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BRAESS'S PARADOX AND POWER-LAW
NONLINEARITIES IN NETWORKS
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Abstract

We study flows in physical networks with a potential function defined over the nodes
and a flow defined over the arcs. The networks have the further property that the
flow on an arc a is a given increasing function of the difference in potential between
its initial and terminal node. An example is the equilibrium flow in water-supply
pipe networks where the potential is the head and the Hazen-Williams rule gives
the flow as a numerical factor ka times the head difference to a power s > 0 (and
s = 0.54). In the pipe-network problem with Hazen-Williams nonlinearities, having
the same s > 0 on each arc, given the consumptions and supplies, the power usage
is a decreasing function of the conductivity factors ka. There is also a converse
to this. Approximately stated, it is: if every relationship between flow and head
difference is not a power law, with the same s on each arc, given at least 6 pipes, one
can arrange (lengths of) them so that Braess's paradox occurs, i.e. one can increase
the conductivity of an individual pipe yet require more power to maintain the same
consumptions.

1. Introduction

Braess in [2] gave an example of a network, in the setting of traffic flow, in
which an extra arc (i.e. road) was added and the total travel time for any road
user was increased. Braess's example has just one origin-destination pair, so
that it is, like the physical network flows in this paper, a single-commodity
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flow. (See Rockafellar [21, Section IK], for definitions.) The phenomenon was
reconsidered in several works on traffic flow (such as Murchland [18], LeBlanc
[16], Fisk [14]) and in popularisations (such as Toint [23]).

Nonlinear networks occur in many contexts, see Dembo et al. [10], Rockafel-
lar [21]. In the context of flows in physical networks, Braess's paradox can be
restated informally as follows.

BRAESS'S PARADOX. The power consumed in a nonlinear network can increase
if an arc's conductivity is increased with consumptions held constant.

Theorem 11 of the present paper states that Braess's paradox cannot occur in
a two-terminal series-parallel network. See Keady [15, Part I, Appendix A], for
a discussion.

One of the examples of physical networks is the flow of water in a pipe net-
work. When the commonly-used Hazen-Williams rule (with the same exponent
on each arc, e.g. Brebbia and Ferrante [3]) is assumed, our Theorem 1 shows
that Braess's paradox cannot occur. This was known already in two-terminal
resistive networks where Ohm's law holds for each resistor, that is, s = 1 for all
arcs a, as shown in Shannon and Hagelbarger [22], Melvin [17].

Define a network to be of type (H) if, for each arc A, the flow is a numerical
factor ka times the head difference to a power s > 0 independent of a. (The
definition of type (H) has been introduced as an aid to readers because there
are two separate meanings of the word "power" in this paper.) We provide
various characterisations, both of when a network is type (H), and also of when
a network can exhibit Braess's paradox. The two subjects are related: see our
main theorems, Theorems 1 and 2 of Section 3. In a recent paper on Braess's
paradox, Cohen and Horowitz [8] write: "The task remains of specifying the
general conditions under which such paradoxes can occur, for general network
topologies and broad classes of components . . . " . Our theorems summarise
some progress with this task.

Our first exposition, in [15], treated these matters in the setting of two-
terminal networks. Rockafellar [21, Section 8N], calls these "black boxes".
Here the exposition is in terms of the power-loss in a general network, with
known consumptions at each node. Two-terminal networks are just a special
case.
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[3] Braess's paradox and power-law nonlinearities 3

2. Notation

Our notation follows that of Bertsekas et al. [1] and of Rockafellar [21].
A network G = (N, A), or the directed graph associated with the network,
consists of two finite sets A and N and a function that assigns to each a e A
a pair (i, k) e N x N such that i ^ k. The elements of A are called arcs (or
edges); the elements of N are called nodes (or vertices). We may label the arcs
with the first \A\ positive integers, i.e. starting from 1, and identify A with this
set. We label the nodes with the \N\ nonnegative integers from 0 to \N\ — 1.
The correspondence of arc j with its nodes is written j ~ (/, k). We say that i
is the initial or start node of arc j and k is the terminal or end node of arc j .

Let £ be a node-arc incidence matrix for G; that is, assign a column vector
to each arc, with 0 everywhere except for a 1 for one node of the arc and — 1 for
the other. More precisely, the entries e,-_,- of E are given by

+1 if i is the initial node of arc j ,
etj = { — 1 if i is the terminal node of arc j ,

0 otherwise.

We always assume that G is connected, so that |A| > \N\ — 1, and the rank of
Eis\N\-l.

For i € N, we let p(i) € R be the head (or potential or voltage or time) at
node i. For a € A, let qa e R denote the flow on arc a, from start to end. For
i € N, let b(i) be the deficit (or input, or consumption, or current supplied) at
node i.

