence class, but the fact that this pair is defined
only up to equivalence is important in some situations, in particular
in the discussion of the Cauchy problem in chapter 7.

[56]
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3.1] THE SPACE-TIME MANIFOLD 57

The manifold <Jt is taken to be connected since we would have no
knowledge of any disconnected component. It is taken to be Hausdorff
since this seems to accord with normal experience. However in
chapter 5 we shall consider an example in which one might dispense
with this condition. Together with the existence of a Lorentz metric,
the Hausdorff condition implies that J( is paracompact (Geroch
(1968c)).

A manifold corresponds naturally to our intuitive ideas of the con-
tinuity of space and time. So far this continuity has been established
for distances down to about 10~15cm by experiments on pion scat-
tering (Foley et al. (1967)). It may be difficult to extend this to much
smaller lengths as to do so would require a particle of such high energy
that several other particles might be created and confuse the experi-
ment. Thus it may be that a manifold model for space-time is inap-
propriate for distances less than 10~15cm and that we should use
theories in which space-time has some other structure on this scale.
However such breakdowns of the manifold picture would not be
expected to affect General Relativity until the typical gravitational
length scale became of that order. This would happen when the density
became about 1058gm cm~3, which is a condition so extreme as to be
completely beyond our present knowledge. Nevertheless, by adopting
a manifold model for space-time, and making certain other reasonable
assumptions, we shall show in chapters 8-10 that some breakdowns
of General Relativity must occur. It may be the field equations that
go wrong, or it may be that quantization of the metric is needed, or it
may be a breakdown of the manifold structure itself that occurs.

The metric g enables the non-zero vectors at a point pe*JK to be
divided into three classes: a non-zero vector XeTp being said to be
timelike, spacelike or null according to whether g(K, X) is negative,
positive or zero respectively (cf. figure 5).

The order of differentiability, r, of the metric ought to be sufficient
for the field equations tg_be defined. They can be defined in a distribu-
tional sense if the metric coordinate components gab and gab are con-
tinuous and have locally square integrable generalized first derivatives
with respect to the local coordinates. (A set of functions f;a on Rn are
said to be the generalized derivatives of a function/ on Rn if, for any
C00 function \jf on Rn with compact support,

ifiaft^x = - \ Tl/y \
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58 GENERAL RELATIVITY [3.1

However this condition is too weak, since it guarantees neither the
existence nor the uniqueness of geodesies, for which a C2~ metric is
required. (A C2~ metric is one for which the first coordinate derivatives
of the metric coordinate components satisfy a local Lipschitz condi-
tion, see § 2.1.) We shall in fact assume for most of the book that the
metric is at least C2. This allows the field equations (which involve the
second derivatives of the metric) to be defined at every point. In § 8.4
we shall weaken the condition on the metric to C2~ and show that this
does not affect the results on the occurrence of singularities.

In chapter 7, we use a different kind of differentiability condition
in order to show that the time development of the field equations is
determined by suitable initial conditions. We require there that the
metric components and their generalized first derivatives up to order
m(m ^ 4) are locally square integrable. This would certainly be true if
the metric were C4.

In fact, the order of differentiability of the metric is probably not
physically significant. Since one can never measure the metric exactly,
but only with some margin of error, one could never determine that
there was an actual discontinuity in its derivatives of any order. Thus
one can always represent one's measurements by a (7°° metric.

If the metric is assumed to be Cr, the atlas of the manifold must be
Cr+1. However, one can always find an analytic subatlas in any Cs atlas
(s ^ 1) (Whitney (1936), cf. Munkres (1954)). Thus it is no restriction
to assume from the start that the atlas is analytic, even though one
could physically determine only a Cr+1 atlas if the metric were Cr.

We have to impose some condition on our model (~#,g) to ensure
that it includes all the non-singular points of space-time. We shall say
that the Cr pair (^ ' ,g ' ) is a Cr-extension of («^,g) if there is an iso-
metric Cr imbedding ji: <Jf->,Jf'. If there were such an extension
{JKl\ g') we should have to regard points oiJK' as also being points of
space-time. We therefore require that the model ( ^ ,g ) is Cr-
inextendible, that is there is no Cr extension (JK1', g') of (Jt, g) where
pi{JK) does not equal J?'.

