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Abstract

We consider partial customer flexibility in service systems under two different designs.
In the first design, flexible customers have their own queue and each server has its own
queue of dedicated customers. Under this model, the problem is a scheduling problem
and we show under various settings that the dedicated customers first (DCF) policy is
optimal. In the second design, flexible customers are not queued separately and must
be routed to one of the server’s dedicated queues upon arrival. We extend earlier results
about the ‘join the smallest work (JSW)’ policy to systems with dedicated as well as
flexible arrivals. We compare these models to a routeing model in which only the queue
length is available in terms of both efficiency and fairness and argue that the overall best
approach for call centers is JSW routeing. We also discuss how this can be implemented
in call centers even when work is unknown.
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1. Introduction

We study a multiserver multiqueue system with partial flexibility. Each server has a queue of
dedicated customers that can only be served by that server, and there are also flexible customers
that can be served by more than one server. This models both server and customer flexibility.
For example, in a call center serving customers in multiple languages, servers (agents), and most
customers, could be monolingual (dedicated), with some customers being bilingual (flexible).
Alternatively, servers could have bilingual training, with a dedicated language (say Spanish or
Mandarin) and a shared (flexible) language (say English), and customers could be monolingual;
in this case the English speaking customers would be considered flexible. Given a system with
partial flexibility, the question is how best to take advantage of it to minimize average customer
waiting times. This depends on whether flexible customers must be immediately routed to a
dedicated queue upon arrival (the routeing problem), or whether they have their own queue
and the decision is when to assign them to an available server (the scheduling problem). For
the routeing problem, the decision depends on the available information. In earlier work [3],
we considered the routeing problem when the available information is the queue length, and
we gave conditions under which the optimal policy for flexible customers is JSQ (join the
shortest queue), in which customers are routed upon arrival to the shortest queue (this is both

Received 2 August 2012; revision received 20 November 2012.
∗ Postal address: Department of Industrial Engineering and Operations Research, University of California, Berkeley,
4141 Etcheverry Hall, Berkeley, CA 94720, USA.
∗∗ Email address: akguno@ieor.berkeley.edu

673

https://doi.org/10.1239/aap/1377868534 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868534


674 O. T. AKGUN ET AL.

the socially optimal policy, as well as the individually optimal policy for flexible customers).
Here we consider the case when the information available upon arrival of a flexible customer is
the workload at each of the servers, and we give conditions under which JSW (join the shortest
work) is the optimal routeing policy. We also consider the scheduling problem, and show that,
under many conditions DCF (dedicated customers first), is the optimal policy. This design and
policy is also the most efficient of the three, in terms of minimizing the overall customer waiting
time, but at the expense of the flexible customers, who end up waiting longer on average. This
would not be acceptable in call centers, though might be in other queueing systems. We show
how JSW can be implemented in call centers, without actually knowing the workloads, and
we argue that it is the best design for taking advantage of partial flexibility. It performs better
than JSQ and almost as well as DCF in terms of minimizing waiting times, and it is incentive
compatible for flexible customers in the sense that it is their individually optimal policy.

Design of call centers has been a popular research area in queueing systems. Aksin et al. [4]
and Gans et al. [12] provided extensive literature surveys. Our flexible scheduling model can
be thought of as an example of the network topology known as the ‘W ’ design [12]. Flexibility
in service systems has been studied widely under different topologies. A simpler model, the
‘N ’ design, where only one server has dedicated customers, and there is a queue for flexible
customers, has been studied widely in the literature. In this case the problem is to determine
when the server with the dedicated queue should ‘help’ the other server, which can only serve
flexible customers. Garnett and Mandelbaum [13] showed the difficulty of finding the optimal
control policy by considering different examples with different parameters. Harrison [16]
constructed a discrete review control policy in which the heavy-traffic limit approaches the
bound of a single pooled resource. Bell and Williams [6] showed the optimality of a threshold-
type control policy in heavy traffic. Ahn et al. [2] considered a clearing system (without
arrivals). They showed that even for the clearing system the optimal policy is complex and can
either have a monotone switching curve structure or it can be exhaustive for one of the queues.
Down and Lewis [8] considered the problem with arrivals and with an upgrading option for low
priority customers, and gave conditions under which the cµ-rule is optimal.

The ‘W ’ design is even more complex than the ‘N ’ design and the problem has usually been
studied using heavy-traffic approximations or using heuristic control policies. Harrison and
Lopez [17] gave conditions for the optimality of a discrete review control policy in heavy traffic
for a general model with arbitrary customer and server flexibility, of which the ‘W ’ design is a
special case. Mandelbaum and Stolyar [27] also considered a general structure with arbitrary
customer and server flexibility and showed the optimality of the generalized cµ-rule in heavy
traffic. Gurumurthi and Benjaafar [14] analyzed control policies under arbitrary customer and
server flexibility, and they compared the performance of different control policies such as serve
the longest queue first (LQF) and strict priority (SP). Saghafian et al. [32] studied the ‘W ’
network with Poisson arrivals, exponential service times, Poisson service disruptions, and with
preemption permitted. They proposed a control policy called the largest expected workload
cost (LEWC), and they compared its performance with the performance of the cµ-rule, the
generalized cµ-rule, and the LQF policy. They also gave the conditions under which it is
optimal to serve fixed tasks before shared tasks (dedicated before flexible customers) without
idling. This result is a special case of Theorem 2 below where we consider a very general
arrival process.

For the ‘W ’ design, we show that in many situations the DCF policy is optimal. Under DCF,
whenever a server’s dedicated queue is nonempty, it gives priority to dedicated customers and
does not idle.
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Note that flexible customers tend to be disadvantaged under DCF. We consider the alternative
approach of routeing flexible customers upon arrival to a server and then serving both flexible
and dedicated customers at each server according to FCFS (first-come–first-served). When the
queue lengths are not known upon arrival, Ephremides et al. [9] showed that the ‘round-robin’
policy minimizes the sum of expected completion times when the service times are exponential.
Liu and Towsley [25] extended the optimality of the round-robin policy to service times with
increasing hazard rate and Liu and Righter [24] showed the optimality of the round-robin
policy for general independent and identically distributed (i.i.d.) service time distributions.
When the only information available upon arrival is the queue length and all customers are
flexible, routeing the flexible customers to the shortest queue is optimal under various settings
(see, e.g. [3], [5], [9], [10], [18], [20], [23], [29], [30], [34], [35], [37], [38], and [39]). When
the processing times are known upon arrival, Harchol-Balter et al. [15] proposed a routeing
policy called the ‘size interval task assignment with equal load (SITA-E)’ where different
servers are assigned to jobs with service times falling into particular intervals, and compared
the performance of their policy with the performance of the JSW policy under different problem
parameters. Hyytia et al. [19] discussed the computation of value functions based on different
levels of information for the routeing problem.