For each arc a ~ (/, k) e A, suppose there is given a conductivity function
oa M —>• R and a nonnegative real number, the conductivity factor ka. The flow
function kaoa will relate the head differences and flows by (2.2).

DEFINITION. We say the network conductivity functions satisfy Assumption
A(a) if, for each a e A, oa is continuous, cra(O) = 0, oa{—t) = —oa{t)
for all t, aa{t) -> oo as t ->• oo, aa is C on (0, oo), and o'a(t) > 0 for all t > 0.

DEFINITION. We say the network conductivity factors satisfy Assumption A(k)
if, with A(k) = [a e A\ka > 0}, (N, A(k)) is a connected graph.

As all of our results depend on G being connected and assumption A(k) being
satisfied, these are presumed to be satisfied throughout the paper.
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Rockafellar [21, Section 8H], defines the network equilibrium problem as
follows. Given b with

2>( ' ) = 0, (2.1)

given conductivity functions aa satisfying Assumption A(o), and given con-
ductivity factors ka satisfying Assumption A{k), find a head vector p e M|JV|

such that
*, = kaaa{pii) - p(k)), Va ~ (i, k) e A, (2.2)

and
£<7 = ft. (2.3)

We remark that the above only determines p up to a p + ce, c e R, where e is
the vector all of whose entries are one. When, as from Section 4 onwards, we
want to make p unique, we suppose its Oth entry is 0.

Informally, the oa can be thought of as giving the form of the conductivity
law. In the context of the pipe-network problem with Hazen-Williams flow
functions, varying a conductivity factor ka amounts to varying some aspect of
pipe a's geometry, its length or diameter or roughness. Outside the setting
of Hazen-Williams laws, varying a conductivity factor seems to be physically
unnatural. See the discussion at the end of Section 7.

The "power-law nonlinearity" in our title refers to the situation when the flow
qa on an arc a ~ (i, k) satisfies

qa = kaa(p(i) - p(k), sa) where a(t, s) = t\t\s~\ s > 0. (2.4)

Type (H) means that there exists s > 0 such that for all a e A, aa(t) = a{t, s).
The power-loss P in the networks is defined by

P= £ (P(i) - P(k))qa. (2.5)

Where there are arcs in parallel joining i to k, the summation is over all of them.
We always have i < k. Both of these conventions will be used elsewhere in this
paper. Provided all the oa are odd functions, the power-loss P is nonnegative
and, by Rockafellar [21, Section II],

P = brp. (2.6)

In a two-terminal network, where b{i) — 0 except for the two nodes, one
of which we always label i — 0 and the other n, < \N\ — 1, we then have
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[5] Braess's paradox and power-law nonlinearities 5

P = b(0)(p(0) — p(n,)). From this, in the language of DC electric circuits,
with b(0) > 0 the applied voltage difference p(0) — p{n,) is a nonincreasing
function of any conductivity factor ka precisely when P is.

Rockafellar [21, Section 8B] gives the following definition.

DEFINITION. The set of pairs (6(0), p(0) — p(n,)) when p solves the equilibrium
problem is called the characteristic curve of the two-terminal network with
terminals 0 and n,.

Lemma 3, a variant of Theorem 2, stated in Section 3, implies that, unless
the network is type (H), we can increase resistance, or characteristic curve,
on an arc, yet lower the overall characteristic curve of the network. This is a
restatement, for two-terminal networks, of Braess's paradox.

3. The main theorems

THEOREM 1. Suppose (N, A) is a type (H) network and that b satisfies (2.1).
Then, for any a, the power-loss P is a nonincreasing function ofka.

The proof will be given in Section 5 together with a much stronger result
with the same hypotheses. Before we state a converse in Theorem 2, we give
an additional example of Braess's paradox, this time involving only power-law
nonlinearities on the arcs, which shows that it is necessary in Theorem 1 that
the powers be the same on all the arcs.

DEFINITION. The Wheatstone bridge graph is the graph G — (N, A) with

N = {0,1,2,3}, A = {(0, 1), (0,2), (1,2), (1,3), (2, 3)}. (3.1)

Four of the arcs form a quadrilateral, the other forms a diagonal.

EXAMPLE OF BRAESS'S PARADOX. Consider the Wheatstone bridge graph, with
the diagonal arc (1, 2) having variable conductivity. The flow functions fc,,7cr,,y
on the arcs (/, j) are

fcoiOOlM = &23^23(*) = X, fc()2O0200 = kl3(Ti3(x) = x\x\~l/2,

and the variable conductivity arc has

= kx.
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Choose b such that b{\) = 0 = b(2), so that the network is a two-terminal one.