As an example of a pair (u^lf gx) which is not inextendible, consider
two-dimensional Euclidean space with the #-axis removed between
x± = — 1 and x1 = + 1. The obvious way to extend this would simply
be to replace the missing points, but one could also extend it by taking
another copy (^2^2) of the space, and identifying the bottom side
of the a^-axis for 1̂ 1 < 1 with the top side of the #2-axis for \x2\ < 1,
and also identifying the top side of the a^-axis for \xt\ < 1 with the
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3.1] THE SPACE-TIME MANIFOLD 59

bottom side of the #2-axis for \x2\ < 1. The resultant space (^3 , g3) is
inextendible but not complete as we have left out the points xx — ± 1,
yx = 0. We cannot put these points back in because we were perverse
enough to extend the top and bottom sides of the #-axis on different
sheets. If however one takes the subset °ll oiJKz defined by 1 < x± < 2,
— 1 < y± < 1, then one could extend the pair (^,g3|#) and put back
the point xx = 1, y1 = 0. This motivates a rather stronger definition of
inextendibility: a pair (*^,g) is said to be Cr-locally inextendible if
there is no open set °tt <= „# with non-compact closure in «^, such that
the pair (^, g|^) has an extension (<%', g') in which the closure of the
image of °tt is compact.

3.2 The matter fields
There will be various fields on Jt', such as the electromagnetic field, the
neutrino field, etc., which describe the matter content of space-time.
These fields will obey equations which can be expressed as relations
between tensors on ̂  in which all derivatives with respect to position
are covariant derivatives with respect to the symmetric connection
defined by the metric g. This is so because the only relations defined
by a manifold structure are tensor relations, and the only connec-
tion defined so far is that given by the metric. If there were another
connection on ^tf, the difference between the two connections would
be a tensor and could be regarded as another physical field. Similarly
another metric on *Jt could be regarded as a further physical field.
(The equations of the matter fields are sometimes expressed as
relations between spinors on Ji. We do not deal with such relations
in this book, as they are not needed for the problems we wish to
consider. In fact, all spinor equations can be replaced by rather more
complicated tensor equations; see e.g. Ruse (1937).)

The theory one obtains depends on what matter fields one incorpo-
rates in it. One should of course include all such fields which have been
experimentally observed, but one might postulate the existence of as
yet undetected fields. Thus for example Brans and Dicke (Dicke
(1964), appendix 7) postulate the existence of a long range scalar field
which is weakly coupled to the trace of the energy-momentum tensor.
In the form given in Dicke (1964) appendix 2, the Brans-Dicke theory
can be regarded simply as General Relativity with an extra scalar
field. Whether this scalar field has been experimentally detected or
not is at present under dispute.
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60 GENERAL RELATIVITY [3.2

We shall denote the matter fields included in the theory by
y¥(i)

a'~bc...d> where the subscript (i) numbers the fields considered. The
following two postulates on the nature of the equations obeyed by the
x¥(i)a""bc...d a r e common to both the Special and the General Theories
of Relativity.

Postulate (a): Local causality

The equations governing the matter fields must be such that if °ll is
a convex normal neighbourhood and p and q are points in °tt then a
signal can be sent in °ll between p and q if and only if p and q can be
joined by a C1 curve lying entirely in °tt, whose tangent vector is every-
where non-zero and is either timelike or null; we shall call such a curve,
non-spacelike. (Our formulation of relativity excludes the possibility
of particles such as tachyons, which move on spacelike curves.)
Whether the signal is sent from p to q or from q to p will depend on the
direction of time in <W. The problem of whether a consistent direction
of time can be assigned at all points of space-time will be considered
in §6.2.

A more precise statement of this postulate can be given in terms of
the Cauchy problem of the matter fields. Let p e °ll be such that every
non-spacelike curve through p intersects, the spacelike surface #4 = 0
within °ll. Let IF be the set of points in the surface x* = 0 which can be
reached by non-spacelike curves in °U from p. Then we require that the
values of the matter fields at p must be uniquely determined by the
values of the fields and their derivatives up to some finite order on 1F,
and that they are not uniquely determined by the values on any
proper subset of IF to which it can be continuously retracted. (For
a fuller discussion of the Cauchy problem, see chapter 7.)

It is this postulate which sets the metric g apart from the other
fields on Jt and gives it its distinctive geometrical character. If {xa} are
normal coordinates in ^ about p, it is intuitively fairly obvious (and
is proved in chapter 4) that the points which can be reached from p by
non-spacelike curves in °ll are those whose coordinates satisfy

The boundary of these points is formed by the image of the null cone
of p under the exponential map, that is the set of all null geodesies
through p. Thus by observing which points can communicate with^,
one can determine the null cone Np in Tp. Once Np is known, the metric
at p may be determined up to a conformal factor. This may be seen as
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3.2] THE MATTER FIELDS 61

follows: let X, YeTp be respectively timelike and spacelike vectors.
The equation

flf (X + AY, X + AY) = g(X, X) + 2A<7(X, Y) + A ty Y, Y)

= 0

will have two real roots Ax and A2 as g(X, X) < 0 and g(Y, Y) > 0. If
Np is known, Ax and A2 may be determined. But

Thus the ratio of the magnitudes of a timelike vector and a spacelike
vector may be found from the null cone. Then if W and Z are any two
non-null vectors at p,

<7(W,Z) = ifo(W,W) + flr(Z,Z)-0(W+Z,W + Z)).

