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Abstract

Objective: We aimed to answer the questions of whether early-life (perinatal and/or juvenile)
exercise can induce antidepressant-like effects in a validated rodent model of depression, and
whether such early-life intervention could prevent or reverse the adverse effects of early-life
stress in their offspring.Methods:Male and female Flinders sensitive line rats born to a dam that
exercised during gestation, or not, were either maternally separated between PND02 and 16 and
weaned on PND17 or not. Half of these animals then underwent a fourteen-day low-intensity
exercise regimen from PND22. Baseline depressive-like behaviour was assessed on PND21 and
then reassessed on PND36, whereafter hippocampal monoamine levels, redox state markers
andmetabolicmarkers relevant tomitochondrial functionweremeasured.Results: Pre-pubertal
exercise was identified as the largest contributing factor to the observed effects, where it
decreased immobility time in the FST by 6%, increased time spent in the open arms of the EPM
by 9%. Hippocampal serotonin and norepinephrine levels were also increased by 35% and 26%,
respectively, whilst nicotinic acid was significantly decreased. Conclusion: These findings
suggest that pre-pubertal low-intensity exercise induces beneficial biological alterations that
could translate into antidepressant behaviour in genetically susceptible individuals.

Significant outcomes

• Prenatal exercise may alter coping behaviours in adolescent Flinders sensitive line
(FSL) rats offspring.

• Prenatal exercise has long-term beneficial effects on hippocampal redox state.
• Pre-pubertal low-intensity exercise reduces depressive-like behaviour in adolescent
FSL rats.

• Low intensity exercise alters hippocampal redox state, pointing to mitochondrial
involvement.

Limitations

• The metabolic profile sample collection method, specifically the use of the buffer,
may have influenced the results and therefore our findings require confirmation and
validation.

• We did not measure any neuro- and biochemical markers on PND21, therefore the
behavioural findings of the TST require confirmation.

• Pregnant dams exercised for 13 ± 5 days, which may have influenced the results of
the prenatal exercise group.

• No stress-related markers were measured in animals born to an exercised dam,
which would elaborate on the behavioural interpretations of these pups.

Introduction

The human brain accounts for only 2% of a person’s weight yet consumes 20% of total glucose
and oxygen (Rolfe & Brown, 1997; Manji et al., 2012; Pei & Wallace, 2018), explaining the
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particular high energy demand of brain neurons (80–90% of the
total brain demand). In fact, the human brain uses ~ 5.7 kg of ATP/
day at rest, of which the majority is utilised by cortical neurons
(Zhu et al., 2012). These energy demands are significantly
increased by stress (Bryan, 1990) and sets off structural and
functional changes in surrounding cells to match the required
behaviour in response to stress (Picard et al., 2014). Early-life
trauma has been shown to negatively affect central and peripheral
mitochondrial function (Hoffmann & Spengler, 2018; Ruigrok
et al., 2021), thereby adversely altering stress-response pathways
(Zitkovsky et al., 2021), and contributing to the underlying
pathophysiology of depression (Sharma & Akundi, 2019; van
Rensburg et al., 2022) and other psychiatric conditions (van
Rensburg et al., 2022). Clinical findings have also reported
dysfunctional mitochondria in depressed patients (reviewed by
Caruso et al. (2019)) and the diverse effects of approved
psychotropic drugs on mitochondrial function (Emmerzaal
et al., 2021).

With this considered, mitochondrial (dys)function may be a
promising target to treat depression (Allen et al., 2018; Sharma &
Akundi, 2019; Wu et al., 2019) and is of particular importance and
value in vulnerable populations, such as pregnant women and pre-
pubertal children, in which the currently approved treatment
options are limited to selective serotonin reuptake inhibitors
(Kimmel et al., 2018; Viswanathan et al., 2020). Moreover, the use
of these (and other) antidepressants during these vulnerable
developmental periods is often questioned (Bérard et al., 2017;
Molenaar et al., 2018; Hengartner, 2020) because of the uncertainty
surrounding their long-term effects and overall safety profiles. In
fact, all antidepressants require a “black box”warning for increased
suicidal behaviour in juvenile patients (U.S. Food & Drug
Administration, 2004). It is for these reasons that alternative
treatment options, especially in these vulnerable populations, are
necessary. One promising non-pharmacological treatment option
is exercise. The antidepressant effects of exercise have been widely
established (Carter et al., 2016; Kandola et al., 2019), yet the exact
mechanisms through which it exerts its antidepressant effects
remain unknown (Schuch et al., 2016). Numerous mechanisms
have been proposed (Kandola et al., 2019; de Oliveira et al., 2022)
and include (but are not limited to) increased monoamine
neurotransmission (Lin & Kuo, 2013) and neuroplasticity (El-
Sayes et al., 2019) and decreased inflammation and oxidative stress
(Eyre & Baune, 2012), all of which have been implicated in the
pathophysiology of depression and as alluded to earlier, linked to
mitochondrial function (Allen et al., 2018; Sharma & Akundi,
2019; van Rensburg et al., 2022). Additionally, exercise also induces
bio-energetic enhancing effects (i.e., improved mitochondrial
functioning (Aguiar et al., 2014; Wu et al., 2019)). In contrast,
physical inactivity has been linked to adverse health outcomes,
including depression (Kandola et al., 2019) and metabolic
disorders, such as diabetes and cardiovascular diseases
(Katzmarzyk et al., 2022), which are often co-morbid with
depression. Exercise during the prenatal period is known to be safe
and beneficial to the mother and offspring (Davenport, et al., 2018;
Davenport, et al., 2018;Moyer et al., 2016). Also, increased physical
activity during juvenile development is inversely associated with
depressive symptoms (Biddle et al., 2019; Dale et al., 2019).
Therefore, physical exercisemay not only be a promising treatment
option for depression but also provide additional health benefits,
and even reduce the risk to develop depression in children with a
genetic predisposition to develop depression.