The result is that the power-loss P = b(3)(p(3) — p(0)) can either decrease
or increase as k increases, depending on the value of b(3) = —b(0) and the
value of k at the start.

There is a lot of symmetry in the network and the flows, heads and power-loss
can be calculated explicitly. The elementary calculations are in [15].

For networks with \A\ < 5, the Wheatstone network is the only two-terminal
instance where Braess's paradox can occur. For \A\ > 5, we have the following.

THEOREM 2. Suppose [aa\a € Nv] is a set of v functions, v > 6, satisfying
Assumption A(a). Let M denote the set of all networks (N,A) with flow
functions kaovW on arcs a e A, where cp ranges overall the one-to-one mappings
from A to Nv. Suppose that for any network (N, A) in N, and any b satisfying
(2.1), the power-loss P is a nonincreasing function of each ka. Then there is an
s > Osuch that for all a e Nu andt > 0, oa(t) = aa(\)t

s.

Theorem 2 follows immediately from the following result.

LEMMA 3. Let J\f2 denote the set of all two-terminal networks (N, A), with the
terminal nodes being 0 and n, < \N\ — \. Letv > 6 and let Assumption A(o) be
satisfied as in Theorem 2. With, in Theorem 2, Af replaced by A/2 and b satisfying
b(i) = Ofor i 7̂  0, n, and b(n,) = —b(0), the conclusion of Theorem 2 holds.
That is, if for any network (N, A) in Mi and any b satisfying the preceding
restriction the power-loss P is a nonincreasing function of each ka, then there
is ans > 0 such that for all a eNv and t > 0, aa(t) = oa(\)t

s.

We remark that Theorem 2 and Lemma 3 can be shown to follow from their
v = 6 versions.

The proof of Lemma 3, given in Section 7, depends in part on a detailed
analysis of a general nonlinear Wheatstone bridge network.

(If readers find the requirement v > 6 to be unpleasant, we remark that
Theorem 2 can be modified to allow its removal to v > 1. The modification
is to allow repetition of the conductivity functions in the elements in the test
networks, i.e. to drop the requirement that q> be one-to-one.)
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4. The convex optimisation problem: primal form

The pipe-network problem has been treated as an optimisation problem in
Duffin [11,12], Collins et al. [9], Rockafellar [20, 21], Dembo et al. [10].

The proof of Theorem 1 depends on a variational, or optimisation, argument.
In Section 2 we defined the network equilibrium problem. Rockafellar [21,
Section 8H] is the standard reference that this problem is equivalent to two
others, namely the optimal differential problem, Problem (P) given in the next
paragraph, and the optimal distribution problem, Problem (D) given in Sec-
tion 5. This section contains more material than is needed for the narrow aim
of Theorem 1. Some of this, such as existence and uniqueness, is, however,
reassuring in that it shows that the counterintuitive flows of Theorem 2 actually
exist. The results in this section are not new and, for reasons of space the proofs
are suppressed. For detailed proofs and references see [15, 21].

The optimal differential problem defined in Rockafellar [21, Section 8G] is
similar to the following. Define

Sa(t)= ['aa(t)dt.
Jo

Define Vb by

Vo= £ kaSa(p(i)-p(k)), (4.1)
(i,k)~aeA

\N\-\

. (4.2)

Define X to be the set of vectors with coordinate indexing starting at 1 in
augmented with a zeroth component which is zero. Problem (P) is to find p*
satisfying

Vb(p.) = min Vb(p).

THEOREM 4. With Assumptions A(o) on the aa and A{k) on the ka,
(i) Vo is strictly convex on X;
(ii) V0(p)/\\p\\ -> oo as \\p\\ -*• oo in any norm on X;
(iii) solutions to Problem (P) exist and are unique in X;
(i v) pt solves the network equilibrium problem if and only if it solves Problem (P).

We shall call items (iii)—(iv) Duffin's Existence Theorem.

https://doi.org/10.1017/S0334270000007256 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007256


8 Bruce Calvert and Grant Keady [8]

An additional property of Vo, whose consequences are explained in [15] but
which is not used in this paper, is the following. For oa satisfying Assumption
A (a) in the pipe-network problem, we have the inequality

Vo(po A pt) + Vo(po V pi) < V0(p0) + V0(Pi) V/70, Pi-

Here pQ A p\ denotes the minimum of the two vectors p0, p\ and p0 v p\ denotes
their maximum.

In the case of the Hazen-Williams a we have the following additional item.

THEOREM 5. For type (H) networks, (Vo(/>))1/(i+1) is a strictly convex norm on
X.