Each of the magnitudes on the right-hand side may be compared with
the magnitude of either X or Y, and so g(W, Z)/g(X, X) may be found.
(If W + Z is null, the corresponding expression involving W + 2Z
could be used.) Thus observation of local causality enables one to
measure the metric up to a conformal factor. In practice this measure-
ment is performed most conveniently using the experimental fact that
no signal has been observed to travel faster than electromagnetic
radiation. This means that light must travel on null geodesies. This
however is a consequence of the particular equations the electro-
magnetic field obeys, not of the theory of relativity itself. Causality
will be considered further in chapter 6. Among other results, it will be
shown that causal relations may be used to determine the topological
structure of J(. The conformal factor in the metric may be determined
using postulate (b) below; thus all the elements of the theory will be
physically observable.

Postulate (b): Local conservation of energy and momentum

The equations governing the matter fields are such that there exists
a symmetric tensor Tab

9 called the energy-momentum tensor, which
depends on the fields, their covariant derivatives, and the metric, and
which has the properties:

(i) Tab vanishes on an open set °tt if and only if all the matter fields
vanish on °tt,

(ii) Tab obeys the equation

Tab.h = 0, (3.1)
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62 GENERAL RELATIVITY [3.2

Condition (i) expresses the principle that all fields have energy. One
might possibly object to the ' only if on the grounds that there might
be two non-zero fields, one of whose energy-momentum tensor exactly
cancelled that of the other. This possibility is related to that of the
existence of negative energy which will be discussed in §3.3.

If the metric admits a Killing vector field K, equations (3.1) can be
integrated to give a conservation law. To see this, define Pa to be the
vector whose components are Pa = TabKh. Then,

The first term is zero by the conservation equations, and the second
vanishes as Tab is symmetric and 2K(a;b) = LKgab = 0, since K is a
Killing vector. Thus if Of is a compact orientable region with boundary
d3), Gauss' theorem (§2.7) shows

f = P".bdv = O. (3.2)

This may be interpreted as saying that the total flux over a closed
surface of the K-component of energy-momentum is zero.

When the metric is flat, as it is in the Special Theory of Relativity,
one may choose coordinates {xa} in which the components of the metric
are gab = ea dab (no summation) where Sab is the Kronecker delta and
ea is — 1 if a = 4 and is +1 if a = 1, 2,3. Then the following are
Killing vectors: L = dj8xa ( a = i, 2, 3, 4)

a

(these generate four translations) and

M = eax
a—0 — fya0— (no summation; <x,/3 = 1, 2, 3, 4)

afi OX" OX

(these generate six 'rotations' in space-time). These isometries form
the ten-parameter Lie group of isometries of flat space-time known as
the inhomogeneous Lorentz group. One may use them to define ten
vectors Pa and Pa which will obey (3.2). We may think of P as repre-

ss afi 4
senting the flow of energy and P, P, P as the flow of the three compo-

1 2 3
nents of linear momentum. The P can be interpreted as the flow of

a/?

angular momentum.
If the metric is not flat there will not, in general, be any Killing

vectors and so the above integral conservation laws will not hold. How-
ever, in a suitable neighbourhood of a point q one may introduce
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3.2] THE MATTER FIELDS 63

normal coordinates {xa}. Then at q the components gab of the metric are
eaSab (no summation), and the components Ta

bc of the connection are
zero. One may take a neighbourhood Q) of q in which the gab and Ta

hc

differ from their values at q by an arbitrarily small amount; then the
L(a.b) and M(a;b) will not exactly vanish in 2, but will in this neigh-
a afi

bourhood differ from zero by an arbitrarily small amount. Thus

f Pbdcrb and f Pbd<rb
J dQ> a J d9a.fi

will still be zero in the first approximation; that is to say, one still has
approximate conservation of energy, momentum and angular
momentum in a small region of space-time. Using this it can be shown
that a small isolated body moves approximately on a timelike geodesic
curve independent of its internal constitution provided that the energy
density of matter in it is non-negative (for an account of the motion of
a small body in relativity, see Dixon (1970)). This may be thought of
as Galileo's principle that all bodies fall equally fast. In Newtonian
terms one would say that the inertial mass (the m in F = ma) and the
passive gravitational mass (the mass acted on by a gravitational field)
are equal for all bodies. This has been verified to a high order of
accuracy in experiments by Eotvos and by Dicke (1964).