Early-life development is a sensitive period, characterised by
extensive growth and plasticity, that makes the developing brain
sensitive to external influences (Heim et al., 2010; Scattolin et al.,
2022). For instance, early-life adversity, such as neglect or abuse,
can have detrimental developmental effects with long-lasting
consequences (Andersen & Teicher, 2008; Obi et al., 2019) to such
an extent that one-third of mental disorders, including depression
and anxiety can be ascribed to early-life adversity (Kessler et al.,
2010;McLaughlin et al., 2019). In the USA, it is estimated that 4.4%
and 9.4% of children aged 3–17 years suffer from depression and
anxiety, respectively, with 33% of children who suffer from anxiety
also experiencing depressive symptoms (Centers for Disease
Control and Prevention, 2021). Importantly, neurodevelopment
does not only occur during childhood and the adolescent period
but begins as early as the embryonic stage (Scattolin et al., 2022)
and is therefore also influenced by the perinatal environment
(Schuurmans & Kurrasch, 2013). To this extent, it is worth noting
that prenatal stress (including maternal depression and family
adversity) is not only associated with offspring depression later in
life but is also a significant risk factor for childhood trauma (Liu
et al., 2022). It is for this reason that maternal health during the
perinatal and post-partum period is significant for a developing
child. Importantly, maternal depression during the perinatal and
or post-partum period significantly increases the offspring’s risk to
develop depression later in life by as much as 70% (Tirumalaraju
et al., 2020) and therefore, by simply being born into a family with a
history of depression, increases the risk for developing depression
(Fihrer et al., 2009; Thompson et al., 2018; Tirumalaraju et al.,
2020). Still, due to ethical and practical reasons, whether prenatal
exercise can protect or even reverse the adverse effects of early-life
adversity, remains unexplored. Therefore, to mimic this increased
risk of developing depression both through a combination of
genetic and environmental influences, the current study applied an
early-life stressor (i.e. maternal separation and early weaning;
MSEW) to an approved genetic rodent model of depression (i.e.
Flinders sensitive line (FSL) rat) (Overstreet & Wegener, 2013), as
this strain has been reported to already display depressive-like
behaviour during juvenile development (Malkesman & Weller,
2009; Whitney et al., 2023).

Considering the above, we hypothesised that exercise during the
prenatal and pre-pubertal periods would induce antidepressant-like
behaviour by improving hippocampal mitochondrial function,
monoaminergic neurotransmission and redox state in adolescent
FSL rats (representing a juvenile patient, predisposed to develop
depression). Moreover, we hypothesised that these effects would
prevent and/reverse the depressogenic effects of the early-life stressor.

Materials and methods

Study layout

A similar study layout, except for the exercise interventions, was
used as before to build on our previous findings (Whitney et al.,
2023). Briefly, pregnant FSL dams were either subjected to a
chronic low-intensity exercised regimen or not. Next, the offspring
of these dams were then further divided into MSEW and non-
MSEW groups. On PND21, animals were subjected to the open
field (OFT) and tail suspension tests (TST) to determine early-life
depressive-like behaviour. Next, 50% of the animals underwent a
14-day low-intensity exercise regimen, whereafter all animals were
subjected to the OFT and forced swim tests (FST) on PND36,
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followed by the elevated plus maze test on PND37. The sequence of
the behavioural analysis, specifically in terms of performing the
forced swim test before the elevated plusmaze test, has been carried
out by others (Neumann et al., 2011; Rea et al., 2014; Bay-Richter
et al., 2019). Moreover, to minimise the risk for potential habitual
learning, depressive-like behaviour was analysed by two different
behavioural tests (i.e. TST and FST) at different time points. To
ensure normal initial foraging and activity of nocturnal animals,
testing only commenced one hour after the start of the dark cycle.
Tests were carefully spaced to allow 30 min between each test for
animals to habituate to the environment. Automated tracking
software (Ethovision XT14 Software; Noldus information
Technology BV, Wageningen, NLD) was used to track behaviour
in the OFT and EPM. TST and FST behaviour wasmanually scored
by a researcher blind to the experimental group details, from
recordings of the behavioural tests, recorded with a camera
mounted in front of the test apparatus.

Animals and justification of group sizes

Building on previous findings, where we investigated the effects of
MSEW on FSL rats (Whitney et al., 2023), male and female FSL
(n= 122) rats were divided into eight experimental groups,
consisting of sixteen rats (50:50 females:males) per group
(Fig. 1). Male and female rats were grouped together as sex
differences is not expected in pre-pubertal animals. Still, results
were visually inspected to identify any obvious sex differences.
Smaller groups were, however, sometimes employed due to the
exclusion of non-runners and/or when the breeding programme
failed to supply the adequate number of animals. Group sizes were
calculatedwith a predicted effect size F of 0.403 (η2p= 0.14), α error
(0.05) and 80% power. Rats were group housed (3–4 rats/cage),

according to sex, with corncob bedding changed weekly and the
environmental temperatures maintained at 22 ± 1°C in a relative
humidity of 55 ± 10%. A 12 h light/dark cycle was followed with
food and water provided ad libitum.

Maternal separation and early weaning

As described by George and colleagues (2010), pups in the MSEW
groups were left in their home cages, while the dams were relocated
to new, clean cages with ad libitum access to food and water for 3 h
per day from PND02 to 16. In contrast, the non-MSEW pups were
left, undisturbed with the dam, with all pups remaining with their
littermates. Finally, MSEW animals were also weaned on PND17,
opposed to the standard PND21 when the non-MSEW pups were
weaned.

Exercise regimen

Forced exercise was implemented using a custom-built, program-
mable treadmill, comprising of a single running belt six shocking
grids installed at the back of the treadmill. The shocking grid
delivered an electrical shock of 1 mA (3 Hz), and the shocking
intensity was selected to be uncomfortable but not painful or
harmful. Sedentary animals were removed from their home cages
and placed on a mock (still standing) treadmill. All exercise
interventions were performed during the animal’s active dark cycle
(i.e. from 18:00 in the evening until latest 03:00 in the morning,
depending on animal numbers). All animals were familiarised to
the treadmill using a 10-min routine to reduce injury risk and
identify any ‘non-runners’. As described previously (Kregel et al.,
2006), animals were classified as ‘non-runners’ when they were
unable to keep up with the speed of the treadmill (i.e. shocked three

Figure 1. Graphical summary of the study layout. Pregnant FSL dams were either subjected to a prenatal sedentary or low-intensity exercise regimen. Animals were either
subjected to early-life stress (MSEW) between PND02 and 17 or not. Early-life behavioural testing took place on PND21 to determine the effects of prenatal exercise. To investigate
the bio-behavioural effects of juvenile exercise (with and without prenatal exercise), a 14-day low-intensity exercise (or sedentary) regimen was introduced on PND22, whereafter
behavioural testing took place on PNDs36 and 37, followed by decapitation and brain dissection on PND38. Tissue was frozen at −80°C until neurochemical analyses were
performed. Couch icon: sedentary group. Treadmill icon: exercise group. Pink rat icon: female rats. Purple rat icon: male rats. EPM, elevated plusmaze; EXE, low-intensity exercise;
FRL, flinders resistant line; FSL, flinders sensitive line; FST, forced swim test; MSEW, maternal separation with early weaning; OFT, open field test; PND, postnatal day; SED,
sedentary; TST, tail suspension test.
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times within 1 min) during the familiarisation period. Pups
identified as ‘non-runners’ were used as control rats; however,
those identified as ‘non-runners’ during the exercise intervention
were removed from the study. We observed a small number of rats
(< 10%) that displayed ‘non-runner’ behaviour. Pregnant FSL
dams allocated to the exercised group were familiarised with the
treadmill two days after being paired to ensure that dams exercise
for the full term of their pregnancy. The protocol approach for the
familiarisation and low-intensity exercise differed between
prenatal exercise and juvenile exercise and is therefore summarised
in Table 1.