5. Duality

For aa satisfying Assumption A(a), oa has an inverse. Call the inverse
function pa,

t, Wt e R.

Define R to be the integral of p from 0, R(0) = 0. For q e R|A| define

The problem of minimising U(q) over q satisfying

Eq=b,

is Problem (D). Recall that eTb = 0, where e denotes the vector all of whose
entries are 1. Problem (D) is a convex separable programming problem, which
Rockafellar [21, Section 8D] calls the optimal distribution problem.

(The functions Ra and Sa are Fenchel conjugate convex functions on M. For
oa a power law, both Ra and Sa are also power laws.)

Collins et al. [9] establish the following theorem. See also Rockafellar [21,
Section 8L]. The notation involving the a R1"1 -> M1"4', i.e. acting on vectors, is
that a{q) is the vector with components aa{qa). Similarly ko(q) is the vector
with components kaaa{qa).
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[9] Braess's paradox and power-law nonlinearities 9

THEOREM 6.LetG = (N, A) be a connected network.
If pt solves the primal problem (P), defined above, then q = ko(EJ pt) solves

the dual problem (D).
If q* solves the dual problem (D), and q* — ko(ETp) for some p with

p(0) = 0, then p solves the primal problem (P).
At the solutions, U(q*) = —Vb(pt).

The constraints Eq = b restrict q to lie on a certain hyperplane. For type
(H) networks, the minimisation problem, Problem (D), is to find the point q* on
this hyperplane which is closest to the origin in a certain lp norm. For networks
not of type (H), Problem (D) is to find the point q* on this hyperplane at which
U{q) is minimised.

Theorem 2 can be rephrased to give a characterisation of lp norms amongst
certain classes of convex functions U. Other recent characterisations of lp norms
occur in [6, 7].

6. Proof of Theorem 1

The theorems in this subsection do not depend on the "network" aspects of the
optimisation problem. We begin with a very easy general monotonicity result.

LEMMA 7. Consider any continuous function V E|/V| x E1"4' - • E, and denote
the variables in K|yv| by p, and the parameters in E'1*1 by k. Suppose

k<k =• V(p,k) < V(p,k) Wp. (6.1)

Suppose that, for all k, p*(k) exists satisfying

V(p*(k), k) = min{V(p, k)\p e E|yv|}. (6.2)

Then
k < k =̂  V(n (k) k} < V(n (k\ k}

PROOF. Inequality (6.1) gives, with k <k,

V(pAk),k)<V(Pt(k),b.

Inequality (6.2) gives
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The result follows from these two inequalities.

REMARK. If, as in problem (P), Vb(p, k) at a fixed p is concave in k, then
Vfc(p*(&), k) is concave in k.

The proofs of both theorems in this section depend on the homogeneity of
VQ. Calculus arguments give that the homogeneity is equivalent to

pJDVQ{p) = (s + l)Vo(p) Vp,

and the calculus condition for a minimum of Vb is DV0(p*) = b. In the context of
the network problem, the essential consequences of homogeneity are contained
in the following lemma, whose proof does not need calculus.

LEMMA 8. For a type (H) network, at the solutions p* and qt of Problems (P)
and (D),

P = pJb = V0(/O - Vb(p*) = (s + l)Vo(p.) = S-^-U(qt). (6.3)

PROOF. For a type (H) network, substituting the power-law expressions for Ra

and Sa in the formulae for U and Vo respectively, and using the fact that for each
arc a ~ (i, j),

\q*a\=ka\pt{i)-pt{j)\s,

it follows that U{qt) = sV0(p*). (See (6.10) and (4.1).) This gives the rightmost
equality of (6.1). The duality Theorem 6 stated that U(q*) = — Vfc(/?,) =
-VoO».) + Plb' o r equivalently pJb = V0(pt) - Vb(p.) = V0(p.)
From this and the equality of the first sentence, (6.3) follows.

PROOF OF THEOREM 1. Lemma 7 applies when V = Vb and ensures that

k>k =• Vb(pm(k),k)<Vb(p.(k),k). (6.4)

Then (6.4) combined with duality U(qt) — —Vb(pt), and with (6.3) yields
Theorem 1.

With the same hypotheses as in Theorem 1, it is possible to prove more about
how the power changes as conductivity factors are changed. This additional
result has been separated from Theorem 1 because it is less closely related to
the Braess phenomena than is Theorem 1.

https://doi.org/10.1017/S0334270000007256 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007256


[11] Braess's paradox and power-law nonlinearities 11

THEOREM 9. Consider flows in a type (H) network with the same network topo-
logy, the same b, but varying conductivity factors k. The power-loss P (i) is a
convex function of the k, and (ii) is a concave function of the r where ra = k~1/s.