Postulate (a) enables one to measure the metric up to a conformal
factor at each point. Using postulate (b) one may relate these factors
at different points, for the conservation equations Tab. b = 0 would not
in general hold for a connection derived from a metric g = Q?&. One
way of doing this would be to observe the paths of small 'test' particles
and so to determine the timelike geodesic curves. Then if y(t) is such a
curve with tangent vector K = (d/dt)yf one has from (2.29)

Since y{t) is a geodesic with respect to the space-time metric g,
= 0. Thus

A

KV>jtK« = - {K°K%d) K«V*e (log Q).e. (3.3)

Knowing the conformal structure, one can choose a metric g which
represents the conformal equivalence class of metrics and can evaluate
the left-hand side of (3.3) for any test particle. Then the right-hand side
of (3.3) determines (log Q,). b up to the addition of a multiple oiKa()ab.
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64 GENERAL RELATIVITY [3.2

By considering another curve y'(t) whose tangent vector K'a is not
parallel to Ka, one can find (log Q.);b and so can determine fi every-
where up to a constant multiplying factor. This constant factor
specifies one's units of measurement, and so can be chosen arbitrarily.

This is, of course, not the way one measures the conformal factor in
practice; one makes use of the fact that there exist a large number of
similar systems (such as the electronic states of atoms) whose internal
motions define a number of events along the timelike curve which
represents their position in space-time. The intervals between these
events seem to be independent of their past history in the sense that
the intervals measured by two nearby systems correspond. If one can
effectively isolate them against external matter fields (so they must
move on geodesic curves) and if one assumes their internal motion is
independent of the curvature of space-time, then the only thing it can
depend on is the metric. Thus the arc-length between two successive
events on a curve must be the same for each pair of successive events
on any such curve. If one takes this arc-length as one's unit of measure-
ment, one can determine the conformal factor at any point of space-
time.

In fact it may not be possible to isolate a system from external
matter fields. Thus for example in the Brans-Dicke theory there is
a scalar field which is non-zero everywhere. However the conformal
factor can still be determined by the requirement that the conserva-
tion equation Tab

;b = 0 should hold. Thus knowledge of the energy-
momentum tensor Tab determines the conformal factor.

3.3 Lagrangian formulation

The conditions (i) and (ii) of postulate (b) do not tell one how to con-
struct the energy-momentum tensor for a given set of fields, or whether
it is unique. In practice one relies heavily on one's intuitive knowledge
of what energy and momentum are. However, there is a definite and
unique formula for the energy-momentum tensor in the case that the
equations of the fields can be derived from a Lagrangian.

Let L be the Lagrangian which is some scalar function of the fields
x¥t(if""bc...d> their first covariant derivatives, and the metric. One
obtains the equations of the fields by requiring that the action

• / .

Ldv
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3.3] LAGRANGIAN FORMULATION 65

be stationary under variations of the fields in the interior of a compact
f o u r - d i m e n s i o n a l r e g i o n Of. B y a variation ofthe fields^!\i)

a-b
cdm. 3)

we mean a one-parameter family of fields m^u.r) where ue( — e,e)
and r e Jl', such that

(i) Vw(0,r) = Vw(r)f

(ii) ¥(4)(M,r) = ^ ( r ) when reJK-2.

We denote

Then

dl

u=0 (

VT(i) c...d;e

where T(i)
a•••6

c...d;c are the components of the covariant derivatives
of *F(i). But &C¥(i)a-b

Cmmma;c) = (A^)a-6
c.. .d);6> thus the second term

can be expressed as

^ S )
(i) c...d;e/;e

The first term in this expression can be written as

J 2
adv=\ Q°dcra>

where 0 is a vector whose components are

c...d;e

This integral is zero as condition (ii) is the statement that AT^) vanish
at the boundary d&. Thus in order that dIjdu\u=:Q should vanish for
all variations on all volumes Of ̂  it is necessary and sufficient that the
Euler-Lagrange equations,

(i) c.d \ c b )

hold for all i. These are the equations of the fields.
We obtain the energy-momentum tensor from the Lagrangian by

considering the change in the action induced by a change in the metric.
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66 GENERAL RELATIVITY [3.3

Suppose a variation g^Uyr) leaves the fields x¥(i)a""b
c...d unchanged

but alters the components gah of the metric. Then

|| - f
c...d;e

f ^ (3.5)f
The last term arises because the volume measure dv depends on the
metric, and so will vary when the metric is varied. To evaluate this
term, recall that dv is in fact the four-form (4!)~1Y) whose compo-
nents are r/abcd = (-flO**!^1 W*d] 4 > where g = det(gra6). Therefore

Thus

The first term in (3.5) arises because A(xF(i)°-6
c d;e) will not neces-

sarily be zero even though /±}¥uf''
b
c d is, since the variation in the

metric will induce a variation in the components Ta
bc of the connection.