Behavioural analyses

Open field test
The OFT was used to measure general locomotor activity, and
consisted of a 1 m2 test arena, surrounded by opaque black, vertical
walls. As previously (Steyn et al., 2020) described, each rat, on the
day of testing, was placed in the centre of the arena and allowed to
freely explore the arena for 5 min under red light. Total distance
moved was interpreted as a measure of general activity.

Tail suspension test
In the current study, the TST was used to screen baseline juvenile
depressive-like behaviour on PND21. As before (Castagné et al.,
2010; Cryan, et al., 2005), on the day of testing, each rat was
suspended by the tail with adhesive tape, positioned three-quarters
of the distance from the base of the tail from a suspension hook for
6 min. To avoid injury, the suspension hook went through the

adhesive tape as close as possible to the tail to ensure the animal
hangs with its tail in a straight line (Castagné et al., 2010). The total
time spent immobile was recorded and interpreted as an indication
of depressive-like behaviour.

Forced swim test
The FST was performed on PND36, as previously described in our
laboratories (Brand & Harvey, 2017; Steyn et al., 2020), without a
pre-conditioning swim trial, 24 hr prior to the testing trial
(Overstreet et al., 2005; Overstreet & Wegener, 2013). Briefly,
during the dark cycle, animals were placed in an inescapable
Perspex® cylinder filled with 30 cm of water at a temperature of
25 ± 1°C for 6 min. Behaviour was scored manually by an
experimenter blind to the experimental group, with the first minute
of the test ignored (Roets et al., 2023). Behaviour scored included
immobility (floating with no active movements made, except those
necessary to keep the rat’s head above water), swimming (horizontal
movements throughout the cylinder that included crossing into
another quadrant) and struggling (upward-directed movements of
the forepaws along the inside of the swim cylinder) (Cryan et al., 2002;
Cryan, et al., 2005). Increased immobility was considered an
indication of depressive-like behaviour.

Elevated plus maze
The EPM is plus shaped Perspex maze that consists of two closed
and two open arms, elevated approximately 50 cm above the floor
with a 1 cm transparent Plexiglas border to prevent animals from
falling. As described previously (Regenass et al., 2018), rats were
placed in the centre zone of the maze, facing the open arm opposite
the investigator, and allowed to freely explore the maze for 5 min
under red light. Increased time spent in the closed arms was
interpreted as anxiety-like behaviour, with entrance into an arm
considered when the centre point, as defined by the automated
scoring program, entered the arm.

Bio-analyses

Tissue collection and storage
Animals were euthanised by decapitation on PND38, whereafter
brain and heart samples were harvested and weighed. Following
the decapitation, right and left hippocampi were dissected on an
ice-cooled dissection slab and stored separately. The right
hippocampi were used for neurochemical analysis via LC–MS
and snap-frozen in liquid nitrogen and stored at -80°C. The left
hippocampi were removed and immediately placed into an
isolation buffer (mannitol 200 mM, sucrose 50 mM, potassium
phosphate 5 mM, EGTA 1mM, 3-(N-morpholino)propanesul-
fonic acid 5 mM and bovine serum albumin 0.10% pH 7.2) (Kim
et al., 2016), whereafter it was also stored at -80°C.

Quantitative analyses of hippocampal monoamines, GSH and
GSSG
Quantitative monoaminergic, GSH (glutathione) and GSSG
(glutathione disulphide) concentrations were analysed via LC–
MS, as before (Whitney et al., 2023). A detailed description of the
method is available as Supplementary data.

Metabolic profiling via GC-TOF-MS analysis
Untargeted gas chromatography time-of-flight mass spectrometry
(GC-TOF-MS) was performed as previously described (Lindeque
et al., 2013; Terburgh et al., 2019) on the left hippocampi of FSL rats
(Whitney et al., 2023). Briefly, a stepwise Bligh–Dyer extraction

Table 1. Summarised protocol for prenatal and juvenile familiarisation and
exercise. Adapted from Aksu et al., 2012 and Seo et al., 2013

Intervention
period Protocol

Prenatal exercise

Familiarisation 5m/min for 10 min/day for 7 days

Pregnancy Exercise group: 30 min/ day at 2m/min for 5 min
followed by 5m/min for 5 min and then 8m/min for
20 min 7days a week until birth

Juvenile exercise

Familiarisation All pups (regardless of experimental group) from PND
17-20 were subjected to a daily 10-min routine (except
for PND 19 where it is a 9 min routine) with gradual
increases in treadmill speed.

PND 17: 2m/min for 5 min followed by gradual
0.1m/min increases every 1 min until a final speed of
2.5m/min in the last min.

PND 18: 2m/min for 3 min followed by 2.5m/min for
2 min. Then a 1 min rest period. 2.5m/min for 1 min
followed by 3m/min for 3 min.

PND 19: 2m/min for 3 min followed by 3m/min for
3 min with an increase to 4m/min for 3 min and a final
speed of 4.5m/min for 1 min.

PND 20: 2.5m/min 3 min, then 3.5m/min for 3 min
followed by 4.5m/min for 3 min.

PND22-PND35 Exercise group: 30 min/day at 2m/min for 5 min
followed by 5m/min for 5 min and then 12m/min
7 days a week for 14 days.

Sedentary group: placed in a mock treadmill for
30 min/day for 7 days a week for 14 days
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method (Wu et al., 2008) was performed resulting in biphasic
separation. Furthermore, all samples were derivatised via oximation
and silylation as previously decribed (Lindeque et al., 2013; Terburgh
et al., 2019) prior to GC-TOF-MS analysis. For data acquisition and
extraction, the LECOCorporationChromaTOF® software (v 4.5x)was
utilised. TheNISTMS search program (v 0.2) usingAMDIS (National
Institute of Standards and Technology) was used to compare
measured spectra to the NIST 11 mass spectral library to identify
all the detected components and validate relevant metabolites. A
detailed description of the method is available as Supplementary data.

Statistical analyses

Statistical analyses were performed in IBM® SPSS® Statistics
(version 28), assisted by Laerd Statistics® (https://statisticslaerd.com)
and the NWU statistical consultation services. Effect magnitude
indicators were calculated in Exploratory Software for Confidence
Intervals (Cumming, 2014). All graphical representations were
created in GraphPad Prism® (version 10) with the initial power
analysis performed in G*Power (version 3; Universität Kiel, GER).