PROOF, (i) We suppose that the conductivity factors k vary as follows:

*r = ( l -T )*b + T*,, r e [0,1].

Letpr be the minimiser of Vbr(p) = VOr(p)—bTp. The power-loss Pz = b1px.
In particular

Vo,o(A>) -Po< Vo,o(pr) - P*, V0.,0>,) - P, < V0.i(Pr) - Pr. (6.5).

Equation (6.3) can be applied to the minimisers p0 and p\, so that multiplying
the two preceding inequalities by s + 1 gives:

- SP0 < (S + l)(VO.o(Pr) - ^ ) , -*^ l < (S + l)(V0.l(Pr) " Pr). (6.6)

Taking 1 — r times the first of these plus x times the second gives

- s((l - r)P0 + zPt) <(s + 1)(V0.T0>T) - Pr). (6.7)

Equation (6.3) can also be applied to the minimiser p r , so that

Pr = (s + l)Vo.T(pr). (6.8)

Finally, we eliminate V0<T(pT) and then (6.7) and (6.8) give

TPi)<sPr. (6.9)

This establishes the convexity result which we were required to prove.
(ii) Recall that r is the vector of all the ra and ra = k~i/s. The function U

defined at Problem (D) can be written

S + l aeA

We now follow steps similar to part (i). Suppose

rr = ( l - r ) r 0 + ZT,, T € [0, 1].

Let qx be the minimisers of UT over the set of q such that Eq = b. Let PT be
the corresponding powers. Then

^ ^ (6.11)^ T ^ o , Ul(qr)Ul(qi)
5 + 1 S + 1
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Multiplying the first by (1 - r ) and the second by T and adding gives

This establishes the required concavity of the power in r.

An alternative argument using both parts (i) and (ii) to give the result of
Theorem 1 follows. Let a be fixed. Let the power as a function of ka be denoted
Pk{ka). Let the power as a function of ra — k~l/s be denoted Pr{ra). Omit the
subscript a in the rest of this proof. Consider k0 < k\. Since Pk is convex in k
and Pr is concave in k~1/s,

dk dk dr dr

Now

dk s dr
Combining the immediately preceding displayed items gives

r r ^ > 0, hence ^ ( f c ) < 0,

as required.

7. Proof of Theorem 2

In contrast to Section 6, all the proofs in Sections 7 and 8 depend on the
network structure. In this section, we complete the proof of Theorem 2 by
proving Lemma 3.

The next lemma says that if two arcs with the same conductivity function a
(up to a multiplicative constant) placed in series give the same function a (up
to a multiplicative constant—which, we remark, is a very strong requirement),
then a is a power law, o(t) = o(\)f for t > 0. The lemma is effectively a
uniqueness statement for a certain functional equation.

LEMMA 10. Let o (0, oo) -*• (0, oo) be nondecreasing and absolutely continu-
ous on compact intervals. Suppose for all h > 0 there exists 9 (h) > 0 such that
for all v > 0, there is at e (0, v) such that

9{h)a{v) = hcr(t) = a(v - t).
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[13] Braess's paradox and power-law nonlinearities 13

Then, there exists s > 0 such that a(t) = o(l)ts.

PROOF. Taking h = 1, there is a 0(1) such that, for all v, there is a / with

Since a is nondecreasing for all v > 0,

a(v/2) = 0(l)<7(u). (7.1)

Hence for n e N,
v). (7.2)

Take /i = 1/0(1). For all v, there is a f with

' ' = o(v - t).

The central term is a(2t) by (7.1). If t < v/3, we have It < 2u/3 < v - t,
giving 9(h)a(v) = a(2u/3), since a is nondecreasing. If t > u/3, we have
v — t < 2v/3 < It, and again 6(h)a(v) = a(2u/3). Using (7.1), this gives

a(v/3) = 6(1)9 (e(\yl)a(v). (7.3)

Continuing, for all m, n e N, there is a A(m, ri) > 0 such that, for all v > 0,

a(mv/2") = X(m, n)a(u). (7.4)

Hence, unless a is identically zero, o(v) > 0 for all v > 0. Letting v = exp£,
for ? e i , and assuming the left-hand side is positive so we can take logarithms,

log(CT(exp(£ + logOn/2")))) = log(A.(m, ri)) + log(cr(expf)). (7.5)

Dividing by log(m/2") and letting (m/2n) tend to one, we have, for £ where
(log o a o exp)'(£) exists, that it is a positive constant independent of £ (as the
m, n are independent of £).

Thus there are s > 0 and c e R, with

logo o o exp(f) = s£ + c Vf, or o(v) = exp(c)vs Vu.