In this paper we propose a design in which the actual workload at each queue is known upon
arrival but the required work of the arriving customer is unknown. Note that in this model, when
all customers are flexible, the JSW policy is equivalent to the FCFS policy with a single queue
for all customers. Wolff [40], [41] showed that FCFS provides a lower bound for the workload
in the system for all policies that are not allowed to depend on the workload, such as round
robin. Daley [7], building on Foss’s work [11], showed that JSW stochastically minimizes the
workload at each time t for general arrival and service processes using weak submajorization
arguments. See also [26]. Koole [22] showed the same result using dynamic programming
arguments. Stoyan [36] and Koole [22] provided counterexamples showing that the pathwise
optimality (jointly across t) of JSW for minimizing the workload is not true. However, Koole
[21] showed that departures are sample pathwise maximized by the JSW policy. We extend the
earlier results to systems with homogeneous dedicated customers as well as flexible customers.
We show that among routeing policies, the JSW policy stochastically maximizes the departure
process pathwise, and stochastically minimizes the workload at each time t .

Under certain conditions, we show that in terms of overall efficiency (e.g. minimizing overall
sojourn times), having a separate queue for flexible customers and using DCF outperforms
the immediate routeing of flexible customers using JSW, and this, in turn, outperforms JSQ
routeing. However, as mentioned before, using DCF with a separate flexible queue is unfair
to flexible customers; their performance is worse than under the alternatives, and worse than
that of dedicated customers. Hence, in practice, flexible customers would want to declare
themselves as dedicated customers if they knew that otherwise the policy would discriminate
against them (so, for example, instead of pressing ‘1’ for ‘bilingual’, they would press ‘2’ for
‘English’). We therefore conclude that the best policy overall is JSW routeing for flexible
customers. Note that this can be implemented, even when the workload is not known (e.g. in
call centers), as follows. Upon arrival suppose that multiple (virtual) copies are created for a
flexible customer and a copy is sent to each queue. When one of these copies gets the chance
to start service, then the real customer is served at that particular server and the other copies are
deleted. We show that following the JSW routeing policy for flexible customers stochastically
minimizes the sojourn time of dedicated customers (as well as of customers overall) among
all routeing policies. Also, emprically, the overall performance of JSW is very close to that
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Figure 1: Comparison of policies. Total number in the system (N̄ ) versus the proportion of flexible
customers (p).

of DCF (see Figure 1). Moreover, JSW is incentive compatible for flexible customers in the
sense that, given any fixed policy for all other flexible customers, an arriving flexible customer
minimizes its own sojourn time by joining the queue with the shortest work.

The outline of the paper is as follows. In Section 2 we study the ‘W ’ design scheduling
problem. In Section 3 we consider the routeing problem. Finally, in Section 4 we compare the
performance of different designs.

2. The scheduling problem

In this section we study the problem where flexible customers have their own queue and each
server should decide which type of customer to serve next upon a service completion at that
particular server. Service time distributions may depend on the server, but (generally) not on the
customers. We give a variety of conditions for the arrival and service processes, and restrictions
on service disciplines, under which the departure process is stochastically maximized by a
DCF policy. Note that although we define the DCF policy as one that does not idle a server
when it has dedicated customers, it could idle when there are flexible customers present but
no dedicated customers. Also, note that a DCF policy does not specify the service discipline
among dedicated customers. It is well known that, for a single-server queue, the FCFS discipline
among all nonpreemptive, work conserving, nonanticipating service disciplines, minimizes the
stationary sojourn time in the convex ordering sense (see [42]). See Righter and Shantikumar
[31] and Aalto et al. [1] for optimal preemptive policies within a single class of customers. For
example, if service times are DFR (decreasing failure rate), LAST (least attained service time)
stochastically minimizes the number of customers in the system among all work conserving
nonanticipating policies.

In the following, when we say DCF, we mean a policy that gives priority to dedicated
customers and is nonidling for dedicated customers. When we say nonidling DCF, we mean
that the policy is also nonidling for flexible customers. In this case, when preemption is not
permitted, a nonidling DCF policy completely specifies the policy for all states.

We also assume, for ease of exposition, that there are two servers, server A and server B.
All the results can easily be extended to more than two servers and multiserver stations.
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Table 1: Summary of the results.

Model

Preemption Idling Objective Optimal policy

permitted permitted Arrivals Services

Yes Yes General Exponential Stochastically Nonidling DCF
(or no) (different rates) maximize {D(t)}∞t=0

No Yes General General Stochastically DCF
maximize {D(t)}∞t=0

No Yes Poisson Exponential Minimize mean Nonidling DCF
(homogeneous) (same rates) sojourn time

No No General Exponential Weakly submajorize Nonidling DCF
(homogeneous) (same rates) queue length process

We consider both preemptive and nonpreemptive policies. When preemption is permitted,
a job in service can be removed from that server at any time. The preempted job can resume
service at a later time on the same server if it is dedicated, or on either server if it is flexible. We
define a very general preempt-resume methodology in the next section. Within both preemptive
and nonpreemptive classes of policies, we also consider two subclasses, policies where idling
is permitted and those where we force nonidling. We consider different arrival and service
processes within each setting. We also present counterexamples showing cases where the
results do not hold for more general arrival or service processes. We summarize our results
in Table 1 for the different policy classes. Let {Dt }∞t=0 denote the departure process, where
Dt is the number of departures by time t . We also show that idling will not be optimal when
preemption is permitted; hence, the yes or no case for idling in Table 1.

