IDEMPOTENTS IN COMPLETELY 0-SIMPLE SEMIGROUPS
by J. M. HOWIE
(Received 1 November, 1976)

The structure theorem for completely 0-simple semigroups established by Rees [5] in
1940 has proved a very powerful tool in the investigation of such semigroups. In this
paper the theorem is applied to an investigation of the subsemigroup of a completely
0-simple semigroup generated by its idempotents. Previous work on this problem has
been carried out by Kim [4], but the present note offers a more direct approach.

1. Paths and values. The notations used will be those of [3]. A completely 0-simple
semigroup S can, by Rees’s Theorem [3, Theorem II1.2.5], be identified with a Rees matrix
semigroup MY[G; I, A; P] in which G is a group, I and A are index sets and P is a AXI
matrix (p,;) with entries in G° and with no row or column consisting of zeros. The
non-zero elements of S are triples (a, i, A) in G X IXA multiplying according to the rule
that

. . _ (apyb, i, p) if p#0,

(@i 0, )= { g™ e

For the present investigation it is convenient to assume that I and A are disjoint. Since
they are merely index sets (in one-to-one correspondence respectively with the sets of
R-classes and ZL-classes of S) there is no harm in doing so. With this assumption,
consider the relation K on IU A defined by the rule that (i, A)eK if andonly if ie , A€ A
and p,;# 0, and let ¥ be the equivalence relation on U A generated by K. Thus for x, y in
TUA we have that (x, y)e X if and only if either x =y or (for some n=2) there exist
Zy...,2, in IUA such that

(i) z;,=x and z,=y,
(i) z,e > z,,,€A, 2, €Az, €],
(iii) (z,, z,+,)eKUK™.

The sequence (z,, ..., z,) will be called a path from x to y. Among the paths from x to x
we shall inctude the null path.

The equivalence relation X will be called the connectivity relation, and we shall call
the semigroup S connected if X is the universal relation on TU A. Notice that connected-
ness is a property of the semigroup and not merely of the matrix P. The isomorphism
theorem associated with Rees’s Theorem (see [3, Theorem III.2.8]) ensures that while the
sandwich matrix P is not uniquely determined by S the pattern of non-zero entries in P is
invariant. Hence the property of connectedness, which depends solely on this pattern, is
either possessed by all representations of § as a Rees matrix semigroup or by none.
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Let S=#°G; I, A; P] be a compietely O-simple semigroup. Let (x, y)e ¥ (and from
now on we shall for simplicity write this as x~y), and let p=(zy, ..., z,), where z,=x,
Z, =Y, be a path from x to y. The value V(p) of the path p is the element of G defined by

V(p) = (zl’ 22)¢ . (22’ Z3)¢ CEC (Zn—b Z")(b,

where, for i in I and A in A, we define
(iy A)d’ = PI.'I: (A’ l)¢ = pAi'

The value of the null path from x to x is defined to be e, the identity element of G. Thus,
for example, the value of the path (A}, p, j, A) is the element p,,p.ip,px; of G. Let P,
be the set of all paths from x to y and let

V., ={V(p):peP,,},
the set of values of paths from x to y. By convention, define V, , = if x#y.

Lemva 1. If x, y, ze IUA and x~y~ z then
@) V.=V @) V,V,,=V,..

Proof. Let ae V,,. Then a = V(p) where p=(z,,..., z,) is a path from y to x. Then
(z,,...,2;) is a path from x to y whose value is a™*. Thus

a=(a"")eV,,,
and so V,, c V;}. It follows that

Vore (V)= Vs

hence, relabelling by interchanging x and y, we have V< V, .. This establishes part (i).
Let p=(x,23,...,2n-1,Y)€P,, and q=(y,t3,...,41,2)€P,,. Then

(%, 225+ o5 Zyeys Vo by« - 5 b1, Z)E P, Since the value of this last path is evidently

V(p)V(q), it is clear that

VeyVoz € Ve 1)

XY Tz =

Conversely, if ae V,, then for every b in V,, we have (using part (i) and formula (1))
a=bblaecV, V,V,,cV,V

XY TYX T X2z = T XYy w2zt

Thus V,,c V,,V, . as required.

Xy "z

TueoreM 1. Let S=M[G; I, A; P] be a completely 0O-simple semigroup. Let E be the
set of idempotents in S and (E) the subsemigroup of S generated by the idempotents. Then

(E)={(a,i,A)eS:i~A and acV,}U{0}.

Proof. Tt is well-known, and in any event easy to verify, that the non-zero idempo-
tents of S are the elements (py}, i, A) for which p,; #0. Let (q, i, A) e (E)\{0}. Then there
exist i5,...,I, in I and A,,...,A,_, in A such that

(a, i, A) = (p;,lis ia A1)(p)_qli2a i2, A2) e (p—i},a im A) # 0
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Hence i~A;~ip~A,~...~i,~A and so i~ A. Also
= -1 -1 -1
Q= PayiPriiaPasiz « - - PansinPains

the value of the path (i, Ay, i3, Ay, ..., 0, A) from i to A, and so a€ V;,.
Conversely, let i~A and a€ V;,. Then there exists a path (i, Ay, i, Ap, ..., 0y A)
whose value

P:lliPA,i,P:,li,PA,is e p)\,.-,i,,p:it
is equal to a. Hence
(a, i, A)=(px)s i, AD)(PRL, 12, A2) - - . (PR by M) €(E).
This completes the proof.