The Grubb’s test was used to identify outliers and are reported
in figure and table legends. Normality of distribution and
homogeneity of variances were determined with the Shapiro-
Wilk and Levene’s tests, respectively. Only instances where these
assumptions were not true are reported in the text. As for the
metabolomic screening, normality of data was not analysed due to
the number of measurements. Instead, data were simply log
transformed and analysed with the appropriate statistical tests
(Lindeque et al., 2013) and normalised using the MSTUS
normalisation method (Warrack et al., 2009). First, normal two-
way ANOVAs (analysis of variances) were used for PND21
analysis, with prenatal activity (EXE and SED) and early-life
adversity (MSEW and non-MSEW) set as variables. Next, normal
three-way ANOVAs were performed on PND36 parameters, with
juvenile activity (SED and EXE), prenatal activity (SED and EXE)
and early-life adversity (MSEW and non-MSEW) considered.
Where locomotor activity was expected to influence results,
appropriate ANCOVAs (analysis of co-variances) were performed
to correct for this expected influence. A 5% confidence limit for
error in all cases was accepted as statistically significant and
reported as a Bonferroni-adjusted value. The mean differences
between groups are reported with 95% confidence interval. For the
GC–MS data, an independent t-test was performed in
MetaboAnalyst version 5 (www.metaboanalyst.ca)

Statistical analyses were followed up by effect magnitude
calculations (Cumming et al., 2007; Lakens, 2013). Partial eta
squared (ηp2) and the unbiased Cohen’s d (dunb) values
(Cumming, 2014) were used to calculate effect magnitude of
interactions and intergroup differences, respectively. Large effect
sizes were accepted as ηp2 ≥ 0.14 (Ellis, 2010) and d≥ 0.8 (Sullivan
& Feinn, 2012). Importantly, to facilitate the interpretation of these
findings, the effect magnitude values of the different behavioural
parameters were calculated to identify the largest and statistically
non-zero contributing factor (i.e. main effect), which was
subsequently used to guide further analyses (see Section 3.1).

Results

Effects of prenatal activity and maternal separation and
early weaning

In Fig. 2a, there was no significant interaction between prenatal
activity (PRE) and early-life adversity (ELA) (F1,117= 0.74,

p= 0.39, ηp2= 0.006), nor any significant main effect (p>0.05)
for distance moved in the OFT. Nonetheless, this parameter was
used as a covariant in the analysis of the TST below.

Locomotor activity did not significantly influence immobility
time in the TST (F1,116= 2.19, p= 0.14, ηp

2= 0.019), yet a
significant PRE*ELA interaction was identified (Fig. 2b;
F1,116= 5.02, p= 0.027, ηp2= 0.041), with PRE also contributing
as an independent factor (F1,116= 9.53, p= 0.003, ηp2= 0.076). In
terms of this effect, pups born to an EXE dam (regardless of ELA)
were 27 s [10; 44 s] more immobile than their SED counterparts.
More specifically, this effect only reached statistical significance in
MSEW animals (p≤ 0.0005, dunb= 1.1 [0.5; 1.7]).

Effects of pre-pubertal low-intensity exercise

The overall effect of the various factorial interactions and main
effects of the behavioural parameters, including those discussed
below, are presented in Fig. 3. Based on these results, juvenile
activity (JUV) was the largest and statistically non-zero contrib-
uting factor that was used to guide further analyses and simplify the
interpretation thereof. Still, all other significant findings are
available as supplementary data.

FST behaviour on PND36, after correcting for locomotor
differences

In Fig. 4a, a significant three-way interaction (F1,114= 6.89,
p= 0.01, ηp2= 0.06; Supplementary data), as well as a significant
PRE*ELA interaction (F1,114= 6.77, p= 0.01, ηp2= 0.06), existed
for distance moved in the OFT on PND36. Despite narrowly
missing significance (F1,114= 3.74, p= 0.056, ηp

2= 0.03), JUV
independently trended to influence distance moved, so that
pups that exercised (regardless of PRE and ELA) covered 235 cm
[6; 476 cm] more than sedentary controls (dunb= 0.3 [−0.1; 0.7]).
These differences were subsequently used as a covariant in the FST
analyses.

Distance moved in the OFT had no significant effect on any of
the FST behavioural parameters (p> 0.05 in all instances; Table 2).
After correcting for distance moved, there were no significant
three-way interactions for time spent immobile (F1,113= 0.239,
p= 0.63, ηp2= 0.002), swimming (F1,113= 0.14, p= 0.71,
ηp2= 0.001) or struggling (F1,113= 0.55, p= 0.46, ηp2= 0.005).

In addition to the significant PRE*ELA interaction
(Supplementary data; F1, 113= 4.85, p= 0.03, ηp2= 0.04;), JUV
independently also influenced time spent immobile in the FST
(Fig. 4b; F1,113= 5.94, p= 0.02, ηp2= 0.05). Pups that exercised
(regardless of PRE and ELA) were 13 s [2; 24 s] less immobile than
their sedentary controls (dunb= 0.5 [0.1; 0.9]).

For time spent swimming (Fig. 4c), three significant two-way
interactions were identified (Supplementary data), with PRE*ELA
considered the largest (F1,113= 18.64, p≤ 0.0005, ηp

2= 0.14).
However, after correcting for distancemoved, JUV, as independent
factor, did not influence time spent swimming in the FST
(F1, 113= 2.19, p= 0.14, ηp2= 0.02).

Only JUV influenced struggling behaviour (Fig. 4d) in the FST
(F1,113= 4.20, p= 0.04, ηp2= 0.04), so that pups that exercised
(regardless of PRE or ELA) struggled 8.6 s [0.3; 17 s] longer than
sedentary controls (dunb= 0.4 [0.1; 0.8]).

EPM behaviour on PND36

In Fig. 5, there was no significant three-way interaction
(F1,109= 0.89, p= 0.35, ηp2 = 0.01), nor any two-way interactions
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identified for percentage time spent in the open arm of the EPM.
However, JUV, independently influenced time spent in the open
arms (F1,109= 6.22, p= 0.01, ηp

2= 0.05), so that pups that
exercised (regardless of PRE and ELA) spent 9% [2; 15%] more
time in the open arms, compared to sedentary controls (dunb= 0.5
[0.1; 0.8]).

Anatomical markers

For whole brain (Fig. 6a; F1,107= 0.62, p= 0.43, ηp2= 0.006) and
heart (Fig. 6b; F1,109= 0.26, p= 0.62, ηp2= 0.002) weight, there
were no significant three-way interactions, nor any two-way
interactions. However, PRE, ELA (Supplementary data) and JUV
independently influenced whole brain (F1,107= 5.23, p= 0.02,
ηp

2= 0.02) and heart (F1,109= 6.237, p= 0.014, ηp2= 0.05) weights,
so that the brains and hearts of pups that exercised (regardless
of PRE and ELA), respectively, weighed 0.08% [0.02; 0.1%]
(dunb= 0.3 [−0.02; 0.7]) and 0.03% [0.01; 0.06%] (dunb= 0.5 [0.1;
0.9]) more than that of their sedentary controls.