As the difference between two connections transforms like a tensor,
AFa

6c may be regarded as the components of a tensor. They are related
to the variation in the components of the metric by

(The easiest way to derive this formula is to note that since it is a tensor
relation, it must be valid in any coordinate system. In particular, one
could choose normal coordinates about a point p. For these coordinates
the components Ta

hc and the coordinate derivatives of the components
gah vanish at p. The formula given can then be verified to hold &tp.)
Using this relation, ^¥{i)

a"b
c d;e may be expressed in terms of

(A<76c). d and the usual integration by parts employed to give an inte-
grand involving Agab only. Thus we may write dljdu as

where T"** are the components of a symmetric tensor which is taken
to be the energy-momentum tensor of the fields. (See Rosenfeld (1940)
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3.3] LAGRANGIAN FORMULATION 67

for the relation between this tensor and the so-called canonical energy-
momentum tensor.)

This energy-momentum tensor satisfies the conservation equations
as a consequence of the field equations obeyed by the x¥(i)

a""b
c...d- For

suppose one has a diffeomorphism </>: ~#-+J( which is the identity
everywhere except in the interior of 3)'. Then, by the in variance of
integrals under a differential map,

/ = f Ldv = ± f 2*, = A f iyi = -L f p{Ln)m

Thus 1 f (ir)-^(iyj)) = O.
4! J®

If the diffeomorphism <f> is generated by a vector field X (non-zero only
in the interior oiQ)) it follows that

But

l f T<»Lxgabdv.

The first term vanishes as a consequence of the field equations. In the
second term, Lxgab = 2Xia;b). Thus

f
The first contribution may be transformed into an integral over the
boundary of 3) which vanishes as X is zero there. Since the second
term must therefore be zero for arbitrary X, it follows that Tab. h = 0.

We shall now give as examples Lagrangians for some fields which
will be of interest later.

Example 1: A scalar field ^

This can represent, for example, the 7r°-meson. The Lagrangian is

where m, ft are constants. The Euler-Lagrange equations (3.4) are
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The energy-momentum tensor is

Example 2: The electromagnetic field

This is described by a one-form A, called the potential, which is defined
up to the addition of a gradient of a scalar function. The Lagrangian is

L = " i FabFcd9™9bd>

where the electromagnetic field tensor F is defined as 2dA, i.e.
Fab = 2A[b;a]. Varying Aai the Euler-Lagrange equations (3.4) are

This and F[ab;c] = 0 (which is the equation dF = d(dA) = 0) are the
Maxwell equations for the source-free electromagnetic field. The
energy-momentum tensor is

T^ = -^(F^Fntf*- ig^FugUg*). ( 3 7 )

Example 3: A charged scalar field

This is really a combination of two real scalar fields ^rx and \jr2. These
are combined into a complex scalar field xjr = ^x + ii/r2f which could
represent, for example, n+ and n~ mesons. The total Lagrangian of the
scalar field and electromagnetic field is

L = -h(f;a + ̂ air)g»Hflb-ieAbt)--^M- —FabFcdg^g^9

where e is a constant and rjr is the complex conjugate of ft. Varying
\jr, xjr and Aa independently, one obtains

; ^ 2 ;bg^^ = 0,

and its complex conjugate, and

A ^ + iefdr.a + ieA^) = 0.

The energy-momentum tensor is
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Example 4: An isentropic perfect fluid

The technique here is rather different. The fluid is described by a
function p, called the density, and a congruence of timelike curves,
called the flow lines. By a congruence of curves, is meant a family of
curves, one through each point of Jt. If 3> is a sufficiently small com-
pact region, one can represent a congruence by a diffeomorphism
y: [a, b] x Jf->3) where [a, b] is some closed interval of R1 and Jf is
some three-dimensional manifold with boundary. The curves are said
to be timelike if their tangent vector W = (d/dt)Y, t e [a, 6], is timelike
everywhere. The tangent vector V is defined by V = (— g(W, W))~£ W,
so g(V, V) = — 1, and the fluid current vector is defined by j = p\. It
is required that this is conserved, i.e. j a . a = 0. The behaviour of the
fluid is determined by prescribing the elastic potential (or internal
energy) e as a function of p. The Lagrangian is taken to be

and the action / is required to be stationary when the flow lines are
varied and p is adjusted to keep j a conserved. A variation of the flow
lines is a differentiable map y: ( - 8,8) x [a, b] x ./f'-> 3) such that

and y(u,[a,blJr) = y([a,blJS') on J(-$, (ue(-8,8)).