We shall say that S =#°[G; I, A; P is replete if it is connected and V, , = G for some x
in TUA. In the presence of connectedness this latter condition is in fact equivalent to the
apparently stronger condition that V,, =G for all y,z in IUA; if S is replete then V|,
and V., are both non-empty by connectedness and so

V,.=V,,V..V..=V,,GV, ., =G.
A semigroup S with set of idempotents E is called idempotent-generated if (E)=S.
We now have the following obvious corollary to Theorem 1.

CoroLLARY. The completely 0-simple semigroup M°[G; L A; P] is idempotent-
generated if and only if it is replete.

2. The completely simple case. The case where § has no zero and is completely
simple is easier, since the matrix P has no zero entries and connectedness is automatic.
The results corresponding to Theorem 1 and its corollary do not require separate
statement. One easy consequence of Theorem 1 is worth recording. A subsemigroup U of
a semigroup S is called unitary if, for all u in U and all s in S,

useU>se U, sueU>se U
THeEOREM 2. In a completely simple semigroup S with set E of idempotents, the
subsemigroup (E) generated by the idempotents is unitary.

Proof. Let S=M[G; I A; P} and suppose that u=(a, i, A)e(E), s=(b,j, u)e S and
us =(ap,;b, i, u)e(E). Then a€ V,, and ap,b€ V,,, from which it follows that

b= P;;'la-lap,\jb eViaViiVi.=V,..
Thus s e(E). Similarly sue(E)> sec(E), and so (E) is unitary.

We may remark that a closely analogous result exists for the completely 0-simple
case. If S is a semigroup with zero element 0 then a subsemigroup U containing 0 is called
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O-unitary if, for all u in U\{0} and all s in S\{0},
use U\{0}=> s € U\{0}, sue U\{0}=> s e U\{0}.

Then the following theorem can be proved. The details of the proof differ only slightly
from those of the last proof and so may safely be omitted.

THeOREM 3. In a completely 0-simple semigroup with set E of idempotents, the
subsemigroup (E) generated by the idempotents is 0-unitary.

Returning now to the completely simple case, we consider the simplifications that
occur when we assume that the sandwich matrix P is normal. As remarked by Clifford [2],
every completely simple semigroup is isomorphic to a Rees matrix semigroup
M[G; I A; P] in which P =(p,;) is normal, in the sense that there exist k in I and v in A
such that p,, = e (the identity element of G) for all A in A and p,; =e for all i in I To put
it another way, P is normal if it contains at least one row and at least one column con-
sisting entirely of e’s.

Let us now suppose that S = #[G; I, A; P] and that P is normal, with p,, = e for all A
and p,, = e for all i.

Lemma 2. With these assumptions, V, ,=V,, for all x, y, z, t in TUA.

Proof. The first step is to show that ee V, , for all x, y in TUA. This is straightfor-
ward if we consider separately the four cases (i) x, ye L, (ii) xe I, ye A, (iii) xeA, yel,
(iv) x, y e A. In case (i) we have a path (x, v, y) from x to y with value e andso ec V, . In
case (ii) the path (x, v, k, y) has value e. Cases (iii) and (iv) are similar.

The desired result now follows easily, since for all x, y, z, ¢t in JTUA,

VX,)’ = evx.yeg Vz,x Vx,y Vy.t = Vz,v

and, similarly, V,,c V, .
There is thus a fixed subset V of G equal to V, , for every choice of x, y in TUA,
An alternative description of V is as follows:

Lemma 3. V={{pu:r €A, iel}), the subgroup of G generated by the elements p,,.

Proof. Since V=V, for arbitrarily chosen elements x, y in TUA, it is immediate
that each element of V, being the value of a path from x to y, is a product of the entries of
P and their inverses. Conversely, to show that V contains every such product we need
only observe (a) that each p,;e V,,=V, (b) that each py'eV,, =V, and (c) that if
acV=V,  and be V=V, then abeV, V.=V =V,

The final easy consequence of Theorem 1 and Lemma 3 is the following theorem,
which can of course be verified more directly. Part of this result is implicit in the proof of

Theorem 1 in Benzaken and Mayr [1].

THeorReM 4. Let S=M[G; L A; P] be a completely simple semigroup in which P is
normal. Then {(E)=V XIXxA, where V is the subgroup of G generated by the entries of P.
The semigroup S is idempotent-generated if and only if V=G.
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That this is untrue without normalisation is evident from the following elementary
example. Let S=M[G; I A; P], where I={1,2}, A={3,4}, G=Z,={e,a}, p31=ps=
Ps1 = Pa2 = a. Then the subgroup generated by the entries of P is G, but

(E)=E={(a,1,3),(a,1,4),(az273)(a?2 4}

In fact V,,=V,,=V,;=V,,={a}, in accord with Theorem 1.
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