Hippocampal monoamine levels and redox state

In addition to the significant three-way interaction (F1,102=
18.033, p≤ 0.0005, ηp2= 0.15; Supplementary data), hippocampal
norepinephrine levels were also influenced by JUV (Fig. 7a;
F1,102= 12.97, p≤ 0.0005, ηp2= 0.11), independently, so that the
levels of pups that exercised (regardless of PRE and ELA) were

233.75 ng/g [105; 363 ng/g] higher than that of sedentary controls
(dunb= 0.4 [0.0; 0.8]).

Hippocampal serotonin levels were also significantly influenced
by a three-way interaction (F1,106= 13.05, p≤ 0.0005, ηp2= 0.110;
Supplementary data) and independently by JUV (Table 3;
F1,106= 5.13, p= 0.026, ηp2= 0.046). In line with the latter, pups
that exercised (regardless of PRE and ELA) had 9.86 ng/g [4; 16 ng/g]
more serotonin than sedentary controls (dunb= 0.3 [-0.1; 0.7]).
Despite these differences, hippocampal serotonin turnover (Fig. 7b)
was comparable across groups.

In terms of hippocampal redox state, there was no significant
three-way interaction (F1,106= 1.66, p= 0.20, ηp2= 0.015), nor any
significant two-way interactions (p>0.05 in all instances;
Supplementary data). However, JUV independently affected
GSH/GSSG values (Fig. 7c; F1,106= 35.25, p≤ 0.0005, ηp2= 0.25),
so that this ratio (regardless of PRE and ELA) was 4.52 [3; 6] higher
in pups that exercised, compared to sedentary controls (dunb= 0.9
[0.5; 1.3]).

Metabolic markers relating to mitochondrial function

Summarised in Table 3, the effects of the largest identified
behavioural influencing factor (i.e. juvenile activity; JUV) were
significant in the following metabolic markers: palmitic acid (or
hexadecenoic acid), stearic acid (or octadecanoic acid), oleic acid,
1-monopalmitin, and 1-monostearin and nicotinic acid (or
niacin). Specifically, JUV (regardless of PRE and ELA) significantly
(p<0.05) decreased all these markers, relative to pups that did not
exercise during pre-pubertal development (i.e. SED).

Discussion

In this work, we investigated the interaction between prenatal
activity, an early-life stressor in the form of chronic MSEW, and
pre-pubertal low-intensity exercise on the behavioural profile of an
approved rodent model for depression. Importantly, the character-
istic behavioural profile of the juvenile FSL rat was investigated and
reported elsewhere (Whitney et al., 2023). Briefly, juvenile FSL rats
(regardless of sex) displayed increased immobility and decreased
escape-directed behaviour in the FST on PND36, together with
increased hippocampal norepinephrine and serotonin turnover (5-
HIAA/5-HT), and decreased GSH/GSSG values. In terms of the
effect of an early-life stressor, we previously found that MSEW
induced lasting behavioural deficits, as measured in the FST
(Whitney et al., 2023). Here, both FSL and FRL rats (regardless of

Figure 2. PND21 effects of prenatal exercise on FSL offspring
either exposed to early-life adversity or not. (a) distance moved
(over 5 min) in the OFTa,b and (b) time spent immobile in the TST
on PND21. Data points represent the mean ± 95% CI, with male
and female indicated in blue and pink, respectively. Statistical
analyses are reported in the text. a) not all data sets were
normally distributed. b) outlier identified and excluded from
analysis. EXE, pre-natal low-intensity exercise; MSEW, maternal
separation and early weaning; SED, sedentary. TST: tail
suspension test.

Figure 3. Forest plot of the overall behavioural effects of the contributing factors.
ELA, early-life adversity; JUV, juvenile activity; PRE, prenatal activity.
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sex) exposed to MSEW displayed increased depressive-like
behaviour at PND36. Based on these findings, we could investigate
whether prenatal and/or pre-pubertal low- intensity exercise could
reverse or at least prevent the adverse effects caused by MSEW in a
subject with a predisposed susceptibility to develop depression.

According to recent meta-analyses, exercise interventions
induce an overall moderate beneficial effect in terms of childhood
and adolescent depressive symptoms (Hu et al., 2020; Wegner et al.,
2020; Axelsdottir et al., 2021). Although the exact mechanism of
action remains unknown (Schuch et al., 2016), exercise has been
linked to improved neuroplasticity (Gourgouvelis et al., 2017; El-Sayes
et al., 2019), decreased neuro-inflammation (Eyre & Baune, 2012;
Kandola et al., 2019) and oxidative stress damage (Eyre & Baune,
2012; Schuch et al., 2014; Lu et al., 2021), enhanced monoaminergic
neurotransmission (Lin & Kuo, 2013; da Costa Daniele et al., 2017)
and improved mitochondrial function (Aguiar et al., 2014).
Contrastingly, traumatic experiences during early-life development
can negatively affect these pathways, eventually leading to impaired
mood and/or increased anxiety levels (Palmier-Claus et al., 2016;
LeMoult et al., 2020). We therefore aimed to determine whether
prenatal low- intensity exercise could induce protective mechanisms
against the adverse effects of early-life stress, and whether pre-
pubertal exercise, with or without prenatal exercise, could induce
antidepressant effects during juvenile development.

The early-life effects of prenatal activity and an early-life
stressor (i.e. MSEW)

The beneficial effects of prenatal exercise are well established and
proven to be safe for both the mother and foetus (Davenport et al.,
2018; Davenport et al., 2018; Moyer et al., 2016). Several groups
have reported on the beneficial metabolic effects of maternal
exercise in the rodent offspring (reviewed by Kusuyama et al.
(2020)), with others also observing cardiovascular (May et al.,
2014) and even neuro-behavioural benefits in new-born babies
(Clapp et al., 1999). Here, pregnant FSL dams were subjected to a
low intensity, treadmill exercise regimen, for an average of 13 ± 5
days. Pups born to these dams (regardless of sex and ELA) were
more immobile in the TST on PND21, compared to those born to a
sedentary dam. Interestingly, this effect was more prominent in
animals exposed to MSEW (Fig. 2b). Others have suggested
prenatal exercise to improve cognitive function and induce
anxiolytic effects in rodent offspring, in part by increasing
hippocampal neuroplasticity (Aksu et al., 2012; Ji et al., 2020).
However, a limitation of the current study is that no neurochemical
markers were measured at this age (i.e. PND21), leading to any
explanation of these behavioural differences to be speculative. Still,
that prenatal exercise can influence the hypothalamic-adrenal axis
(Carlberg et al., 1996) suggests that prenatal exercise could alter