Then it follows that AW = LK W where the vector K is K = (djdu)r

This vector may be thought of as representing the displacement, under
the variation, of a point of the flow line. It follows that

AF«= Va.bK
b-K*ibV

b-VaVbKb;eV
c.

Using the fact that A(ja. a) = 0 = (Aja). a, one has

Substituting for AFa and integrating along the flow lines, one finds

Ap = (pK%b+pKb.cV»V°.

Therefore the variation of the action integral is

Integrating by parts,

du ,,y = o
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where ta = Va. b V
b. If this is zero for all K, it follows that

where [i = p(l + e) is the energy density and p = p2(de/dp) is the
pressure. Thus Va, the acceleration of the flow lines, is given by the
pressure gradient orthogonal to the flow lines.

To obtain the energy-momentum tensor one varies the metric. The
calculations may be simplified by noting that the conservation of the
current may be expressed as

Given the flow lines, the conservation equations determine j a uniquely
at each point on a flow line in terms of its initial value at some given
point on the same flow line. Therefore Q — g)ja is unchanged when the
metric is varied. But

so 2pkp = (j°j* -jcjcg
ab)

and thus Tab = (p(l+e)+p2^j VaVb+p2^

= (/i+p)VaVb+pgab. (3.8)

We shall call any matter whose energy-momentum tensor is of the
above form (whether or not it is derived from a Lagrangian) a, perfect
fluid. From the energy and momentum conservation equations (3.1)
applied to (3.8) one finds

a
;a = 0, (3.9)

VaVb)p;b = 0. (3.10)

These are the same as the equations derived from the Lagrangian. We
shall call a perfect fluid isentropic if the pressure p is a function of the
energy density /i only. In this case one can introduce a conserved
density p and an internal energy e and derive the equations and the
energy-momentum tensor from a Lagrangian.

One may also give the fluid a conserved electric charge e (i.e.
Ja. a = 0 where J = e V is the electric current). The Lagrangian for
the charged fluid and the electromagnetic field is

L = ^
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The last term gives the interaction between the fluid and the field.
Then varying A, the flow lines and the metric respectively, one finds

Fab
;b = 4nJa,

V" = -p;b(g
ab+ V«

Tab = (/i+p) VaVb+pgab + -}-(Fa
cF

bc- lgabFcdF
cd).

3.4 The field equations

So far, the metric g has not been specified. In the Special Theory of
Relativity, which does not include gravitational effects, it is taken to
be flat. One might think that one could include gravitation by keeping
the metric flat and by introducing an extra field on space-time. How-
ever, experiments have shown that light rays travelling near the sun
are deflected. Since light rays are null geodesies, this shows that the
space-time metric cannot be flat or even conformal to a flat metric.
One therefore has to give some prescription for the curvature of
space-time. It turns out that this prescription can be chosen so as to
reproduce the results of Newtonian gravitation theory in the limit of
small slowly varying curvature. It is therefore not necessary to intro-
duce an extra field to describe gravitation. This is not to say that there
could not be an additional field that produced part of the gravitational
effects. Such a scalar field has been suggested by Jordan (1955), and
Brans and Dicke (see Dicke (1964)). However, as mentioned before,
such an additional field could be regarded as simply another matter
field and included in the total energy-momentum tensor. We therefore
adopt the view that the gravitational field is represented by the
space-time metric itself. The problem then becomes one of finding
field equations to relate the metric to the distribution of matter.

These equations should be tensor equations involving the matter
only through its energy-momentum tensor, i.e. should not distinguish
between two different matter fields which have the same distribution
of energy and momentum. This can be regarded as a generalization of
the Newtonian principle that the active gravitational mass of a body
(the mass producing a gravitational field) is equal to the passive gravi-
tational mass (the mass acted on by the gravitational field). This has
been verified experimentally by Kreuzer (1968).

To determine what the field equations should be, we shall consider
the Newtonian limit. Since the Newtonian gravitational field equation
does not involve time, the correspondence with Newtonian theory
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should be made in a metric which is static. By a static metric is meant
a metric which admits a timelike Killing vector field K which is
orthogonal to a family of spacelike surfaces. These surfaces may be
regarded as surfaces of constant time and may be labelled by the
parameter t. We define the unit timelike vector V as /~1K, where
P = -KaKa. Then Va

;b = - Va Vb, where Va = Va
;b Vb =f-1f;bg

ab

represents the departure from geodesity of the integral curves of V
(which are of course also integral curves of K). Note that Va Va = 0.