2.1. Preemption and idling are permitted

We first consider permitting both preemption and idling. In this case, flexible customers can
be removed from or assigned to any server at any time, whereas dedicated customers can only
be reassigned to their dedicated server. We assume work is done in a preempt-resume fashion
as described below. In the literature, preempt-resume has only been defined for a single service
time distribution. We must extend the notion for flexible customers that can receive service
from multiple servers, each with its own service time distribution. Rougly, by preempt-resume,
we mean that work that is done on a customer before preemption is not lost. More rigorously,
let server A (B) have service time distribution FA (FB ) which is continuous with a positive
density fA (fB ). Let {Uk}∞k=1 be a sequence of uniform(0, 1) random variables denoting the
required work of the customers, and let Xi,k = F−1

i (Uk) be the service time of customer k

if served completely on server i, i = A, B. At any time we define the completed work for
customer k, U c

k and the equivalent completed service time if served on server i, Xc
i,k , such that

U c
k < Uk, Xc

i,k = F−1
i (U c

k ),

and where upon arrival of customer k, U c
k = 0. Suppose that customer k with completed work

U c
k begins or returns to service at time t = 0 at server i where it is served until service is

either interrupted or completed at some t > 0, so, either t < Xi,k − Xc
i,k or t = Xi,k − Xc

i,k

and service is complete. In the former case, we update the completed work using the relation
U c

k = Fi(X
c
i,k + t). This is repeated each time customer k resumes service. Note that, in fact,
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our construction and result for this section does not require the work of the customers ({Uk}∞k=1)
to be independent. Also, the distributions could be customer dependent.

In this section we assume the arrival process is independent of the state of the system and
the policy, but is otherwise arbitrary.

We have the following lemma.

Theorem 1. When preemption is permitted, idling is not optimal. That is, for each policy that
idles, there exists a policy that does not, such that {Dt }∞t=0 is stochastically larger under the
nonidling policy.

Proof. Consider a policy � that, without loss of generality, idles server A at t = 0 when
there is at least one job waiting in queue A or the flexible queue. Let �̃ be the policy that
starts serving one of the waiting customers in either queue A or the flexible queue at t = 0
(call it customer 1). We couple the future arrival processes for these systems so that each
customer has the same arrival epoch in both systems. We also couple the service times (the
Uks) in both systems. We let �̃ follow the same decisions as � after t = 0 (this is possible
since preemption is permitted), except for the times where � serves customer 1 on one of the
servers. During these times we will let �̃ serve customer 1 on the same server as � if it is still
in the system, and we let �̃ idle the server that under � is serving customer 1 if customer 1
has already departed the system under �̃. Then all departure times under �̃ and � will be
the same except for customer 1, which departs earlier under �̃, because the completed work
of a customer is strictly increasing in the time it spends in service under the preempt-resume
discipline described above, i.e. remaining service time of customer 1 will be less under �̃ than
under �, regardless of the type of server it uses. We can repeat the argument each time our
new policy idles until we have a nonidling policy.

We will show, through the counterexample below, that when preemption is permitted, DCF
will not, in general, be optimal in the sample path sense. An exception is the case of exponential
services, which we examine later.

Example 1. Suppose that preemption and idling are both permitted and the required work
for all customers is deterministic and equal to 1. Let the service rates for servers A and B

respectively be µA and µB , with µA < µB (so the service times for dedicated customers are
1/µA and 1/µB , respectively). Suppose that at time t = 0 there is one job on server B which
will finish at ε, one job waiting in the flexible queue, one job waiting in server A’s dedicated
queue, server A is idle, and that there are no future arrivals. Then the nonidling DCF policy
will start serving a dedicated customer on server A at t = 0. Let � start serving the flexible
customer on server A at t = 0 and then let it move it to server B at time ε and start serving
the dedicated customer on A at ε. Then the flexible customer will depart at ε + (1 − µAε)/µB

under �, which is earlier than either departure under DCF (at 1/µA and ε + 1/µB ).

In the above example DCF is still optimal in the mean sense, i.e. the expected sojourn time
of customers is smaller under DCF. The next example shows that even with identical servers,
and even in the mean sense, DCF is not necessarily optimal.

Example 2. Let all service times be i.i.d. with distribution S, where

S =
{

1 with probability 0.5,

101 with probability 0.5.
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Suppose that at time t = 0 there is one dedicated customer at server A, one dedicated customer
at server B and one flexible customer in the system, and none of the customers have received
any service. Suppose that we do not have any arrivals after t = 0. Under DCF, the expected
sojourn time of the dedicated customers will be 51 each and the flexible customer’s expected
sojourn time will be 77 (the expected waiting time is 101 with probability 0.25, and 1 with
probability 0.75, and the expected service time is 51). Now consider another policy � which
serves the flexible customer at one of the servers, say A, for 1 unit, and then serves the dedicated
customer to completion on that server. Server B serves its customer to completion. The flexible
customer (if it does not complete service at time 1) is served to completion by whichever of
servers A and B finishes serving its dedicated customer first. Under �, the expected sojourn
time of the dedicated customer at server A will be 52, the expected sojourn time of the dedicated
customer at server B will be 51, and the flexible customer’s expected sojourn time will be 63.625
(1 with probability 0.5, 201 with probability 0.125, 101 with probability 0.250, and 102 with
probability 0.125). Hence, the overall mean sojourn time under � will be smaller than under
the DCF policy.

The next theorem shows that a nonidling DCF policy is optimal in the case of exponential
services. Note that because preemption is permitted, under a nonidling DCF policy, servers
never idle and flexible customers may be served by both servers. In the case where there is
only a single flexible customer, it is served by the faster server.

Theorem 2. Let the service times at each server be i.i.d. exponential random variables. The
servers’ rates may differ. If idling and preemption are both permitted, then {Dt }∞t=0 is
stochastically maximized by a nonidling DCF policy. Hence, the same policy is also optimal
when idling is not permitted.

Proof. It is easy to see that, when there is only a single flexible customer, it should be served
by the faster server. We show that, for an arbitrary policy � that does not follow DCF at an
arbitrary decision epoch, we can construct a policy that does follow DCF for that decision and
that has stochastically earlier departures. Let t be the first time that � disagrees with DCF and
serves a flexible customer when there are dedicated customers for that particular server (call
this server A). Let �̃ be a policy that agrees with � before time t but that serves a dedicated
customer from server A’s dedicated queue at time t . Consider two systems where � and �̃ are
used respectively as control policies. We couple the future arrival processes for these systems
so that each customer has the same arrival epoch in both systems. We also couple the service
times at each server in both systems. Let �̃ also agree with � for service on B while the
customer on A is being served.