Figure 4. Behavioural effects on PND36. (a) Distance moved in the OFT. (b) Time spent immobilea,b,c, (c) swimminga,b,c and (d) strugglinga,b,c in the FST. Data points represent the
mean ± 95% CI, with male and female indicated in blue and pink, respectively. Statistical analyses are reported in the text. a) Not all data sets were normally distributed. b) Outlier
identified but not excluded. c) Heterogeneity of variances. FST, forced swim test; EXE, juvenile low-intensity exercise; MSEW, maternal separation and early weaning; SED,
sedentary.
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behaviour and stress responses. Consequently, the behaviour
observed in the TST on PND21 would benefit from corticoster-
one analyses as a recent meta-analysis concluded that although
cortisol release is blunted in children and adolescents who
suffered ELA, these effects weremore prominent in adults (Bunea
et al., 2017). Conversely, an earlier report found that prenatal
exercise increased foetal corticosterone levels (Carlberg et al.,
1996), while another found that offspring of women who

regularly exercised during pregnancy scored better on the Bayley
psychomotor scale (Clapp et al., 1998). Considered together,
although on face value, the TST behaviour may represent
improved depressive-like behaviour, and further neurochemical
analyses are required to confirm such interpretation. Later in life,
pups born to an exercised dam also displayed increased
immobility time and decreased swimming behaviour (Figure 4
and Supplementary data) in the FST, compared to those born to a
sedentary dam. These behaviours again point towards a
depressogenic effect yet considering the reduced hippocampal
serotonin turnover, improved redox state, and increased brain
weight on PND38 (Figure 7 and Supplementary data), it may be
that prenatal exercise may actually induce a more resilient
behaviour. In this regard, although the FST is an accepted
screening tool for antidepressant-like effects, this simplified
interpretation of time spent immobile as an indicator of
depressive-like behaviour has been challenged (Boccia et al.,
2007; Commons et al., 2017). Therefore, pending confirmation,
our results may suggest that prenatal exercise does indeed induce
significant behavioural changes in adolescent FSL rats, and that
these effects may (or may not) resemble improved coping
behaviour.

As to whether prenatal exercise could prevent the adverse
effects of MSEW, it is first worth noting that we have previously
shown that MSEW worsens depressive-like behaviour in the
Flinders line rat, with more prominent effects in the resistant (i.e.
FRL) strain (Whitney et al., 2023). Similarly, in the current study,
MSEW also increased time spent immobile in the FST on PND36
and decreased the whole brain weight of FSL rats (Supplementary
data), thereby supporting a depressogenic effect, caused by an

Table 2. Original and ANCOVA-adjusted parameters of the TST and FST

PRE ELA JUV

TST immobility (s) FST immobility (s)

Original mean ± SD (n) Adjusted mean ± SEM (n) Original mean ± SD (n) Adjusted mean ± SEM (n)

Sedentary Normal SED 178.69 ± 52.28 (32) 179.52 ± 8.37 (32) 214.18 ± 33.42 (16) 211.86 ± 7.54 (16)

EXE 209.48 ± 28.84 (16) 209.13 ± 7.30 (16)

MSEW SED 162.35 ± 44.43 (33) 161.68 ± 8.23 (33) 242.35 ± 23.07 (16) 243.53 ± 7.35 (16)

EXE 223.13 ± 33.95 (17) 224.19 ± 7.13 (17)

Exercise Normal SED 183.93 ± 50.34 (32) 184.92 ± 9.38 (32) 237.51 ± 33.61 (16) 238.24 ± 7.31 (16)

EXE 225.88 ± 18.42 (16) 225.89 ± 7.29 (16)

MSEW SED 209.39 ± 39.29 (25) 207.93 ± 9.52 (25) 242.53 ± 35.27 (12) 240.45 ± 8.59 (12)

EXE 220.76 ± 22.21 (13) 222.21 ± 8.17 (13)

PRE ELA JUV

FST swimming (s) FST struggling (s)

Original mean ± SD (n) Adjusted mean ± SEM (n) Original mean ± SD (n) Adjusted mean ± SEM (n)

Sedentary Normal SED 59.44 ± 20.43 (16) 60.16 ± 3.77 (16) 26.43 ± 33.24 (16) 28.07 ± 5.85 (16)

EXE 48.15 ± 9.57 (16) 48.26 ± 3.65 (16) 39.82 ± 24.48 (16) 40.06 ± 5.66 (16)

MSEW SED 39.51 ± 15.74 (16) 39.14 ± 3.68 (16) 18.29 ± 15.78 (16) 17.46 ± 5.71 (16)

EXE 41.55 ± 13.28 (17) 41.22 ± 3.57 (17) 34.62 ± 23.69 (17) 33.87 ± 5.53 (17)

Exercise Normal SED 29.66 ± 9.36 (16) 29.43 ± 3.66 (16) 28.92 ± 23.09 (16) 28.41 ± 5.68 (16)

EXE 37.38 ± 8.77 (16) 37.38 ± 3.65 (16) 35.51 ± 15.17 (16) 35.50 ± 5.66 (16)

MSEW SED 33.44 ± 15.13 (12) 34.08 ± 4.30 (12) 23.94 ± 23.27 (12) 25.40 ± 6.67 (12)

EXE 52.42 ± 20.51 (13) 51.97 ± 4.09 (13) 25.29 ± 15.30 (13) 24.27 ± 6.35 (13)

Figure 5. Percentage time spent in the open arm of the EPM. Data points represent
the mean ± 95% CI, with male and female indicated in blue and pink, respectively.
Statistical analyses are reported in the text. EXE: juvenile low-intensity exercise. MSEW:
maternal separation and early weaning. SED: sedentary.
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early-life stressor. However, none of the parameters where PRE
and MSEW interacted to influence the outcome, showed any
statistical evidence to accurately answer this question. Still, that
prenatal activity (regardless of ELA and JUV) beneficially altered

hippocampal redox state and serotonin turnover during pubertal
onset, at least hints towards a protective effect that was not
inhibited nor prevented by an early-life stressor (Supplementary
data). Further investigation into this aspect is however required.

Figure 6. Heart and whole brain weight of male and female FSL rats. (a) Braina,b and (b) heartb,c weight of FSL rats, expressed as a percentage of body weight. Data points
represent the mean±95 %CI, with male and female indicated in blue and pink, respectively. Statistical analyses are reported in the text. a) Not all data-sets were normally
distributed. b) Outlier identified and excluded. c) Outliers identified but not excluded. EXE, juvenile low-intensity exercise; MSEW, maternal separation and early weaning; SED,
sedentary.

