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Abstract

Duffing's equation, in its simplest form, can be approximated by various non-linear
difference equations. It is shown that a particular choice can be solved in closed form
giving periodic solutions.

1. Introduction

In contrast to the extensive research which has been undertaken on non-linear
differential equations, little work has been done on non-linear difference equa-
tions. In particular, the few such difference equations which have been solved in
closed form tend to be somewhat artificial and unrelated to applications.

With the recent interest in representation of non-linear phenomena [2], the
question arises whether any of the classical non-linear differential equations can
be approximated by appropriate non-linear difference equations for which
solutions in closed form are possible.

The classical non-linear differential equation considered in this paper is the
simple Duffing's equation [3],

x(t) + ax(t) + bx\t) = 0, (1.1)

which describes, for example, the undamped unforced vibrations of an
anharmonic oscillator, of a "hard" or "soft" spring, or of a simple pendulum.
The well-known analytic solutions of (1.1) in terms of the Jacobian functions are
summarized in the next section.
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In approximating (1.1) by a difference equation using a discrete time interval
h > 0 ,

t is replaced by nh, with n an integer, (1.2)

x{t) is replaced by xn (1.3)

and

x(t) is replaced by /T2(xn+1 - 2xn + xn_,). (1.4)

But how should the non-linear term x\t) be replaced? Possible choices are the
obvious one x*, or perhaps the more symmetrical product form xn_xxnxn+v

However it is the purpose of this paper to show that if

x\t) is replaced by {x2(xn+l + *„_,), (1.5)

then the resulting difference equation

A"2K+1 - 2xn + *„_,) + axn +{bxt(xn+l + *„_,) = 0, (1.6)

or, equivalently,

j(*«+1 + xn-1)(2 + bx2
nh

2) - (2 - ah2)xn = 0, for n an integer, (1.7)

is an appropriate approximation of Duffing's equation which can be solved in
closed form. The other suggested replacements for x3(t) would also give satisfac-
tory approximations to the differential equation; the advantage of (1.7) is that it
can be solved completely.

2. Solutions of Duffing's equation

The classical analysis [3] of Duffing's equation classifies the periodic solution
for three cases governed by the boundary conditions and the constraints on the
constants:

Case I II HI
. . . . . , x(0) = A r x(0) - A r JC(O) - 0
boundary conditions { . ' { . , { .1 x(0) - 0 v JC(O) - 0 xx - A,x - 0

b> 0 b>0 ,b <0
constant constraints { a > _ - M 2 i-bA* < a <-\bA* < a > _bA2

solution x(i) A cn[(a + bA2)1/^] A dn[A({b)i/2t] A sn{(a +{bA2)i/1t]

parameter m \bA2/(a + bA2) 2{1 + a/ibA2)] -{bA2/(a+\bA2)

period T 4K/(a + bA*?'2 1K/A(\V)XI2 4K/(a + j

The notation of [1] has been used for the Jacobian elliptic functions en, dn, sn
and the complete elliptic integral of the first kind K, with m as the parameter,
0 < m < 1, on which these functions and integral depend.
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3. Periodic solutions of the difference equation (1.7)

It is easy to establish sufficient conditions for periodic solutions of (1.7)
appropriate to the boundary conditions for Cases I, II and III respectively.

For Cases I and II the boundary conditions are taken as

xo = A (3.1)

and

*_, = *,. (3.2)

For n = 0, (1.7) with (3.1) and (3.2) gives

2-ah2

xi ~ T^A (3-3)
2 + bA2h2

and repeated use of (1.7) for n = 1, 2, . . . , and noting that x_n = xn, gives xn

for all n in terms of the constants a, b and A and the arbitrary time interval h.
The possibility of periodic solutions of the difference equation (1.7) for Cases I
and II is decided by the following:

THEOREM 1. If, for given constants a, b and A and any positive integer p, the
time interval h can be chosen so that xp+x = xp_v then the solution xn of (1.7)
satisfying (3.1) and (3.2) is periodic with period

T = 2ph. (3.4)

PROOF. Equation (1.7) for n = p — 1 and n = p + 1 gives

i ( * , + *,-2)(2 + H 2 - .* 2 ) - (2 " ah2)xP-i = 0 (3-5)

and

*p)(2 + bx2
p+ xh

2) - (2 - ah2)xp+, = 0; (3.6)

the condition xp+l = xp_t therefore forces

xp+2 = xp_2. (3.7)

Similarly (1.7) for n = p — 2 and n = p + 2 forces

xp+3 = xp_3, (3.8)

and so on, until n = 1 and n = 2p — 1 forces

X2p = xo = A. (3.9)

Finally, n = 0 and n = 2p forces

*-i = *i- (3-10)
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With x^ = x0 and x^,+ } = xx, (1.7) gives

X2p+n = xn for all/i, (3.11)

completing the proof of the theorem.