We first consider the case where � does not preempt the first service on A before completion.
Then, once the first service completes on A after t , at time t ′ say, � has one fewer customer
in the flexible queue and one more customer in server A’s dedicated queue than �̃. We let
�̃ agree with � after t ′, except the first time � serves a dedicated customer on server A, �̃

serves a flexible customer on server A. Note that �̃ may then idle server B by choice when �

is forced to idle it (because both the flexible queue and server B’s dedicated queue are empty
under �). Then the departures under � and �̃ will be identical, so �̃ is as good as �, and a
nonidling policy will be better than �̃ by Theorem 1.

Next we consider the case where the flexible customer that starts service on server A at t under
� is preempted before service completion. In this case we let the dedicated customer on server A

under �̃ be preempted as well. Then, by the memoryless property of the exponential service,
the two systems under � and �̃ will be stochastically identical, so again �̃ is as good as �.
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2.2. Preemption is not permitted

We now consider the case where preemption is not permitted, i.e. once a customer starts
service, it has to stay in service until completion. This means that a flexible customer will only
be served by one of the two servers, so, when it starts service on a server, it effectively becomes
dedicated to that server.

2.2.1. Idling is permitted. We first permit idling and show that DCF is optimal for general
service times and arrival processes. In Section 2.1 the service process was general and was
a customer property, i.e. each customer had an arbitrary amount of required work which was
transformed to its service time at a particular server. In the following, since preemption is not
permitted, we assume that the service process is a property of the server and that successive
service times at each server are an arbitrary sequence of numbers (that do not depend on the
customers). That is, we consider an arbitrary realization of service times.

Theorem 3. Let server j have arbitrary service process {Sj
k }∞1 , j = A, B, and let the arrival

process be independent of the system state and the policy but otherwise arbitrary. If idling is
permitted and preemption is not permitted, then {Dt }∞t=0 is stochastically maximized by a DCF
policy.

Proof. The first part of the proof, that dedicated customers should have priority, is the same
as the first (nonpreemptive) case in the proof of Theorem 2. To show that a server with dedicated
customers should not idle, consider a policy � that, without loss of generality, idles server A at
t = 0 when there is at least one job waiting in queue A. Let �̃ be the policy that starts serving
one of the dedicated customers in queue A at t = 0 (call it customer 1), and let it agree with �

for server B. Let t1 denote the departure time of customer 1 under �̃. Since we know dedicated
customers should have priority, we can assume without loss of generality that � will serve a
dedicated customer (customer 1) on server A before serving a flexible customer. Suppose that
it starts serving customer 1 at t2 on server A. We couple the service time of customer 1, t1,
under both policies so that customer 1 departs at t2 + t1 under �. Let �̃ idle server A from t1
until t1 + t2 and follow the same policy as � after t1 + t2. Then all departure times under �̃

and � will be the same except for customer 1 which departs earlier under �̃.

The next question to consider is whether or not a server will idle when there are flexible
customers present. Unlike Theorem 3, sample pathwise optimality (stochastic maximization
of {Dt }∞t=0) for a nonidling policy for flexible customers will not, in general, hold. Consider
the following counterexample.

Example 3. Suppose that preemption is not permitted and that at time t = 0 there is a flexible
arrival to an empty system. Let � idle both servers whereas �̃ starts serving the flexible arrival
at one of the servers (possibly the faster one). Suppose that the next event is a dedicated arrival
to the queue where the initial flexible arrival is still in service. Then the dedicated arrival will
wait in queue under �̃ and it will start service under �. Now if � also starts serving the initial
flexible arrival at the other server then it is not possible to couple the service processes such
that departures will be earlier under �̃ than under �.

As the above counterexample shows, nonidling DCF will not be optimal in the sample path
sense, and we weaken our objective to consider the mean sojourn time (total time in system).
When the arrival processes are Poisson and service times are exponentially distributed with the
same rate µ, we show that not idling minimizes the mean sojourn time. We assume that arrivals
are Poisson and each arrival is flexible with probability p, independent of the state; otherwise, it
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is dedicated and is equally likely to go to queue A or queue B, independent of the state, i.e. the
arrival processes are independent Poisson processes with rate λp to the flexible queue and with
rate λ(1 − p)/2 to each dedicated queue. We assume that the total arrival rate, λ, is such that
λ < 2µ.

We have the following lemma which directly follows from Theorem 3.

Lemma 1. For homogeneous exponential servers and symmetric Poisson arrivals, DCF
stochastically maximizes {Dt }∞t=0.

It remains to show that the optimal policy is nonidling, i.e. it immediately serves a flexible
customer when there are no dedicated customers. Suppose that at time t = 0 server A’s
dedicated queue is empty and that there is at least one job waiting in the flexible queue. Consider
two DCF policies � and �̃, where policy � chooses to idle server A at time t = 0, whereas
�̃ starts serving a flexible customer, customer 1, on server A. Without loss of generality,
suppose that customer 1 is the first flexible customer � serves. Note that customer 1 stays in
service until departure once service is started under both � and �̃. Let {Dt }∞t=0 and {D̃t }∞t=0
respectively denote the departure processes under � and �̃. Now consider a modified nonidling
DCF policy �̃p where flexible customers have preemptive lower priority than the dedicated
customers in the queue of the server where the flexible customer starts service. That is, when a
dedicated customer arrives to a server where a flexible customer is taking service, it preempts
the flexible customer, and the flexible customer remains in that server’s dedicated queue.
Let {D̃p

t }∞t=0, {D̃p
f,t }∞t=0, and {D̃p

d,t }∞t=0 respectively denote the overall departure process, the
flexible customers’departure process, and the dedicated customers’departure process under �̃p.
Similarly, we define policy �p to agree with � except flexible customers have lower preemptive
priority than the dedicated customers in the queue of the server where they start service, and with
departure processes {Dp

t }∞t=0, {Dp
f,t }∞t=0, and {Dp

d,t }∞t=0, respectively. We have the following
lemma, where (i) follows because service times are exponentially distributed, and (ii) follows
because dedicated customers are unaffected by the policy for flexible customers in the modified
systems.

Lemma 2. (i) {Dt }∞t=0 =st {Dp
t }∞t=0 and {D̃t }∞t=0 =st {D̃p

t }∞t=0.

(ii) {Dp
d,t }∞t=0 =st {D̃p

d,t }∞t=0.

Hence we only need to consider the departure process of flexible customers under�p and �̃p.
As far as the flexible customers are concerned, the servers act as independent alternating renewal
processes with ‘up’ times, i.e. times they are available to process flexible customers that are
exponentially distributed with rate λ(1−p)/2, and ‘down’times, corresponding to busy periods
due to dedicated customers, where they are unavailable. Let Sf be the effective service time
of a flexible customer, i.e. the time between its start of service and completion time, including
all the down times. Note that Sf also has the same distribution as a dedicated customer busy
period.