Figure 7. Hippocampal monoamine levels and redox state markers. (a) Norepinephrine levelsa,c, (b) serotonin turnover (5-HIAA/5-HT)a,b,c, (c) redox state (GSH/GSSG)a,b,c on
PND38. Data points represent the mean±95% CI, with male and female indicated in blue and pink, respectively. Statistical analyses are reported in the text. a) Outliers identified
and excluded. b) Not all data-sets are normally distributed. c) Heterogeneity of variances. EXE, juvenile low-intensity exercise; MSEW, maternal separation and early weaning; SED,
sedentary.
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Table 3. Metabolic markers in the hippocampus of FSL rats that relate to mitochondrial function

PRE ELA JUV Palmitic acid mean ± SD (n) Stearic acid mean ± SD (n) Oleic acid mean ± SD (n)

Sedentary Normal SED 4.40 ± 0.76 (3) 12.31 ± 3.71 (3) 2.54 ± 1.21 (3)

EXE 1.92 ± 0.74 (10) 8.09 ± 2.15 (10) 1.71 ± 0.62 (10)

MSEW SED 3.50 ± 0.63 (7) 10.23 ± 0.79 (7) 1.69 ± 0.20 (7)

EXE 2.45 ± 0.84 (9) 8.15 ± 2.18 (9) 1.46 ± 0.37 (9)

Exercise Normal SED 2.45 ± 0.51 (10a) 7.54 ± 1.79 (10a) 1.50 ± 0.47 (11)

EXE 2.19 ± 0.70 (9) 7.09 ± 1.89 (9) 1.24 ± 0.31 (9)

MSEW SED 2.72 ± 0.65 (9) 8.68 ± 1.14 (9) 1.40 ± 0.14 (9)

EXE 2.90 ± 0.66 (8) 9.05 ± 2.17 (8) 1.34 ± 0.27 (8)

PRE ELA JUV 1-monopalmitin mean ± SD (n) 1-monostearin mean ± SD (n) Nicotinic acid mean ± SD (n)

Sedentary Normal SED 0.64 ± 0.07 (3) 1.34 ± 0.001 (2a) 101.75 ± 1.81 (2a)

EXE 0.27 ± 0.13 (10) 0.59 ± 0.19 (10) 12.52 ± 13.10 (10)

MSEW SED 0.47 ± 0.14 (7) 0.86 ± 0.20 (7) 77.00 ± 46.57 (7)

EXE 0.31 ± 0.12 (9) 0.63 ± 0.19 (9) 30.99 ± 18.56 (9)

Exercise Normal SED 0.33 ± 0.14 (11) 0.69 ± 0.21 (10) 33.67 ± 18.69 (11)

EXE 0.29 ± 0.08 (9) 0.51 ± 0.11 (9) 26.62 ± 9.05 (5a)

MSEW SED 0.30 ± 0.03 (8a) 0.57 ± 0.09 (9) 34.62 ± 15.54 (8)

EXE 0.29 ± 0.05 (8) 0.57 ± 0.12 (8) 55.39 ± 46.05 (8)

ELA, early-life adversity; JUV, juvenile activity; PRE, prenatal activity.
aOutlier identified and removed from analysis.
The values presented here are all log transformed and therefore contain no SI unit. Group sizes differ from behavioural analyses and could be explained by the storage buffer used. Because of
the significant influence of main effects, all statistical findings are reported in text.

Table 4. Hippocampal serotonergic and redox state markers

PRE ELA JUV 5-HT (ng/g) mean ± SD (n) 5-HIAA (ng/g) mean ± SD (n) 5-HIAA/5-HT mean ± SD (n)

Sedentary Normal SED 19.8 ± 7.9 (15) 242.5 ± 101.3 (15) 13.9 ± 6.5 (15)

EXE 23.3 ± 15.4 (16) 332.0 ± 188.5 (16) 19.7 ± 17.8 (16)

MSEW SED 19.0 ± 7.5 (15) 288.1 ± 262.3 (15) 16.3 ± 13.2 (15)

EXE 20.8 ± 9.6 (15) 278.1 ± 195.9 (15) 14.2 ± 6.9 (15)

Exercise Normal SED 23.2 ± 10.7 (14) 202.6 ± 97.9 (14) 10.0 ± 5.2 (14)

EXE 13.6 ± 3.8 (15) 143.4 ± 34.2 (15) 11.1 ± 3.4 (15)

MSEW SED 24.6 ± 13.8 (12) 277.0 ± 175.6 (12) 13.0 ± 7.0 (12)

EXE 54.8 ± 36.1 (12) 501.3 ± 328.6 (12) 10.8 ± 6.5 (12)

Redox state markers

PRE ELA JUV GSH (μg/g) mean ± SD (n) GSSG (μg/g) mean ± SD (n) GSH/GSSG mean ± SD (n)

Sedentary Normal SED 42.3 ± 7.3 (15) 8.4 ± 2.8 (15) 5.7 ± 2.6 (15)

EXE 58.8 ± 25.1 (16) 6.3 ± 2.4 (16) 9.8 ± 3.7 (16)

MSEW SED 41.8 ± 21.8 (14) 9.7 ± 4.4 (14) 4.8 ± 3.0 (14)

EXE 56.5 ± 11.5 (16) 6.2 ± 1.8 (16) 9.9 ± 3.9 (16)

Exercise Normal SED 50.5 ± 11.4 (15) 5.1 ± 1.5 (15) 10.6 ± 3.1 (15)

EXE 33.0 ± 3.9 (14) 2.2 ± 0.8 (14) 16.6 ± 6.2 (14)

MSEW SED 77.2 ± 31.5 (12) 7.9 ± 2.4 (12) 9.8 ± 2.5 (12)

EXE 138.9 ± 55.5 (12) 12.7 ± 7.0 (12) 12.8 ± 6.0 (12)

Themean values of the specific markers are presented here to promote transparency and were used to calculate the serotonin turnover and redox state reported in the results section. Because
of the significant influence of main effects, all statistical findings are reported in text.
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The influence of pre-pubertal low-intensity exercise

As mentioned earlier, exercise is a recognised non-pharmacologi-
cal treatment strategy for depression (Carter et al., 2016; Kandola
et al., 2019) and importantly, can be implemented across all ages,
making it a promising treatment option for childhood depression
(Hu et al., 2020; Wegner et al., 2020; Axelsdottir et al., 2021).
Therefore, the current study investigated whether a 14-day low-
intensity exercise regimen during pre-pubertal development could
attenuate the depressive-like phenotype of the adolescent FSL rat.
It must however be noted here that although all three factors (early-
life adversity, and prenatal and juvenile exercise) were considered
and controlled for in the study design, the delayed effect findings
are interpreted and discussed only in terms of the most robust and
statistically non-zero factor (Fig. 3),that is, pre-pubertal low-
intensity exercise. All other statistical findings are available as
supplementary data.

On PND36, animals (regardless of sex) that were exposed to
low-intensity exercise during pre-pubertal development (PND22
to 35) displayed decreased depressive-like behaviour (i.e. time
spent immobile) in the FST, compared to their sedentary controls
(Fig. 4b), irrespective of PRE and ELA. Moreover, this behaviour
was also accompanied by increased time spent struggling (Fig. 4d)
– indicative of antidepressive-like and/or increased coping
behaviour (Lucki, 1997). Our findings of exercise exerting
antidepressant-like effects are in line with pre-clinical (Steyn
et al., 2020; Gruhn et al., 2021; de Oliveira et al., 2022;
Sohroforouzani et al., 2022) and clinical (Oberste et al., 2020)
findings. Although the FSL rat is not known to display increased
anxiety-like behaviour (Overstreet &Wegener, 2013), pre-pubertal
low-intensity exercise appeared to induce anxiolytic-like effects in
FSL rats on PND37 (Fig. 5). It must be mentioned that this effect
was only relative to sedentary FSL, and not FRL controls, and
therefore requires confirmational studies. Regardless, clinical
(Stubbs et al., 2017) and pre-clinical (Cevik et al., 2018) studies
that have also reported on the anxiolytic effect of exercise further
validates our findings and supports the efficacy of low-intensity
exercise as a treatment option for childhood depression.

