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Abstract We study the interplay between the cohomology of the Koszul complex of the partial deriva-
tives of a homogeneous polynomial f and the pole order filtration P on the cohomology of the open
set U = Pn \ D, with D the hypersurface defined by f = 0. The relation is expressed by some spectral
sequences. These sequences may, on the one hand, in many cases be used to determine the filtration P

for curves and surfaces and, on the other hand, to obtain information about the syzygies involving the
partial derivatives of the polynomial f . The case of a nodal hypersurface D is treated in terms of the
defects of linear systems of hypersurfaces of various degrees passing through the nodes of D. When D is
a nodal surface in P3, we show that F 2H3(U) �= P 2H3(U) as soon as the degree of D is at least 4.
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1. Introduction

Let S = C[x0, . . . , xn] be the graded ring of polynomials in x0, . . . , xn with complex
coefficients and let us denote by Sr the vector space of homogeneous polynomials in S

of degree r. For any polynomial f ∈ SN we define the Jacobian ideal Jf ⊂ S as the ideal
spanned by the partial derivatives f0, . . . , fn of f with respect to x0, . . . , xn. Following
the notation of Eisenbud [19], for n = 2 we use x, y, z instead of x0, x1, x2 and fx, fy, fz

instead of f0, f1, f2.
We define the corresponding graded Milnor algebra (or Jacobian algebra) by

M(f) = S/Jf . (1.1)

The study of such Milnor algebras is related to the singularities of the corresponding
projective hypersurface D : f = 0 (see [6]) as well as to the mixed Hodge theory of
the hypersurface D and of its complement U = Pn \ D (see the foundational article by
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Griffiths [23] and also [9, 15, 18] and references therein). For mixed Hodge theory we
refer the reader to [25].

In fact, such a Milnor algebra can be seen, up to a twist in grading, as the first (or the
last) homology (or cohomology) of the Koszul complex of the partial derivatives f0, . . . , fn

in S (see [6] or [11, Chapter 6]). As such, it is related to certain natural E1-spectral
sequences associated with the pole order filtration and converging to the cohomology of
the complement U introduced in [9] and discussed in detail in [11, Chapter 6].

In § 2 we recall and improve the construction of these spectral sequences and show that
they degenerate at the E2-terms when all the singularities of D are weighted homogeneous
and dimD = 1; in the curve case we use the more classical notation C instead of D (see
Theorem 2.4 (iii)). In the curve case this result gives a positive answer to an old conjecture
by the first author (see the claim just before Remark (3.11) in [9]). Such a degeneracy
at the E2-terms is also shown to occur for nodal surfaces (see Theorem 5.1 (i)).

In § 3 we assume that n = 2 and use this approach to determine the pole order
filtration P ∗ on the cohomology group H2(U) for a number of cases (see Examples 3.2,
3.3 and 3.4, the latter being a new example where F 2 �= P 2 on H2(U)). In Example 3.1
we also describe these spectral sequences completely for the case in which C is a nodal
curve.

In § 4 we discuss the syzygies of nodal hypersurfaces. For instance, we show that for a
nodal curve there are no non-trivial relations

Rm : afx + bfy + cfz = 0 (1.2)

with a, b, c homogeneous of degree m < N − 2, and we describe completely the relations
of degree m = N − 2 in terms of the irreducible factors fj of f (see Theorem 4.1). Note
that fj has a different meaning for n = 2 and for n > 2. In [17] the vanishing part in
Theorem 4.1 was extended to nodal hypersurfaces of arbitrary dimension using a different
approach.

Definition 1.1. For a hypersurface D : f = 0 with isolated singularities we introduce
three integers as follows.

(i) The coincidence threshold ct(D) is defined as

ct(D) = max{q : dimM(f)k = dimM(fs)k for all k � q},

with fs a homogeneous polynomial in S of degree N such that Ds : fs = 0, is a
smooth hypersurface in Pn.

(ii) The stability threshold st(D) is defined as

st(D) = min{q : dimM(f)k = τ(D) for all k � q},

where τ(D) is the total Tjurina number of D, i.e. the sum of all the Tjurina numbers
of the singularities of D.

https://doi.org/10.1017/S0013091514000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000182


Koszul complexes and pole order filtrations 335

(iii) The minimal degree of a non-trivial syzygy mdr(D) is defined as

mdr(D) = min{q : Hn(K∗(f))q+n �= 0},

where K∗(f) is the Koszul complex of f0, . . . , fn, and the grading is defined in the
next section.