The next two theorems from earlier papers, and our discussion in Section 3,
give some indications towards our proof of Theorem 2. We begin with definitions
from Riordan and Shannon [19].
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DEFINITION. Let n0 and nf be given nodes of a network G. The network G is
said to be series-parallel with respect to n0 and tif if through each arc of G there
is at least one path from n0 to nf not touching any node twice, and no two of
these paths pass through any arc in opposite directions.

An equivalent inductive definition is as follows. The one-arc graph Go with
AQ = (no, «/) is defined to be series-parallel. A network is series-parallel with
respect to n0 and nf if it is either (i) a connection of a series-parallel network with
respect to «o and n, in series with a second series-parallel network with respect
to n, and rif, or (ii) a parallel connection of two networks both series-parallel
with respect to no and «/.

(The Wheatstone bridge graph of the example in Section 3 is not series-
parallel with respect to {0, 3}, but is series-parallel with respect to {1, 2}.) A
two-terminal network is said to be series-parallel if it is series-parallel with
respect to the two terminal nodes.

THEOREM 11. For series-parallel two-terminal networks, the power-loss P de-
creases when any conductivity factor k increases.

Characterisations of series-parallel networks are also known. See Duffin [13].

THEOREM 12. A two terminal network is series-parallel if and only if there is no
embedded network having the Wheatstone bridge configuration.

We now return to the proof of Lemma 3, knowing that Wheatstone bridges
must be used as test networks.

LEMMA 13. Consider the Wheatstone bridge graph with nodes numbered as in
(3.1). The arcs in A are indexed by the numbers 1 to 5 in the order listed in
(3.1). Suppose the conductivity functions satisfy Assumption A(o).

Let M(k,b) be the statement: for the given value ofb and for all positive val-
ues ofk\, k2, k4, k5 and nonnegative values ofk3, the power-loss is nonincreasing
as the conductivity factor fc3 of the arc 3 = (1,2) increases.

Suppose there exists a nonzero b with b{\) = 0 = b(2), such that M{k,b)
holds. Then there exists k such thai

^ ^ = AVv>0, (7.6)
(y) o'5(y)

and there exist numbers fii^, M4,5 such that

V* > 0, a4(y) = expOHsX^OO)* Vy > 0.
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REMARK, (i) If there exists a nonzero b such that M(k,b) holds, then for all
nonzero b, M(k, b) holds. To see this, consider scaling both b and k by the same
positive factor.

(ii) The lemma remains true when M(k,b) is replaced by M0(k, b) involving
k3 increasing from zero, rather than any initial nonnegative value of k3.

PROOF. The flow function on arc j is kjOj, j = 1 , . . . , 5. Take p(0) = 0,
let p(i) denote the head at node /, let p = (p(l), p(2), p(3))T and let k =
(*i, k2, k3, fc», k5). Define F R3 0 R5 -> R3 by

k3a3(p(l) - p(2))
F2(p, k) = k2a2(p(2)) + k3a3(p(2) - p(l)) + k5a5(p(2) -
F3(p, k) = k4a4(p(3) - p(l)) + k5a5(p(3) -

At fixed k, kj > 0 for j # 3, k3 > 0, F = DV0 and, by Duffin's Existence
Theorem (stated with Theorem 4), there is a unique p satisfying the network
equilibrium problem,

F(p,k) = (0,0, b(3)). (7.7)

Consider the Jacobian DpF(p,k), where Dp denotes the derivative with respect
to p with k held constant. We have

( £40-4

where, for a ~ (i, k), a'a = o'a(p(i) - p(k)). (Recall that a'a(-t) = o'a(t).)
Either directly from this, or indirectly from the convexity of Vo> we have S —
det(Dp F(p, k)) > 0. The Cramer's-rule formula for the inverse of the matrix
DpF(p, k) is also useful. It is

/ m(2,3;2,3) -m( l , 3 ;2 ,3 ) m(l ,2;2 ,3)
8(DpF(p,k)yl = - m ( l , 3 ; 2 , 3) m( l ,3 ; l , 3 ) - m ( l , 2 ; 1,3)

\ m(l ,2;2,3) - m ( l , 2 ; l , 3 ) m( l , 2 ; l , 2 )

where

' ~ d(p(k), p(/))'

Since the smoothness hypotheses of the Implicit Function Theorem hold (pro-
vided p(l) ^ p(2), since then all the qa will be nonzero so that oa is C1 there),
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(7.7) gives p a s a C 1 function of k with

= -(0, 0,

Now
dF
— =ci3(p(l)-p(2)Kl,-l,0)\
OK.T,

from which

- ^ = -(det(DpF(p, k))yla3(p(\) - p(2))M, (7.8)

where

M = -(0,0,l)8(DpF(p,k)yl(l,-l,0)\

= m ( l , 2 ; 2 , 3 ) + m ( l , 2 ; 2 , 3 ) ,

= k2<72'(p(2))k4a^(p(3) — p(l)) — k\a[{p{\))k5o'i{p{3) — p(2)).