Consider two systems that are identical except that at time 0 in system 1 some server, A say,
is up while in system 2 server A is down.

Lemma 3. We can couple server A’s up and down times in the two systems, by using idling in
system 1, such that the first time server A is up in system 2, at time τ say, server A will also be
up in system 1.

Proof. We condition on the number of dedicated customers at server A at time 0 in system 2
(by definition, there are 0 dedicated customers at server A in system 1). We couple all dedicated
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Figure 2: Coupling of the two systems.

arrivals and (potential) departures at server A directly. We let system 1 idle server A (not serve
flexible customers) during up times before τ . See Figure 2.

We are ready to prove the following result, where ‘≺st’ denotes the usual stochastic order
[33, pp. 3–12].

Lemma 4. {Dp
f,t }∞t=0 ≺st {D̃p

f,t }∞t=0.

Proof. We will use the following coupling procedure for arrival and potential service
completion times. We generate the effective service time, Sf , for customer 1 under both
�p and �̃p, and we couple the dedicated arrivals to queue B and potential service completions
on server B under both �p and �̃p. We also generate the dedicated arrivals to queue A and
potential service completions on server A under �p after t = 0, independent of Sf and of
the dedicated arrivals and potential service completions for server B (note that server A is idle
under �p at t = 0). We also couple all flexible arrivals directly under �p and �̃p. Let t1
be the time that �p assigns customer 1 to one of the servers. Consider the following possible
cases.

Case (i): Sf ≤ t1. At time Sf server A is available under �̃p. Let τ be the first time server A

is available after time Sf under �p. We couple the process on server A and use idling
under �̃p so that server A is also available at time τ under �̃p by Lemma 3. Since the
arrival and service processes of server B are also coupled, both systems are identical at
time τ except that customer 1 is still in the system under �p. Hence, when customer 1
is being served under �p, we can idle that server under �̃p, and the result follows.

Case (ii): Sf > t1. In this case we consider the following subcases.

Subcase (ii.1): �p serves customer 1 on server A. In this case, at time Sf , server A is
available under �̃p, while it is busy under �p, and server B is in the same state
under both policies. Hence, the result follows from Lemma 3 as in the previous
case, where we condition on the number of customers (including customer 1) on
server A at time Sf , and generate a new remaining busy period (and remaining
effective service time for customer 1), with new independent arrivals and services.

Subcase (ii.2): �p serves customer 1 on server B. In this case we do a cross coupling
of servers A and B under two policies as follows. At time t1 server B is available
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under �̃p and server A may or may not be available under �p. We couple the first
time server A is available under �p so that server B is also available at that time
under �̃p by Lemma 3. Similarly, at time Sf server A is available under �̃p and
server B may or may not be available under �p. We couple the first time server B

is available under �p so that server A is also available at that time under �̃p by
Lemma 3. Again, when customer 1 is being served under �p on server B, we can
idle server A under �̃p, and the result follows (where, henceforth, the identities of
servers A and B are interchanged).

We have the following theorem that follows easily from Lemmas 1–4, because we can use
the same argument each time �p or �̃p idles to find a better policy that does not idle.

Theorem 4. For homogeneous exponential servers and symmetric Poisson arrivals, a nonidling
DCF policy minimizes the mean sojourn time when preemption is not permitted. Therefore, a
nonidling DCF policy also minimizes the mean sojourn time when neither idling nor preemption
is permitted.

Note that Lemmas 2 and 4 do not imply the sample path result, {Dp
t }∞t=0 ≺st {D̃p

t }∞t=0,
because we do not have the joint sample path result, {Dp

d,t , D
p
f,t }∞t=0 ≺st {D̃p

d,t , D̃
p
f,t }∞t=0,

which indeed is not true by Example 3.

2.2.2. Idling is not permitted. Finally, we consider the case where neither idling nor preemption
is permitted. Our next example shows that, in general, DCF will not be optimal in the sample
path sense.

Example 4. Suppose that neither idling nor preemption are permitted and that the required
work for all customers is deterministic and equal to 1. Let the service rate for server A (B) be
µA (µB ). Suppose that at time t = 0 there is one job on server B which will finish at ε, one
job waiting in the flexible queue, one job waiting in server A’s dedicated queue, server A is
idle, and that there are no future arrivals. Then the DCF policy will start A’s dedicated job on
A at time 0 and the flexible job on B at time ε. Let � start the flexible customer on A at time 0
and start the dedicated customer on A at time 1/µA. Hence, if 2/µA < ε + 1/µB , the second
departure will be earlier under �, so departures are not sample pathwise earlier under DCF.

Next we will show that, when preemption and idling are not permitted, and the service times
are exponential with the same rate, the number of customers in the system is minimized by
the DCF policy in the sample path sense, so the departure process is stochastically maximized.
We assume that the overall arrival process is one at a time (batch arrivals are not allowed) and
independent of the system state and policy but otherwise arbitrary, that a subset of customers are
flexible, and that dedicated customers are equally likely to go to queue A or queue B. Note that
a weaker result, showing the optimality of the DCF policy in the mean sense when the overall
arrival process is Poisson, follows from Theorem 4. Here we will extend the result to sample
pathwise optimality using weak submajorization. Weak submajorization is a preordering of R

c,
denoted by ‘≺w’ and defined as follows. For x, y ∈ R

c,

x ≺w y if
k∑
1

x[i] ≤
k∑
1

y[i], k = 1, . . . , c,

where x[i] denotes the components of x in decreasing order. Intuitively, x is both smaller
and better balanced than y. For two random vectors X and Y , we say that X stochastically
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weakly submajorizes Y , written X ≺w.st Y , if φ(X) ≺st φ(Y ) for all increasing Schur-convex
functions φ, where a Schur-convex function is defined to be a function that preserves the
majorization ordering [28]. The following definitions are equivalent.

(i) X ≺w.st Y .

(ii) φ(X) ≺st φ(Y ) for all increasing Schur-convex functions φ.

(iii) E[φ(X)] ≤ E[φ(Y )] for all increasing Schur-convex functions φ.

(iv) There exist random variables X̃ and Ỹ such that

(a) X =st X̃ and Y =st Ỹ ,

(b) X̃ ≺w Ỹ almost surely (a.s.).