If a relation as in (1.2) is of minimal degree among the relations modulo the trivial
relations (4.5), then one has mdr(D) = m, i.e. our notion is the natural one. Moreover,
it follows from (2.17) that one has

ct(D) = mdr(D) + N − 2. (1.3)

By definition, it follows that for any such hypersurface D that is not smooth, we have
N − 2 � ct(D) � (n + 1)(N − 2) and, using [6], we get st(D) � (n + 1)(N − 2) + 1. With
this handy notation, we can state the following result, a consequence of the vanishings
in Theorem 4.1 obtained via Hodge theory, using (2.17).

Theorem 1.2. Let C : f = 0 be a nodal curve of degree N in P2. One then has
ct(C) � 2N − 4.

Recall that the Hilbert–Poincaré series of a graded S-module E of finite type is defined
by

HP(E)(t) =
∑
k�0

(dimEk)tk (1.4)

and that we have

HP(M(fs)) =
(1 − tN−1)n+1

(1 − t)n+1 . (1.5)

In particular, if we set T = T (n, N) = (n + 1)(N − 2), it follows that M(fs)j = 0 for
j > T and dimM(fs)j = dimM(fs)T−j for 0 � j � T .

Theorem 1.2 determines the dimensions of M(f)q for all q < 2N − 3 in the case of a
nodal curve C. The next dimension for such a curve is given by

dim M(f)2N−3 = n(C) +
∑

j=1,r

gj = g + r − 1, (1.6)

where n(C) = τ(C) is the total number of nodes of C and the gj are the genera of the
normalizations of the irreducible components Cj of C, whose number is r. The genus of
the smooth curve Cs : fs = 0 is given by

g =
(N − 1)(N − 2)

2
(1.7)

(see (3.2) and (3.3)). For more general curves we have, as a consequence of Theorem 2.4,
the following relation between the Milnor algebra M(f) and the geometry of U .
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Corollary 1.3. Let C : f = 0 be a curve in P2 of degree N having only isolated
weighted homogeneous singularities. Then

dim M(f)2N−3 + dimP 2H2(U) = 2g + r − 1 = dimH2(U) + τ(C),

where g is given by (1.7), r is the number of irreducible components of C and τ(C) is
the total Tjurina number of C.

For a highly singular curve C, we can have much lower values for ct(C) than those
given by Theorem 1.2, namely, ct(C) = N − 2 or ct(C) = N − 1 (see Example 4.2).

On the other hand, it follows from (1.6) that for a nodal curve C one has ct(C) = 2N−4
if and only if C is not irreducible, i.e. if r > 1. One of the main results in [16], restated as
the first equality in (1.6), implies that for a rational nodal curve (i.e. one for which gj = 0
for j = 1, . . . , r) one has st(C) � 2N − 3. This yields the following corollary.

Corollary 1.4. For a rational nodal curve C, the Hilbert–Poincaré series HP(M(f))
is completely determined by the degree N and the number of nodes n(C). In particular,
st(C) = 2N − 3 unless C is a generic line arrangement, in which case st(C) = 2N − 4 for
N > 3 and st(C) = 1 for N = 3.

For the case of hyperplane arrangements, an interesting approach to the study of the
Jacobian ideal Jf is given in the recent paper [8].

At the other extreme, there are nodal curves with ct(C) = 3N − 6, as implied by the
description given in Example 4.3 (i) of the Hilbert–Poincaré series HP(M(f)) for any
hypersurface having exactly one node.

To state the next result, we must recall some notation. For a finite set of points N ⊂ Pn

we define as

def Sm(N ) = |N | − codim{h ∈ Sm | h(a) = 0 for any a ∈ N}

the defect (or superabundance) of the linear system of polynomials in Sm vanishing at
the points in N (see [11, p. 207]). In [21], this positive integer is called the failure of
N to impose independent conditions on homogeneous polynomials of degree m. In § 4 we
prove the following theorem.

Theorem 1.5. Let D : f = 0 be a degree N nodal hypersurface in Pn and let N
denote the set of its nodes. Then

dim Hn(K∗(f))nN−n−1−k = def Sk(N )

for 0 � k � nN − 2n − 1 and

dim Hn(K∗(f))j = τ(D) = |N |

for j � n(N − 1). In other words,

dim M(f)T−k = dimM(fs)k + def Sk(N )

for 0 � k � nN−2n−1, where T = T (n, N) = (n+1)(N−2). In particular, dim M(f)T =
τ(D), i.e. st(D) � T .
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Note that this theorem determines the dimensions dim M(f)j in terms of the defects of
linear systems for any j � N − 1, i.e. for all j, since the dimensions dim M(f)j = dimSj

for j < N − 1 are well known. The last equality, namely dimM(f)T = τ(D), decreases
by one the upper bound for st(D) obtained in [6, Corollary 9] in the case of nodal
hypersurfaces. A similar result for hypersurfaces D having arbitrary isolated singularities
is obtained in [13].