Now P = b(3)p(3). If p{3) is to be monotonic in k3, M must change sign at
points where cr3(/?(l) — p{2)) changes sign. Hence p{\) = p(2) implies

- p{\)) = kxo^p{\))k5o'5{pQ) - p(2)). (7.9)

Since F](p,k) = 0 and F2(p, k) — 0, /?(1) = p(2) also implies

(7.10)

(7.11)

With &(3) > 0, given x, y > 0, there are positive values of fci, k2, k4, k5 such that
p( l ) = j ; = p(2) and p(3) = x + y. (We just take kx so that kxax(x) < b(3)
and define k2 by

and k4 and it5 are given by (7.10) and (7.11).) Thus, (7.9), (7.10) and (7.11) give

From this, with A; = logo,, there exists k e R such that

——— =k Vx>0, ——- = A. Vv > 0. (7.12)
A'U) AJ(y)
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Rewriting the second of these gives

A;(y) = XA'5(y) Vy > 0,

giving
A4(y) = AA5(v) + M V y > 0 ,

and
<j4(y) = exp(/z)(a5(y))\

The result with arcs 1 and 2 is proved similarly, and the proof of the lemma is
then complete.

PROOF OF LEMMA 3. The proof is in two parts, the first of which applies with
v > 5.

(i) Let(Ni, Ai) be as in (3.1) with arcs indexed as in Lemma 13, and let
(p A i ->• Ny satisfy <p on arc (0, 2) is 2, arid cp on arc (0, 1) is j ^2. By Lemma 13,
there are positive Xy and fj,j such that for all x e M, Oj{x) = (MjO2(x)kj. By (7.6),
since

Oj{x)

if /, m, n and 2 are four elements of Nv, then, with k2 defined to be 1,

(7.13)

Equation (7.13) is true for all permutations of the different integers /, m, n.
From this and A2 = 1 it follows that kj = 1 for all j . Writing a for o2, for all
j € Nw there is /z, with os — /Xjcr.

(ii) We now move to v > 6. Define

N2 = {0,1,2,3,4},

A2 = {(0,4), (4, 1), (0, 2), (1, 2), (1, 3), (2, 3)}.

(We have inserted the node 4 into the arc (0, 1). The two arcs a\ = (0, 4),
a2 — (4, 1) are in series. The set is essentially a Wheatstone bridge network,
with the pair not on the central arc (1,2).) We shall regard this as a two-
terminal network with the selected terminals 0 and 3, and 6(4) = 0. (This is
different than conventions elsewhere in this paper and in [15]: it is only used
in the proof.) Rather than repeating all steps of an analysis like Lemma 13 on
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(N2, A2), we apply Lemma 13 to the Wheatstone bridge (Nu A\) with (0, 1)
having conductivity function a with

o-\q)=o-\q/h)+o-\q), (7.14)

where h > 0 is given. That is, a"1 has as its graph the characteristic curve of the
two-terminal network (N3, A3) where N3 = {0,4, 1} and A3 = {(0,4), (4, 1)},
b(4) = 0, with flow functions ha on (0,4) and a on (4, 1). In both the networks
(A7!, Ai) and (N2, A2), b(i) = 0 except when i = 0 and i = 3. We will have the
same relationship between heads, flows, and b in (Nu Ax), with flow functions
&i<7 on (0, 1), k2o on (0, 2), k3a on (1, 2), k4a on (1, 3), k5a on (2, 3), as in
(N2, A2), with flow functions k\ho on (0, 4),kta on (4, 1), and exactly the same
as in (A^, A \) on the other four arcs.

We use, again, the fact that the power is nonincreasing in Ka. Applying
Lemma 13 to (A^, A\), there is Q(h) > 0 and k > 0 such that for x e R ,

a{x)=9{h)a{xf,

and, by (7.13), k = 1.
We now apply Lemma 10 to (Af3, A3) with flow functions ha on (0,4) and

a on (4, 1). Given potentials p(0) = 0 and p{\), the flow q is given by
q = 9{h)o{p{\)). There exists a potential p(4) such that on (0,4) we have
q = ha(p(4)) and on (4, 1) we have q = a(p(l) — p{A)). Hence there is an
s > 0 such that, for all / > 0, o(t) = a(\)ts.

Hence, for all a e Ny, oa(t) = oa{\)ts. This completes the proof.