These integral curves define the static frame of reference, that is to
say, the space-time metric seems to be independent of time to a
particle whose history is one of these curves. A particle released from
rest and following a geodesic would appear to have an initial accelera-
tion of — V with respect to the static frame. If/ differs only slightly
from unity the initial acceleration of a freely moving particle released
from rest is approximately minus the gradient of/. This suggests that
one should regard/— 1 as the quantity analogous to the Newtonian
gravitational potential.

One can derive an equation for this potential by considering the
divergence of Va:

Va
;a=(Va

;bV
b);a= V«;biaV

b+V«.bV
b.a

= Rab V»Vb + (V«.a);h Vb + (Vb t
b)* = Rab V»Vb.

But V";a= (f-1f;b9
ab);a= ~f~2f; af; *t* +/"1/; ta 9^

and f;ab V«Vb = - / ; f l F«;6 V
b = - / - 1 / ; a / ; 6 ^ ,

so one finds / . ab(g
ab + Va Vb) = fRab VaVb.

The term on the left is the Laplacian of/ with respect to the induced
metric in the three-surface {t = constant}. If the metric is almost flat,
this will correspond to the Newtonian Laplacian of the potential.
One would therefore obtain agreement with Newtonian theory in the
limit of a weak field (i.e. when/ ^ 1) if the term on the right is equal
to 47rG times the matter density plus terms which are small in the weak
field limit.

This will be the case if there is a relation of the form

K, = Kabi (3.11)

where Kab is a tensorial function of the energy-momentum tensor and
the metric, which is such that (47r(?)~1

JK'a6 V
aVb is equal to the matter

density plus terms which are small in the Newtonian limit. We shall
for the moment assume a relation of this form.
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Since Rab satisfies the contracted Bianchi identities Ba
b
;b = %R;a,

(3.11) implies Rb _1K

This shows that the apparently natural equation Kab = 4nGTab cannot
be correct, since (3.12) and the conservation equations Ta

b.b = 0
would imply T. a = 0. For a perfect fluid, for example, this would mean
that fi — 3p was constant throughout space-time, which is clearly not
satisfied by a general fluid.

In fact in general, the only first order identities satisfied by the
energy-momentum tensor are the conservation equations. From this
it follows that the only tensorial function Kab of the energy-momentum
tensor and the metric which obeys the identities (3.12) for all energy-
momentum tensors, is

, (3.13)

where K and A are constants. The values of these constants can be
determined from the Newtonian limit. Consider a perfect fluid with
energy density /i and pressure ̂  whose flow lines are the integral curves
of the Killing vector (i.e. the fluid is at rest in the static frame). The
energy-momentum tensor is given by (3.8). Putting this in (3.13) and
(3.11), one finds

A). (3.14)

In the Newtonian limit the pressure^ is normally very small compared
to the energy density fi. (We are using units in which the speed of
light is unity. In units in which the speed of light is c, the expression
/i + 3p should be replaced by ju, + 3p/c2.) One would therefore obtain
approximate agreement with Newtonian theory if K = 8nG and if | A|
is very small. We shall use units of mass in which G = 1. In these units,
a mass of 1028gm corresponds to a length of lcm. Sandage's (1961,
1968) observations of distant galaxies place limits on |A| of the order
of 10~56 cm"2; we shall normally take A to be zero, but shall bear in
mind the possibility of other values.

One may then integrate (3.14) over a compact region^" of the three-
surface {t = constant} and transform the left-hand side into an integral
of the gradient of/ over the bounding two-surface

f /(47r(/* + 3^))dcr= f f.

= f f;a(9ab+VaVb)drb9
J d&
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where da is the volume element of the three-surface {t = constant} in
the induced metric, and drb is the surface element of the two-surface
d!F in the three-surface. This gives the analogue of the Newtonian
formula for the total mass contained within a two-surface. There are
however two important differences from the Newtonian case:

(i) a factor / appears in the integral on the right-hand side. This
means that matter placed in a region where/is considerably less than
one (a large negative Newtonian potential) makes a smaller contribu-
tion to the total mass than does the same matter in a region where/is
almost one (small negative Newtonian potential);

(ii) the pressure contributes to the total mass. This means that in
some circumstances it can actually assist rather than prevent gravita-
tional collapse.