Illustrations of how to apply Theorem 1.5 are given in Example 4.3. Using Theorems 1.5
and 4.1 and Corollary 1.4, we get the following information on the position of the nodes
of a nodal curve.

Corollary 1.6. Let C : f = 0 be a degree N nodal curve in P2 and let N denote the
set of its nodes. Then def Sk(N ) = 0 for k > N − 3 and def SN−3(N ) = r − 1, where r is
the number of irreducible components of C.

Moreover, if the curve C is, in addition, rational, then all the defects def Sk(N ) are
completely determined by the degree N and the number of nodes n(C).

In fact, a recent result by Kloosterman (see [24, Proposition 3.6]) implies that the first
part of Corollary 1.6 holds for any curve C with the property that any singular point of
C that is not a node is a unibranch singularity (see Remark 4.4 for more details on this).

In the final section we use Theorem 1.5 to determine the pole order filtration P ∗ on
the cohomology groups H∗(U) and the corresponding spectral sequences when D is a
nodal surface. In particular, we obtain the following theorem.

Theorem 1.7. Let S : f = 0 be a nodal surface in P3 of degree N and let N denote
the set of its nodes. Then, if U = P3 \ S and Ss is a smooth surface of degree N in P3,
the following equalities hold:

dim Gr2P (H3(U)) = h1,1(Ss) − 1 − def SN−4(N )

and

dim Gr2F (H3(U)) = h1,1(Ss) − 1 − |N |.

In particular, P 2H3(U) = F 2H3(U) if and only if the nodal surface S is smooth or N < 4.

This result complements the results in [18] (where arbitrary dimensions are considered,
but only in the case of degrees N = 3 and N = 4) for the case of nodal surfaces, and
answers the question posed therein as to whether the inequality P 2H3(U) �= F 2H3(U)
holds for any surface with |N | = 1 and N � 4.

Numerical experiments with the CoCoA package∗ and the Singular package† have
played a key role in the completion of this work.

∗
CoCoA: a system for doing computations in commutative algebra. Available at http://cocoa.dima

.unige.it.
† Singular 3-1-3: a computer algebra system for polynomial computations. Available at www.singular

.uni-kl.de. Developed by W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann.
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2. Pole order filtrations, spectral sequences and Koszul complexes

Let X be a smooth complex quasi-projective variety and let D ⊂ X be a reduced divisor.
We denote by i : D → X and j : U → X the corresponding inclusions, where U = X \ D.
Let Ω∗

X (respectively, Ω∗
U ) denote the de Rham sheaf complex of regular differential forms

on X (respectively, U). Grothendieck’s theorem then states that

H∗(U, Ω∗
U ) = H∗(U), (2.1)

where C-coefficients are used for the cohomology groups unless indicated otherwise. More-
over, as explained in [7], the isomorphism j∗Ω

∗
U = Rj∗Ω

∗
U (a consequence of the fact that

j is an affine morphism) implies the natural identification

H∗(X, j∗Ω
∗
U ) = H∗(U). (2.2)

The sheaf complex j∗Ω
∗
U has a natural decreasing filtration, called the pole order filtration,

given by
P sj∗Ω

p
U = 0

if p < s and given by
P sj∗Ω

p
U = Ωp

X((p − s + 1)D) (2.3)

if p � s (see [7]). In other words, a rational differential form ω is in P sj∗Ω
p
U if it has a

pole of order at most p− s+1 along the divisor D (with special attention needed for the
case of p = s− 1). A word of warning: the corresponding filtration is denoted by F in [9]
and is slightly different. However, the proof of the main results from [9] or [11] quoted
below apply word for word to the present setup.

Using the filtration (2.3), we define the pole order filtration on the cohomology of U

by setting

P sH∗(U) = im(H∗(X, P sj∗Ω
∗
U ) → H∗(X, j∗Ω

∗
U ) = H∗(U)). (2.4)

The main result from [7] is the following theorem (see also [27] for another proof and
conditions for equality).

Theorem 2.1. Assume that the smooth variety X is proper and let F denote the
Hodge filtration on the cohomology of U . Then F sH∗(U) ⊂ P sH∗(U) for any s.