The situation for Case III is somewhat different; the boundary conditions are
taken as

x0 = 0 (3.12)

and

xp = A whenxp_l = xp+l. (3.13)

A theorem similar to Theorem 1 can now be proved showing that if, for any
positive integer p, the time interval h can be chosen so that (3.12) and (3.13) are
satisfied, then the solution is an odd function which is periodic with period

T = Aph. (3.14)

4. Solutions of the difference equation (1.7): Case I

To solve (1.7) we try, for an integer p > 2, the periodic solution

xn = A cn(2nK/p), (4.1)

which correctly satisfies the boundary conditions (3.1) and (3.2) as well as
xp+l = xp_x. This trial solution will be valid if, for the given constraints b > 0
and a > -\bA2, the associated parameter m lies in the allowed interval (0, 1)
and h is real.

The parameter m (and hence the time interval h and the period JT) are
determined by first substituting (4.1) into (3.3), giving

Tfl£?- (42)

and then (4.1) into (1.7), giving

Acn(2nK/p)cn(2K/p) , 2/j2 ^ , } ,

1 - m sn2(2nK/p)sn2(2K/p) L ' n

= (2 - ah2)A ca(2nK/p), (4.3)

where use has been made of the formula [1]

/ . \ / \ 2 en u en v . . . .
cn(w + v) + cn(« - t>) = — . (4.4)

1 — m sn u sn v
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With the assistance of (4.2), equation (4.3) simplifies to

[(2 + bA2h2)m sn2(2K/p) - bA2h2]sn2(2nK/p) = 0,

which is satisfied for all n provided

m sn\2K/p) = bA2h2/ (2 + bA2h2). (4.5)

Eliminating h2 from (4.2) and (4.5) gives

bA 2

m = " - [ 1 + cnQK/p)]-. (4.6)
a + bA

This is a transcendental equation for m (noting that K depends on m). The
constraints b > 0 and a > -\bA2 ensure that the parameter m, depending on
the ratio bA 2/(a + bA2) as well as on p (assumed > 2), falls in the required
interval 0 < m < 1.

The time interval h can now be calculated from (4.2):

2[ •-«««/,)]
a + bA2cn(2K/p)

giving real h forp > 2. Alternatively, (4.6) gives

= 2m{a + bA2) - bA2

m(a2-b2A4) + b2A*'

The period is finally deduced from T = 2ph, completing the details of a valid
periodic solution.

Essentially the analysis shows that if the time interval h is determined from
(4.8) using the solution m of (4.6), then the iterative solution of (1.7) gives, apart
from round-off errors, an exactly periodic solution.

It is easy to verify that the solution to Duffing's equation is obtained in the
limit as/» —* oo, for then K/p —* 0, h -» 0, and

m^>\bA2l(a + bA2). (4.9)

Since en u = 1 — \u2 + O(u4), equation (4.7) gives, asp —» oo,

T=2ph^> 4K/ (a + bA 2 ) 1 / 2 . (4.10)

Finally

xn = A cn(2nK/p) = A cn(2nhK/ph)

-^A cn[(a + bA2)l/2t] = x(t), (4.11)

so that in the limit all the results for Duffing's equation are realized.
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5. Solutions of the difference equation (1.7): Case II

The boundary conditions (3.1) and (3.2) are the same as for Case I but now
we try, for an integer p > 2, the periodic solution

xn = A dn(nK/p), (5.1)

which satisfies xp+i = xp_v This trial solution is valid if, for the given con-
straints b > 0 and -bA2 <a < -\bA2, the associated parameter m lies in the
allowed interval (0, 1) and the corresponding h is real.

The parameter m (and hence the time interval h and the period T) is
determined as for Case I by substituting (5.1) into (3.3), giving

&&• ( 5 2 )

and then (5.1) into (1.7), giving

AMnK/p)MK/P) + bAvdn2(nK/p)] = (2 _ Qh2)

1 - m snz(nK/p) sn2(K/p)

(5.3)

where use has been made of the formula [1]

j / \ . J / \ 2 dn u dn v ,c ...
dn(n + v) + dn(« - v) = — . (5.4)

1 — m sn u sn v

With the assistance of (5.2), (5.3) simplifies to

[(2 + bA2h2)sn2(K/p) - bA2h2]sn2(nK/p) = 0,

which is satisfied for all n provided

sn\K/p) = bA2h2/ (2 + bA2h2). (5.5)
Eliminating h2 from (5.2) and (5.5) gives

a\*? (5.6)
For b > 0 and -bA2 < a < -\bA2 and for p > 2, the parameter m falls in the
required interval 0 < m < 1 so that the solution is valid.