The equations ^

are called the Einstein equations and are often written in the equivalent
f o r m (R-iRg) + Ag = SnT (3.15)

Since both sides are symmetric, these form a set of ten coupled non-
linear partial differential equations in the metric and its first and
second derivatives. However the covariant divergence of each side
vanishes identically, that is,

and Tab
;b = 0

hold independent of the field equations. Thus the field equations really
provide only six independent differential equations for the metric.
This is in fact the correct number of equations to determine the space-
time, since four of the ten components of the metric can be given
arbitrary values by use of the four degrees of freedom to make co-
ordinate transformations. Another way of looking at this is that two
metrics gx and g2 on a manifold Jt define the same space-time if there
is a diffeomorphism 6 which takes gx into g2. Therefore the field equa-
tions should define the metric only up to an equivalence class under
diffeomorphisms, and there are four degrees of freedom to make
diffeomorphisms.

We shall consider the Cauchy problem for the Einstein equations
in chapter 7, and shall show that, together with the equations for the
matter fields, they are sufficient to determine the evolution of space-
time given suitable initial conditions, and that they satisfy the
causality postulate (a).
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The Einstein equations can be derived by requiring that the action

/ = f (A(R-2A) + L)dv (3.16)

be stationary under variations of g^* where L is the matter Lagrangian
and A a suitable constant. For

A((R - 2A) dv) = ((B - 2A) ig*bAgab + Rab Ag«b + gabARab) dv.

The last term can be written

g«bARabdv = g°b((Arc
ab).c-(Ar<ac);b)dv

Thus it may be transformed into an integral over the boundary
which vanishes as A F ^ vanishes on the boundary. Therefore

= f
J2

(3.17)

and so if dljdu vanishes for all Agab, one obtains the Einstein equations
on setting A = (167T)-1.

One might ask whether varying an action derived from some other
scalar combination of the metric and curvature tensors might not give
a reasonable alternative set of equations. However the curvature scalar
is the only such scalar linear in second derivatives of the metric tensor;
so only in this case can one transform away a surface integral and be
left with an equation involving only second derivatives of the metric.
If one tried any other scalar such as RabR

ab or RabcdR
abcd one would

obtain an equation involving fourth derivatives of the metric tensor.
This would seem objectionable, as all other equations of physics are
first or second order. If the field equations were fourth order, it would
be necessary to specify not only the initial values of the metric and its
first derivatives, but also the second and third derivatives, in order to
determine the evolution of the metric.

We shall assume the field equations do not involve derivatives of
the metric higher than the second. If these field equations are derived
from a Lagrangian, then the action must have the form (3.16). One
could however obtain a system of equations other than the Einstein
equations, if one restricted the form of the variations Agab for which
the action was required to be stationary.

For example, one could restrict the metric to be conformal to a flat
metric, i.e. assume

9ab =
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where 7jab is a flat metric as in Special Relativity. Then

Agab = 2Q-iAQgab

and the action will be stationary if

{(A(±R-A)g<*-R<*) + T<*}AQgab = 0

for all AQ, that is if R + A~XT = 4A.

From (2.30),

where | denotes covariant differentiation with respect to the flat
metric rjab. If the metric is static, Q will be constant along the integral
curves of the Killing vector K (it will be independent of the time t).
The magnitude of K will be proportional to Q. Therefore

f;ab(9
ab+

Thus the Laplacian of/will be equal to — Ji? plus a term proportional
to the square of the gradient of/. This last term may be neglected in
a weak field. From the field equations, — %R will be equal to
i^4- i r_ |A. For a perfect fluid, T = -ji + 3p. One will therefore get
agreement with Newtonian theory if A is small or zero and-4"1 = — 24TT.

This theory in which the metric is restricted to be conformally flat
is known as the Nordstrom theory. It can be reformulated as a theory
in which the metric is the flat metric yj and in which the gravitational
interaction is represented by an additional scalar field <f>. As men-
tioned before, this sort of theory would be inconsistent with the
observed deflection of light by massive objects, and it would not
account for the measured advance of the perihelion of Mercury.

One could in fact obtain the observed deflection of light and the
advance of the perihelion of Mercury if the metric was restricted to be
of the form

9
where Wa is an arbitrary one-form field. This would give the Newtonian
limit in a static metric in which Wa was parallel to the timelike Killing
vector. There could however also be other static metrics where Wa was
not parallel to the Killing vector and these would not give the
Newtonian limit. Further this restriction on the form of the metric
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seems rather artificial. It appears more natural not to restrict the
metric, apart from requiring that it be Lorentzian.

We therefore adopt as our third postulate,

Postulate (c): Field equations

Einstein's field equations (3.15) hold on JK.
The predictions of these field equations agree, within the experimen-

tal errors, with the observations that have been made so far on the
deflection of light and the advance of the perihelion of Mercury,
though the question of whether there exists a long range scalar field
which ought to be included in the energy-momentum tensor remains
open at the present time.
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