From now on consider the case X = Pn and recall that Bott’s vanishing theorem gives
us

Hk(X, Ωp
X(sD)) = 0 (2.5)

for any k > 0, s > 0 (see [1]). The polar filtration, even if it is an infinite filtration, gives
rise to a spectral sequence

Ep,q
1 (U) = Hp+q(X, Grp

P (j∗Ω
∗
U )) (2.6)

whose limit term is exactly

Ep,q
∞ (U) = Grp

P (Hp+q(U)). (2.7)
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Now, using the standard spectral sequence

Ep,q
1 = Hp(X, Grs

P (j∗Ω
q
U )) ⇒ Hp+q(X, Grs

P (j∗Ω
∗
U )) (2.8)

and the vanishings implied by (2.5), we obtain a description of the E1-term of our spectral
sequence without involving hypercohomology groups, namely,

Ep,q
1 (U) = Hp+q(H0(X, Grp

P (j∗Ω
∗
U ))). (2.9)

This expression for Ep,q
1 (U) can be interpreted as follows. Let A∗(U) = H0(X, j∗Ω

∗
U ) be

the de Rham complex of regular forms defined on the affine open set U . It follows from
Grothendieck’s theorem (Theorem 2.1), that one has

Hm(A∗(U)) = Hm(U) (2.10)

for any integer m. On the other hand, we have a very explicit description of these rational
differential forms defined on U . Let f = 0 be a reduced equation for the divisor D and let
N be the degree of the homogeneous polynomial f . Denote by Ωp = H0(Cn+1, Ωp

Cn+1)
the global (polynomial) differential p-forms on Cn+1, regarded as a graded S-module in
the usual way (i.e. deg(h dxi1 ∧ · · · ∧ dxiq ) = p + q if h ∈ Sp). Then a differential p-form
ω ∈ Ap(U), for p � 0, is given by

ω =
Δ(γ)
fs

(2.11)

for some integer s > 0, γ ∈ Ωp+1
sN and Δ: Ωp+1 → Ωp being the S-linear map given

by the contraction with the Euler field (see [11, Chapter 6] for details). When ω is not
a constant function on U (the case covered by s = 1 and γ = a · df for a ∈ C), the
minimal s in this formula is by definition the order of ω along the divisor D. We can
define a polar filtration on the complex A∗(U) by setting P sAp(U) = 0 if p < s and

P sAp(U) =
{

ω =
Δ(γ)

fp−s+1

∣∣∣∣ γ ∈ Ωp+1
(p−s+1)N

}
(2.12)

if p � s. This decreasing filtration induces a spectral sequence

Ep,q
1 (A) = Hp+q(Grp

P (A∗(U))). (2.13)

Using Bott’s vanishing theorem (2.5) and (2.9), we see that this new spectral sequence
coincides with the spectral sequence Ep,q

1 (U). In particular, they both induce the same
filtration on their common limit, which is H∗(U).

Note that A0(U) (respectively, E0,0
1 (A) = H0(Gr0P (A∗(U)))) contains the constant

functions on U . Let us denote by Ã∗(U) (respectively, Ep,q
1 (Ã)) the complex (respectively,

the spectral sequence) obtained from the above complex A∗(U) (respectively, spectral
sequence Ep,q

1 (A)) by replacing A0(U) (respectively, E0,0
1 (A)) by A0(U)/C (respectively,

E0,0
1 (Ã) = E0,0

1 (A)/C). It is clear that the cohomology of the complex Ã∗(U) (respec-
tively, the limit of the spectral sequence Ep,q

r (Ã)) is H̃∗(U), the reduced cohomology
of U .
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It turns out that the E1-term of the spectral sequence Ep,q
r (Ã) can be described in terms

of the Koszul complex of the partial derivatives fj of f with respect to the variable xj

for j = 0, . . . , n (see [9], [11, Chapter 6] and [14, Remark 2.10]). This Kozsul complex
can be represented by the complex of graded S-modules

K∗(f) : 0 → Ω0 → Ω1 → · · · → Ωn+1 → 0, (2.14)

where the differentials are given by the wedge product with the differential df , and hence
these differentials are homogeneous of degree N . This complex has a natural subcomplex

K ′∗(f) : 0 → Ω′0 → Ω′1 → · · · → Ω′n+1 → 0, (2.15)

where Ω′p =
⊕

k�0 Ωp
kN .

Consider the associated double complex (B,d′, d′′), with Bs,t = Ωs+t+1
(t+1)N for t � 0 and

−1 � s + t � n and Bs,t = 0 otherwise, and differentials d′ = d, the exterior derivative
of a form, and d′′(ω) = −df ∧ ω. Note that d′ d′′ + d′′ d′ = 0 and let (B∗, Df = d′ + d′′)
be the associated total complex of this double complex. In fact, the complex B∗ is the
same as the reduced version of the subcomplex K ′∗, but with a new differential.