To confirm our behavioural findings and shed further light on
the probable mechanisms involved, we considered anatomical
markers, and measured hippocampal monoamine levels, together
with markers of oxidative stress and mitochondrial function. First,
pre-pubertal low-intensity exercise (regardless of PRE and ELA)
increased the brain and heart weights of male and female FSL rats,
relative to sedentary control groups (Fig. 6a, b ). This is a noteworthy
finding, as we have previously reported, that the adolescent FSL rat
has lower whole brain and heart weights than its age matched FRL
counterpart (Whitney et al., 2023). Therefore, that chronic low-
intensity exercise increased brain weight, suggests neuroplasticity
mechanisms to be at play (Gourgouvelis et al., 2017; El-Sayes et al.,
2019). These findings however warrant confirmation by means of
analysing appropriate markers, such as brain-derived neurotrophic
factor – a neurotrophin known to be decreased in depressed patients
(Brunoni et al., 2008) and increased by exercise (Luo et al., 2019;
Naghibi et al., 2021). Exercise further directly affects autonomic
outflow, benefitting cardiovascular functioning (Gademan et al.,
2007), and although no cardiac tissue biomarkers were measured,
our finding of exercise-induced hypertrophy is at least supported by
clinical studies (Xiang et al., 2020). That autonomic dysfunction has
been shown to be altered in depressed patients (Hartmann et al.,
2019; Herbsleb et al., 2020), further emphasises the value of our
findings in a genetic rodent model of depression.

As an indirect indicator of mitochondrial function, pre-
pubertal low-intensity exercise also beneficially influenced the
hippocampal redox state (GSH/GSSG; Fig. 7c), suggesting
antioxidant defences to be increased. The GSH/GSSG ratio is a
valuable biomarker of cellular redox state (Enns & Cowan, 2017),
with lower levels indicating increased oxidative stress (Chai et al.,
1994). Our findings are in agreement with others (Higashi, 2016)
showing that regular low- to moderate-intensity exercise induces
beneficial effects. To this point, that a dysfunctional redox state has
previously been observed in the juvenile FSL strain (relative to FRL
controls; (Whitney et al., 2023), allow us to conclude that pre-
pubertal exercise can reverse this deficit. That this improved redox
state was observed together with increased brain weight (Fig. 6a),
suggests that oxidative stress damage, specifically in the
hippocampus was mitigated, potentially via improvement of
mitochondrial function (Memme et al., 2021) and enhanced
neuroplasticity and neurogenesis (Park et al., 2018; Park et al.,
2019), thereby supporting increasing evidence describing depres-
sion as a bio-energetic disorder. To this point, that pre-pubertal
low-intensity exercise decreased hexadecanoic acid (palmitic
acid), octadecanoic acid (stearic acid), oleic acid (octadecenoic
acid), 1-monopalmitin (a monoacylglycerol with hexadecanoic acid),
and 1-monostearin, which points towards improved mitochon-
drial function. These metabolic markers are generally observed in
patients with metabolic syndrome and insulin resistance, both
conditions strongly associated with mitochondrial dysfunction
(Pari & Venkateswaran, 2004; Zeng et al., 2009; Ma et al., 2015). In
these patients, a skewed ATP:ADP ratio stimulates lipolysis, which
leads to the breakdown of triacylglycerols into monoacylglycerol
and free fatty acids (especially hexadecanoic acid and octadecanoic
acid). That these levels were decreased in the hippocampi of
animals that exercised during pre-pubertal development in the
current study, which is likely indicative of increased energy
metabolism (and consequently mitochondrial function). Moreover,
that these animals also had lower nicotinic acid levels than their
sedentary counterparts, which may suggest a lower breakdown of
nicotinamide adenine dinucleotide (NADþ) and/or better utilisation
of nicotinic acid in the formation of NADþ. Briefly, nicotinic acid is
a precursor of NADþ, which acts as an electron carrier in the
electron transport chain, where it regulates the redox state of the
mitochondria and contributes to ATP production (Crowley et al.,
2000; Sauve, 2008). Although clinical and pre-clinical research
differs in terms of the effect of exercise on NADþ levels (White &
Schenk, 2012), decreased levels are generally associated with age-
associated pathologies (reviewed by (Imai & Guarente, 2014)).
However, considered with the behavioural and neurochemical
alterations reported here, and the known mitochondrial enhancing
effects of exercise (Memme et al., 2021), pre-pubertal low-intensity
exercise may have increased the nicotinic acid to NADþ conversion,
thereby decreasing the available nicotinic levels and potentially
increasing the NADþ/NADH ratio. This is at least partly
supported by our previous finding that pubertal FSL rats have
higher hippocampal nicotinic concentrations than FRL controls
(Whitney et al., 2023). Still, we invite confirmatory investigations.

Finally, pre-pubertal low-intensity exercise (regardless of PRE
and ELA) also increased hippocampal norepinephrine and
serotonin, relative to sedentary controls (Fig. 7a and Table 4),
without affecting serotonin turnover (Fig. 7b). These increases
support the decrease in depressive-like behaviour and the
increase in escape-directed behaviour observed in the FST. As
mentioned earlier, one of the mechanisms through which
exercise exerts its antidepressant-like effects is by increasing
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monoamine neurotransmission and considered together with
the improved hippocampal redox state and mitochondrial
markers, our findings reaffirm this effect and again show that
exercise can mimic currently approved pharmacological treat-
ment options. Further research is, however, needed into whether
the apparent antidepressant-like effects of pre-pubertal exercise
are indeed unrelated to ELA and PRE.

Conclusion

The current study explored three factors influencing depressive-
like behaviour in an approved genetic rodent model of depression
to demonstrate how environmental and genetic influences can
alter this behaviour. Our findings show that pre-natal exercise
induces beneficial long-term neurochemical alterations that is
unaffected by an early-life stressor. Pre-pubertal low intensity was
effective in reducing depressive-like behaviour and oxidative stress
in a rodent model of depression, whilst also increasing
monoaminergic levels, and in doing so, implicating improved
mitochondrial function. Taken together, our findings highlight
the need to further investigate the role of mitochondrial
function in depression and support the use of pre-pubertal low-
intensity exercise as an effective treatment strategy for child-
hood depression.
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