For ease of notation, throughout the paper we use ‘≺w’ for stochastic weak submajorization.
Next, let {X(t)}∞t=0 and {Y (t)}∞t=0 be stochastic processes. We say that {X(t)}∞t=0 is stochas-
tically less than {Y (t)}∞t=0 in the sense of weak submajorization, denoted by {X(t)}∞t=0 ≺w
{Y (t)}∞t=0, if we can couple the processes on the same probability space such that, for any sample
path realization and any n, X(ti) ≺w Y (ti) jointly for all ti , i = 1, . . . , n, with probability 1.

We have the following lemma.

Lemma 5. Let a1 ≥ · · · ≥ ac ≥ M and b1 ≥ · · · ≥ bc ≥ M be integers. If a ≺w b then

max{(a − ei), M} ≺w max{(b − ej ), M} for all i ≤ j,

where ek is the kth unit vector.

For an arbitrary policy at time t , let NA(t) (NB(t)) denote the number of customers in
queue A (B) including the customer in service (regardless of the type of customer in service),
let N(t) = (NA(t), NB(t)), let Nf (t) denote the number of flexible customers waiting in the
flexible queue, and let N̄(t) = NA(t) + Nf (t) + NB(t) be the total number of customers.
We similarly define N ′

A(t), N ′
B(t), N ′

f (t), N ′(t), and N̄ ′(t) for the nonidling DCF. Also, let
(NA(0), Nf (0), NB(0)) = (N ′

A(0), N ′
f (0), N ′

B(0)). Note that a flexible customer effectively
becomes a dedicated customer once it starts service because it cannot be put back in the flexible
queue.

Theorem 5. Let the overall arrival process be arbitrary, with an arbitrary subset of customers
being flexible, and where the dedicated customers are equally likely to go to queue A or queue B.
If the service times are exponentially distributed with the same rate, and neither preemption
nor idling are permitted, then

(i) {N ′(t)}∞t=0 ≺w {N(t)}∞t=0,

(ii) {N̄ ′(t)}∞t=0 ≤st {N̄(t)}∞t=0.

Proof. The proof uses coupling and forward induction. Suppose that {Ñ ′(t)} {Ñ(t)} are
stochastic processes having the same stochastic laws as {N ′(t)} and {N(t)}. We will couple
these processes so that

P({Ñ ′(t)}∞t=0 ≺w {Ñ(t)}∞t=0) = 1, (1)

P({ ˜̄N ′(t)}∞t=0 ≤ { ˜̄N(t)}∞t=0) = 1. (2)
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To ease the notational burden, we will omit the tildes henceforth on the coupled versions and
just use {N ′(t)} and {N(t)}.

We couple the arrivals and potential service completion times so that a flexible arrival in
N ′(t) is also a flexible arrival in N(t), a dedicated arrival to the longest (shortest) dedicated
queue in N ′(t) is also a dedicated arrival to the longest (shortest) dedicated queue in N ′(t). If
a potential service completion occurs at the longest (shortest) queue in N ′(t) then a potential
service completion occurs at the longest (shortest) queue inN(t). A potential service completion
will result in an actual service completion if and only if the server is idle (both the flexible and
its dedicated queue are empty).

We use induction on tn, where {tn} denotes the ordered arrival and potential service
completion times such that t1 < t2 < t3 < · · · , and t0 = 0. Clearly, (1) and (2) hold for t = 0
because N(0) = N ′(0). Assume that they also hold for t such that tn−1 ≤ t < tn. Then, because
the state does not change for tn ≤ t < tn+1, it is sufficient to show that (1) and (2) hold for tn.

If tn is an arrival time then (2) is trivially true. If the arrival is a dedicated arrival, (1)
is also obvious. If it is a flexible arrival, it may go to one of the dedicated queues if the
server is idle. It is sufficient to consider the following cases because, for all other cases, the
flexible arrival will stay in the flexible queue in the N ′ system and, therefore, we would have
N ′(tn) = N ′(t) ≺w N(t) ≤ N(tn).

Case (i): N ′(t)= 0. Then the flexible arrival is routed to one of the idle servers and N ′[1](tn)=1.
Either 0 < N[1](t) = N[1](tn) or N(t) = 0, and (1) follows.

Case (ii): N ′[1](t) > 0 and N ′[2](t) = 0. Then the flexible arrival is routed to the idle server,
N ′[1](tn) = N ′[1](t) and N ′[2](tn) = 1. Either 1 ≤ N[2](t) = N[2](tn) (the flexible arrival
stays in the flexible queue in the N system) or 0 = N[2](t) (the flexible arrival is routed
to the idle server) and N[2](tn) = 1. Hence, (1) follows.

Next, suppose that tn is a potential service completion. We first show (1). Note that N ′(tn) ≤
N ′(t) and N(tn) ≤ N(t), but we may have equality even if the potential service completion is
an actual service completion. Consider the following cases.

Case (i): N ′
f (t) = Nf (t) = 0. Then the result follows from Lemma 5 with M = 0, i.e. the

potential service completion is not an actual completion if the server is idle.

Case (ii): N ′
f (t) > 0 and Nf (t) > 0. Then the potential service completion is an actual

completion in both systems. If the arbitrary policy does not follow the DCF policy
then N(tn) = N(t), since a flexible customer will start being served on the just idled
server (and Nf (tn) = Nf (t) − 1), so (1) follows. On the other hand, if the arbitrary
policy agrees with DCF at tn then the result will follow from Lemma 5 with M = 1,
i.e. the queue length where the service completion occurred will decrease by 1 if there
are dedicated customers waiting in the queue, and otherwise a flexible customer will start
being served and N(tn) = N(t) with N[2](tn) = 1 and, again, (1) follows.

Case (iii): N ′
f (t) > 0 and Nf (t) = 0. First suppose that the potential service completion is

from the largest queue in both systems. If N ′[1](t) > 1 then N[1](t) > 1 and the
result follows from Lemma 5 with M = 0. If N ′[1](t) = 1 then we have N ′[2](t) = 1
since N ′

f (t) > 0. Therefore, from the inductive hypothesis for (2) and the fact that
Nf (t) = 0, N[1](t) ≥ 2 and the result follows. Secondly, suppose that the potential
service completion is from the shortest queue in both systems. If N ′[2](t) > 1 then
again the result follows from Lemma 5 with M = 0. If N ′[2](t) = 1 then N ′[2](tn) = 1,
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N ′
f (tn) = N ′

f (t) − 1, and we have two possibilities for N[2](t). If N[2](t) = 0 then
the potential service completion is not an actual service completion in the N system,
i.e. N(tn) = N(t) and N ′(tn) = N ′(t). If N[2](t) > 0 then N[1](t) + N[2](t) =
N̄(t) ≥ N̄ ′(t) > N ′[1](t) + N ′[2](t), because we have N ′

f (t) > 0. Hence, the result
follows.