The time interval h can now be calculated from (5.2):

2[l-dn(K/p)]

a + bA2 dn(K/p)

or, using (5.6), from

, 2\\ dn(AT//7)l
h2 = - i , V ' F n , (5.7)

+ b A 2 d(K/)

= 22{° + bf}-mb*\. (5.8)
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For/? > 2, h is real. The period is finally deduced from T = 2ph, completing the
solution.

Again it is easy to verify that the solution to the differential equation is
obtained in the limit as/? -» oo, for then K/p -* 0, h -» 0 and

m-»2[l + a/(bA2)]. (5.9)

Since dn u = 1 — \mu2 + O(uA), equation (5.7) gives, asp —* oo,

T = 2ph^ 2K/A(\b)l/2. (5.10)

Finally,

xn = A dn(nK/p) = A dn(nhK/ph)->A dn[a(±Z>)1/2/l = x(0, (5.11)

in agreement with the results for Duffing's equation.

6. Solutions of the difference equation (1.7): Case III

For Case III we try for any positive integer/?,

xn = A sn(nK/p) (6.1)

which satisfies x0 = 0, xp = A and xp+l = xp_x. For n = p, (1.7) gives

2-ah2
 A ,

A '' ' 2 +

and (6.1) with n = p - 1 gives

(6.2)

*„_, = A sn[K-(K/P)] = A^y^Z- (6-3)

Using the formula [1]

. . . . „ sn u en v dn v , . ..
sn(w + u) + sn(w — «) = 2 —, (6.4)

1 m sn u sn t;

sn u en v dn v

1 — m sn u sn t;

and substituting (6.1) in (1.7) gives

A sn(nK/p)cn(K/p)dn(K/p) ^ + ^ 2 / j 2 ^ ^ ,

1 - m sn\nK/p) sn2(K/p) L J

= (2 - aA2)>l sn(/i/i://?), (6.5)
which, with (6.2) and (6.3), simplifies to

[2m sn\K/p) + bA2h2]cn2(nK/p) = 0. (6.6)

This is satisfied for all n provided

m sn\K/p) = -\bA2h2. (6.7)
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Eliminating h2 from (6.2), (6.3) and (6.7) gives the transcendental equation for
determining m:

bA2 1 - cn(K/p)dn(K/p)

a 1 - cn2(K/p)

With the constraints b < 0 and a > -bA2, we have 0 < m < 1 as required for a
valid solution.

Equation (6.8) is not convenient for calculation purposes for large p; an
alternative formula is

-bA 2m~l = a[dn2(K/p) + dn(K/p)cn(K/p)]

+ bA2[dn(K/p)cn(K/p) - %n\K/p)]. (6.9)

The time interval h can be calculated from (6.7):

h2 _ _ 2m sn\K/p) ( 6 1Q)

h2 = 2
m^u\u" W™ . (6.11)

or, using (6.2) and (6.3),

= - m(2a + bA2) + bA2

ma2 - b2A

The value of h is real and the period is T = 4ph, completing the solution.
In the limit as/? -» oo, K/p —* 0, h —> 0 and

m -+ -bA2/ (2a + bA2), (6.12)

T=4ph-+ 4K(a + {bA2)X/2, (6.13)

and

xn—*A sn|(a +\bA2) n = x(t), (6.14)

giving the results for Duffing's equation.

7. The linear case b = 0

For the linear problem b = 0 and a > 0, Duffing's equation simplifies to

x(t) + ax(t)=0 (7.1)

and the approximating difference equation to

h'\xn+x - 2xn + *„_,) + axn = 0. (7.2)

For b = 0 it follows for Case I and Case III that m = 0, K = TT/2, en = cos and
sn = sin. Case II does not arise.
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For the boundary conditions
x(0) = A and x_, = ;*„

the Case I solutions of (1.7) become

xn = A cos(mr/p),

h = 2a"1/2 sin(-n/2p),

and

T = 4pa'l/2 sin(w/2/>)>

which are well-known periodic solutions of (7.2).
For the boundary conditions

*(0) = 0,
xp = A and xp+l = xp_l,

the Case III solutions become other known solutions of (7.2):

xn = A sin(nir/2p),

h = (2/a)l/2[(\ - cos(v/2p))]l/2,

and

T = 4p(2/a)1/2[l - cos(V2^)]'/2.

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

8. Numerical results: Case I

To illustrate the analysis given above, numerical results are presented first for
a = io, b = 90 and A = 1.

Duffing's equation is then

x\t) + lOx(t) + 90x3(t) = 0, (8.1)

with
x(0) = 1 and x(0) = 0 (8.2)

and
m = 0.45, (8.3)

T = 0.4AT(0.45) = 0.72555, (8.4)

and

x(0 = cn(10/). (8.5)
The solution is exhibited graphically in Fig. 1.
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0-9

•1-0 L

Fig. 1. The solid curve represents the solution for one period of Duffing's equation x + 10* + 90x3

= 0. Crosses represent the solution for one period of the difference equation (1.7) withp = 4, that is,
with 2p = 8 intervals a period.