REMARK. Work is in progress on the following variation on Theorem 2. Rather
than fixing conductivity functions oa and varying conductivity factors ka, it
may be appropriate to fix resistance functions pa and vary resistance factors ra.
These can be defined by changing the position of the scalar factor in (2.2) to
give qa = aa((p(i) — p(Jk))/ra). In the context of the pipe-network problem,
changes in ra come from varying the lengths of the pipes.

The analogue of Lemma 10 is as follows. If two arcs with the same resistance
function p (up to a multiplicative constant) placed in parallel give the same
function p (up to a multiplicative constant) then p is a power law, p(t) = p(l)tl/s

for t > 0.
An informal way to consider possible variations on Theorem 2 and Lemma 3

is as follows. Suppose that one is given v (> 6) very large rolls of wire, with
each roll being identifiable by its colour, say. The rolls of wire are made of
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rather exotic electrical conductors. For each type of wire w, the form of the
resistance function pw is constant along the wire in roll w. By cutting a length /
of wire from roll w, one obtains an element with resistance r(l)pw (with larger
r(l) corresponding to longer /). Electrical networks can be built making their
arcs from lengths /„, of wire from roll w assembled in various kinds of networks.
If, no matter which electrical network is built, the power-loss P increases whenr
is increased, we expect that the network would have to be of type (H). See the
authors' 1992 University of Auckland research report for results.

8. Further results

The following theorems (i) show, for the Wheatstone graph, that type (H) is
not necessary to have power-loss decreasing in ka, and (ii) show that v > 6 is
necessary in Lemma 3.

THEOREM 14. Suppose, in addition to the hypotheses of Lemma 13, that the
conductivity functions on each arc are the same, that is, kaoa = kao for some a
satisfying Assumption A(o). If it is given that at any k € M.5, k > 0 satisfying
Assumption A(k), the power-loss is a decreasing function of any ka then log a
is concave on (0, oo).

PROOF. Given 0 < p(2) < p(l) , we let p(3) = p(l) + p(2), and choose ku

k2, k4, k5 positive so that (7.10) and (7.11) hold, and k3 = 0. Let 0 < b(3) =
F3(p, k). Since dp(3)/dk3 < 0 at these values of p and k, (7.8) gives M > 0,
which gives ( A ' ( / J ( 2 ) ) ) 2 > (A'(p(l)))2 where A = logo-, and hence log a is
concave on (0, oo).

THEOREM 15. Consider the Wheatstone bridge graph, and two-terminal flows
with b{\) — 0 = b(2). Suppose that the conductivity functions on each arc
are the same, that is kaoa = kao for some a satisfying Assumption A(p). The
power-loss does not increase ifka is increased

(i) with no further restrictions on a, if a is any arc except (1,2),
(ii) if a is (I, 2) provided log a is concave.

PROOF. Suppose b (3) > 0. There are two cases to consider: when a is the
central arc 3 = (1,2) and when it is one of the other arcs.
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(i) We begin with the case that a is not the central arc. To show p(3)
is decreasing in kj, j ^ 3, by symmetry it is enough to let j = 1, that is,
a = (0, 1). Since

= -(0,0, l)(DpF(p,,

and
3F

then

dkt

where

The fact that det(DpF(p, k)) > 0 shows that the proof depends on establishing
the sign of M\. Expanding the determinant defining M\ gives

M, = k3a'(p{l) - p{2))k5a'{p{2) - p(3)) + kAa'{p{\) - ^
3/7(2)'

where

3F2

3/7(2)
= k2a'(p(2))

Since a ' > 0 this establishes the sign of Mx and hence shows that p(3) is a
decreasing function of kt.

(ii) Next consider the case a = (1,2), the central arc. By (7.8), to show p(3)
is decreasing in k3, we need to show M > 0 for p(\) > p(2), and M < 0 for
/?(1) < p(2). Here M is the expression occurring in (7.8). Write A = loga
and eliminate the a' terms from M using a' = a A'.

First consider p(l) > p(2). As we have also supposed b(3) > 0, we have
p(3) > p{\) > p(2) > /?(0) = 0. We have

where

L, = (A'(p(3) -
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L2 = (

= n3a(p(l) - pQ.)) k3a(p(l)-p(2))
2 V M(P(D) k2a(p(2))

Since A' is decreasing, with p{\) > p(2) and hence p(3) — p(2) > p(3) —
one can deduce that Lx > 0. Since p(3) > p(l) > p(2) > p(0) —0, both Ar

1

and K2 are nonnegative. Since a' > 0, L2 > 0. This establishes that M > 0 as
required.

A similar argument, involving a different reorganisation of the terms of M,
can be used to show M < 0 if /?(!) <
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