Case (iv): N ′
f (t) = 0 and Nf (t) > 0. If the arbitrary policy does not follow the DCF policy

then N(tn) = N(t), since a flexible customer will start being served on the just idled
server, so (1) follows. If the arbitrary policy follows the DCF policy and if the potential
service completion occurs in the ith largest queue, i = 1, 2, then

N ′(tn) = max{(N ′(t) − ei), 0} ≺w max{(N(t) − ei), 0}
≤ max{(N(t) − ei), 1}
= N(tn),

where the majorization inequality follows from Lemma 5 with M = 0. Hence, (1)
follows.

Now to show (2), it is sufficient to look at the case N̄(t) = N̄ ′(t). In this case, whenever
there is an actual service completion in N(t), there has to be an actual service completion in
N ′(t). To see this, first suppose that N ′[1](t) = 0. Then N̄(t) = N̄ ′(t) = 0, so there cannot
be an actual service completion in N[1](t). If N ′[2](t) = 0 then N[2](t) ≤ N̄(t) − N[1](t) =
N̄ ′(t) − N[1](t) ≤N̄ ′(t) − N ′[1](t) = N ′[2](t) = 0, and again there cannot be an actual service

completion in N[2](t). Hence, N̄ ′(tn) ≤ N̄(tn).

So far we have shown that (nonidling) DCF minimizes the number of customers in three
different senses depending on the model; the mean number of customers is minimized, the
number of customers is sample pathwise stochastically minimized (which follows when
departures are stochastically earlier), or the number of customers is sample pathwise
stochastically weakly submajorized. If the (nonidling) DCF policy is implemented we have
the following monotonicity result. As the subset of the arrivals that are flexible gets larger,
which implies that the proportion that are flexible increases, the number of customers in the
system gets smaller in the respective sense. This result follows because we can construct an
arbitrary policy where a subset of the flexible arrivals are served before dedicated arrivals, and
this system becomes stochastically identical to the system where the (nonidling) DCF policy is
implemented throughout, but where the same subset of arrivals are dedicated.

3. Optimal routeing of flexible customers

In this section we consider the following setting. Now each server has its own queue but
flexible customers do not have their own queue and must be routed to one of the dedicated queues
upon arrival. Within a queue services are nonpreemptive FCFS. When the only information
available is the queue length, routeing the flexible customers to the shortest queue is optimal
under various settings, as noted in the introduction. In this section we consider the model where
the exact workload in each queue is known upon arrival, but the required work of the arrival is
not yet known, and the arrival is routed to the queue with the shortest work.

Let the overall arrival process be arbitrary, with an arbitrary subset of customers being
flexible, and with the dedicated customers equally likely to go to either queue. Let the service
times be i.i.d. with distribution function G(·) and be independent of the interarrival times.
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We now show that, when the workload is known, the workload in the system at each t > 0
is stochastically minimized by sending the flexible customers to the queue with the shortest
workload upon arrival (the JSW policy). We also show that the departures are pathwise
maximized by the JSW policy. These results are extensions of Daley [7] and Koole [21]
to systems with both dedicated and flexible arrivals.

For x, y ∈ R
c, we say that x ≤ y if x[j ] ≤ y[j ] for all j , i.e. the j th largest component in x

is smaller than the j th largest component in y for all j . We have the following lemma.

Lemma 6. Let a1 ≥ · · · ≥ ac ≥ 0 and b1 ≥ · · · ≥ bc ≥ 0 be real numbers.

(i) If a ≤ b then, for any real t ,
(a − t)+ ≤ (b − t)+,

where (x − t)+j = max{xj − t, 0} for all j .

(ii) If a ≤ b then, for any real u,

(a + uei) ≤ (b + uei) for all i,

where ek is the kth unit vector.

Consider two parallel server systems where V i
n, i = 1, 2, denote the workload vector at the

instant of the nth arrival in the ith system (V i
0 denotes the initial workload at time t = 0), and

an arbitrary routeing policy is followed in system 2. Then we have

V i
n = (V i

n−1 − τn)
+ + snej

if the nth arrival in system i is either a dedicated arrival to queue j or it is a flexible arrival
routed to queue j , and where τn is the interarrival time between the nth and (n−1)th customers,
and sn is the service time of the nth customer. Let {Di

t } denote the departure process in the ith
system for i = 1, 2. Also, suppose that the initial customers leave earlier in system 1. Then we
have the following corollary.

Corollary 1. If V 1
0 ≤ V 2

0 then we can couple the arrival and service processes in both systems
such that

(i) {V 1
n }∞n=1 ≤ {V 2

n }∞n=1 a.s.,

(ii) {D1
t }∞t=0 ≥ {D2

t }∞t=0 a.s.

Proof. We couple the arrivals so that a flexible arrival in system 1 is also a flexible arrival in
system 2 with the same service time in both systems and, if it is routed to the queue with longest
(shortest) workload in system 2, then system 1 routes it to the queue with longest (shortest)
workload as well. A dedicated arrival to the queue with longest (shortest) workload in system 1
is also a dedicated arrival to the queue with longest (shortest) workload in system 2 with the
same service time in both systems. Then (i) directly follows from Lemma 6. Now consider the
nth arrival after t = 0 in both systems. It will join the same queue in both systems and will
depart earlier in system 1 than system 2 by (i); hence, (ii) follows.

Consider an arbitrary policy � that, without loss of generality, routes the first flexible arrival
after t = 0 (customer 1) to queue A, which has larger workload than queue B. We will construct
a policy �̃ that routes customer 1 to queue B and that has a stochastically smaller workload and
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pathwise earlier departures than policy �. Let Vn = (VnA, VnB) and Ṽn = (ṼnA, ṼnB) denote
the workload vectors at the instant of the nth arrival under � and �̃, respectively, and let V (t)

(Ṽ (t)) be the workload vector at time t under � (�̃). Also, let {Dt } ({D̃t }) denote the departure
process under � (�̃). Then we have the following theorem.