Equation (1.7) becomes

- (2 - = 0,

with

x0 = 1 and x_x = x,.

From (4.6) the transcendental equation for m is

m = 0.9[ 1 +

and from (4.8)

and

h2 = 0.2(20m - 9)/ (81 - 80m)

T = 2/7/i.

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

TABLE 1

Numerical results for (1.7) with a = 10, b = 90, A = 1

integer
/>

2
3
4
12
20
oo

parameter
m

0.900
0.640
0.551
0.460
0.454
0.450

time interval
h

0.447
0.160
0.105
0.031
0.018

period
T

1.788
0.959
0.836
0.736
0.728
0.726
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Numerical results for various values of p are given in Table 1; results for p = oo
are (8.3) and (8.4). The solution for/> = 4 is shown in Fig. 1.

As p increases the approach to the solution of Duffing's equation is evident. It
has to be emphasized that for the calculated values of h the solutions of the
difference equation are, apart from round-off errors, periodic.

9. Numerical results: Case II

For a = -24, b = 32 and ,4 = 1, Duffing's equation is

x(t) - 24x(t) + 32x\t) = 0

with

and

and

x(0) = 1 and x(0) = 0,

m = 0.5,
T = 0.5AT(0.5) = 0.92704,

x(t) = dn(4/).

The solution is shown in Fig. 2.

1-0 *

0-6

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

0-5 t 1-0

Fig. 2. The solid curve represents the solution for one period of Duffing's equation x — 2Ax + 32x3

= 0. Crosses represent the solution for one period of the difference equation (1.7) withp = 3, that is,
with 2p = 6 intervals a period.
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The corresponding difference equation is

with

x0 = 1 and x_, = *,. (9.7)

From (5.6) the transcendental equation for m is

m = 0.25 [ 1 + dn(K/p)] (9.8)

and from (5.8)

h2 = (1 - 2m) / (32m - 14) (9.9)

and

T = 2ph. (9.10)

Numerical results for various values of p are given in Table 2; results for

p = oo are (9.3) and (9.4). The solution for p = 3 is shown in Fig. 2.

TABLE 2

Numerical results for (1.7) with a = -24, b = 32,A = l

integer

P

2
3
4
5

00

parameter

0.464
0.480
0.488
0.492
0.500

time interval
h

0.288
0.169
0.122
0.095

period
T

1.154
1.016
0.978
0.953
0.927

10. Numerical results: Case III

Finally, for a = 6, b = - 4 and A = 1, we consider the Duffing's equation

jc(/) + 6x (0 - 4x3(/) = 0 (10.1)

with

x(0) = 0 and jt(/) = 1 (10.2)

for the least / > 0 for which x(t) = 0. Then

m = 0.5, (10.3)

T = 2A:(0.5) = 3.70815, (10.4)

and

*(/) = sn(2r). (10.5)

The solution is shown in Fig. 3.
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1-0 r

4-0

- 1-0 L

Fig. 3. The sohd curve represents the solution for one period of Duffing's equation x + 6x — 4x3 —
0. Crosses represent the solution for one period of the difference equation (1.7) with p — 2, that is,
with 4p = 8 intervals a period.

The difference equation is

with

From (6.9)

and from (6.11)

and

tn + x + xn_,)(2 - 4x2h2) - (2 - 6h2)xn = 0 (10.6)

x0 = 0, xp=\ and xp+l = xp_v (10.7)

w-1 = 1.5 &n\K/p) + 0.5 dn(K/p) cn(K/p) + sn\K/p) (10.8)

A2 = 2(2m - 1)/ (9/w - 4) (10.9)

Numerical results for various values of p are given in Table 3; the solution for
p = 2 is shown in Fig. 3.

TABLE 3

Numerical results for (1.7) with a = 6, b = -4, A = 1

integer
P
2
3
4
00

parameter

0.530
0.512
0.507
0.500

time interval
h

0.396
0.283
0.226

period
T

3.17
3.40
3.62
3.71
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11. Discussion

This paper has been concerned with an investigation of a non-linear dif-
ference equation approximating Duffing's differential equation in its simplest
form. Various choices of the difference equation are possible and it is shown
that a particular choice, given by (1.7), has the desirable property that it can be
solved analytically in closed form, the solutions being strictly periodic. With
calculated values of the time interval h, the difference equation (1.7) when
solved iteratively with given boundary conditions gives, apart from round-off
errors, strictly periodic solutions. With other approximating difference equations
periodic solutions are possible but the determination of the appropriate time
interval is too difficult.

It is intended to extend the approach used in this paper to other non-linear
problems.
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