Theorem 6. Let the overall arrival process be arbitrary, with an arbitrary subset of customers
being flexible, and with the dedicated customers equally likely to go to either queue. Let the
service time of each customer be i.i.d. Then

(i) Ṽn ≺w Vn for all n ≥ 1 and Ṽ (t) ≺w V (t) for all t ,

(ii) {Dt }∞t=0 ≤st {D̃t }∞t=0.

Proof. The proof follows similarly to the proof of Theorem 3.2 of [21], by using Corollary 1,
so we present only a brief sketch of the proof here. First consider (i). Let m be such that the
mth arrival (customer m) is the first arrival to queue B after t = 0 under policy � (it is either
a dedicated arrival to queue B or a flexible arrival routed to queue B). We cross couple the
arrival processes so that, for all k ≤ m, if the kth arrival is a dedicated arrival to queue A (B)
under �, then it is a dedicated arrival to queue B (A) under �̃. Similarly, if the kth arrival is a
flexible arrival routed to queue A (B) under �, then it is a flexible arrival routed to queue B (A)
under �̃. To couple the service times, we first consider 1 ≤ n < m. In this case we couple the
service time of customer k under � with the service time of customer k under �̃ for 1 ≤ k ≤ n.
Then it can easily be seen that Ṽn ≺w Vn. Next we consider n = m. In this case we couple the
service time of customer k under � with the service time of customer k under �̃ for 1 < k < m.
Let τ be the time of the mth arrival. If V0B < τ then we couple the service time of customer 1
(customer m) under � with the service time of customer 1 (customer m) under �̃. However, if
V0B > τ then we cross couple the service time of customer 1 (customer m) under � with the
service time of customer m (customer 1) under �̃. With this coupling procedure, it can be seen
that Ṽm ≺w Vm and Ṽm ≤ Vm. Hence, (i) follows by Corollary 1 for n > m.

The proof of (ii) is similar and can be omitted.

The workload result, unlike the departure result, is not sample pathwise optimal, because the
coupling procedure required for the proof depends on n (specifically, for n = 1, the procedure is
different than for n ≥ m). Therefore, the coupling depends on time, and the result is stochastic
optimality for each t , but not jointly for all t . See [21] for a concrete counterexample to pathwise
optimality for the workload process when all customers are flexible.

Let Wd
n and W̃ d

n denote the sojourn times of the nth dedicated arrival under � and �̃,
respectively. Let the nth dedicated arrival be the mth overall arrival for some m ≥ n. Then we
have

Wd
n =st

(Vm−1A − τm)+ + (Vm−1B − τm)+

2
+ Sn,

where Sn is the service time of the nth dedicated arrival (W̃ d
n can be defined similarly), which

is an increasing Schur-convex function of the workload. A Schur-convex function is defined to
be a function that preserves the majorization ordering. Therefore, if a function f : Rc → R
is increasing and Schur convex, then f (x) ≤ f (y) whenever x ≺w y. Because f (x1, x2) =
c1[(x1 − a)+ + (x2 − a)+]+c2 is an increasing Schur-convex function, we have the following
corollary.

Corollary 2. It holds that
W̃ d

n ≤st Wd
n for all n ≥ 1.

https://doi.org/10.1239/aap/1377868534 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868534


Partial flexibility 689

Therefore, the dedicated customers on average are better off under the JSW policy. Note that
the same result does not follow for flexible customers because min{(Vm−1A − τm)+, (Vm−1B −
τm)+} is not an increasing Schur-convex function of the workload vector. That is, flexible
customers as a group are not necessarily better off under JSW. However, if we consider a single
tagged flexible customer and if the policy is fixed for all other flexible customers, then the tagged
flexible customer will be better off by joining the queue with the shortest work. Therefore, JSW
is individually optimal for the flexible customers.

4. Comparison of policies

Let {DJSQ
t }∞t=0 ({DJSW

t }∞t=0) denote the departure process when each server has its own queue
and flexible customers are routed to the queue with the shortest number of customers (shortest
workload). Let {DDCF

t }∞t=0 denote the departure process when there is a separate queue for
flexible customers to wait, DCF is followed (might be idling), and premption is not permitted
(nonpreemption is more realistic and is more applicable to service systems).

A consequence of our earlier results is that, in general, the system with a separate flexible
queue following DCF is better than JSW routeing, which is better than JSQ. The following
theorem follows directly from Theorem 6, since JSQ becomes the arbitrary policy described in
the proof.

Theorem 7. Let the overall arrival process be arbitrary, with an arbitrary subset of customers
being flexible, and with the dedicated customers equally likely to go to either queue. Let the
service times be i.i.d. with distribution function G(·) and be independent of the interarrival
times. Then

{DJSW
t }∞t=0 ≥st {DJSQ

t }∞t=0.

The following theorem follows from Theorem 3, because we can mimic the JSQ or JSW
policy in a system with a separate flexible queue and with a control policy which serves the
customers at the servers in the same order as they are served under JSQ or JSW. This policy
becomes an arbitrary control policy and, therefore, is worse than the DCF policy.

Theorem 8. Let the arrival process be arbitrary, and let server j have arbitrary service process
{Sj

k }∞1 , j = A, B. Suppose that the actual workload at each queue is known upon arrival and
that the service time of the arriving customer is not known. We have

(i) {DDCF
t }∞t=0 ≥st {DJSQ

t }∞t=0,

(ii) {DDCF
t }∞t=0 ≥st {DJSW

t }∞t=0.

As mentioned earlier, the DCF policy is unfair to flexible customers. Therefore, it can be
argued that the best system, in terms of both fairness and efficiency, is JSW, which can easily
be implemented in call centers.

5. Extensions

In this section we present some easy extensions for our models studied earlier in the paper.

• More than two servers. As mentioned earlier in the text, for ease of exposition, we
assumed that there are two servers, server A and server B. All the results can easily be
extended to more than two servers.
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• Multiple stations. Suppose that we have multiple service stations with their own queues,
but each station has more than one server. Then the results will still be true; however, the
proof of Theorem 4 requires a significant modification because the ‘up’ times depend on
the overall server state of the stations. Also, the proof of Theorem 5 requires a careful
coupling for the potential service completions (see [3] for the details).

• Impatience. Suppose that the customers are impatient and abandon the system after
waiting for some exponentially distributed time at rate α (either in queue or in service).
Then we can couple the abandonments as we coupled the (potential) service completions
in each proof, and all the results discussed in the paper will still be true.
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