As for any total complex, B∗ comes with two natural decreasing filtrations, one such
being

F pBk =
⊕

s�p−1

Bs,k−s.

The contraction operator Δ defines a morphism of filtered complexes δ : B∗ → Ã∗(U) by
setting

δ(ω) =
Δ(ω)
f t+1 for ω ∈ Bs,t. (2.16)

With this notation, we have the following result (see [9], [11, Chapter 6] and [14,
Remark 2.10]).

Proposition 2.2. Let Ep,q
r (f) be the E1-spectral sequence associated with the filtra-

tion F on (B∗, Df ). The following statements then hold.

(i) The morphism δ induces an isomorphism of E1-spectral sequences

Ep,q
r (f) → Ep,q

r (Ã).

(ii) There is a natural identification

Ep,q
1 (f) = Hp+q+1(K∗(f))(q+1)N .

Remark 2.3.

(i) In the case X = Pn, it is known that F 1Hk(U) = Hk(U) for any integer k > 0
(see [9, Theorem 2.2] (there is an equals sign missing in the statement, but the proof
of the equality is clearly done) or the proof of Corollary 1.32 [11, pp. 185–186]).
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(ii) One has P k+1Hk(U) = 0 for any integer k > 0. To see this, just use the fact that the
hypercohomology of a sheaf complex F∗ with Fj = 0 for j < p satisfies Hj(F∗) = 0
for j < p. In particular, P 2H1(U) = 0, i.e. we always have Gr1P (H1(U)) = H1(U)
and Grj

P (H1(U)) = 0 for j �= 1.

Assume now that the hypersurface D has only isolated singularities. The non-zero
terms in the E1-term of the spectral sequence Ep,q

r (f) are sitting on two lines, given by
L : p + q = n and L′ : p + q = n − 1. Indeed, one has to use the fact that in this case
Hm(K∗(f)) = 0 for m < n (see [22,26]). For a term Ep,q

1 (f) situated on the line L, we
have

Ep,q
1 (f) = Hn+1(K∗(f))(q+1)N = M(f)(q+1)N−n−1.

We now describe the terms on the line L′. In order to do this, let fs ∈ SN denote a
polynomial of degree N defining a smooth hypersurface in Pn. It is easy to show that

tN HP(Hn(K∗(f)))(t) = HP(Hn+1(K∗(f)))(t) − HP(Hn+1(K∗(fs)))(t), (2.17)

using the fact that Euler characteristics do not change when replacing a (finite-type)
complex by its cohomology. Note also that

HP(Hn+1(K∗(fs))) = tn+1 HP(M(fs)) = tn+1 (1 − tN−1)n+1

(1 − t)n+1 (2.18)

is completely determined by the degree N . It follows that the term

Ep,q
1 (f) = Hn(K∗(f))(q+1)N

situated on the line L′ has dimension

dim Hn(K∗(f))(q+1)N = dimM(f)(q+2)N−n−1 − dim M(fs)(q+2)N−n−1. (2.19)

We now want to relate the spectral sequence Ep,q
r (A) to some simpler, locally com-

putable spectral sequences in the case when D has only isolated singularities, say at the
points a1, . . . , am. Consider the morphism of restriction

ρ : Grp
P (j∗Ω

∗
U ) → i1∗ Grp

P ((j∗Ω
∗
U )/Ω∗

X) | Σ

obtained by factoring out the regular forms, taking the restriction from X to the singular
locus Σ of D, and then extending via i1∗, where i1 : Σ → X is the inclusion. For p < 0
this morphism is easily seen to be a quasi-isomorphism, i.e. it induces isomorphisms at
stalk level. For p = 0, the kernel Kρ of ρ is the sheaf Ω0

X = OX (placed in degree 0). We
know that, for the case X = Pn,

Hq(X, OX) = Hq(X, OX) = 0

for q > 0. It follows that the morphisms

ρk : Hk(X, Gr0P (j∗Ω
∗
U )) → Hk(X, i1∗ Gr0P ((j∗Ω

∗
U/Ω∗

X) | Σ))

are isomorphisms for any k � 1.
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As explained in [9] (with the notable difference that in [9] there is no quotient taken,
which leads to an infinite-dimensional E1-term), the complex ((j∗Ω

∗
U )/Ω∗

X) | Σ is the
direct sum of the complexes Ã∗(D, aj) for j = 1, . . . , m, where each Ã∗(D, aj) is the local
analogue of the complex Ã∗(U) above. These complexes come with a pole order filtration
defined exactly as in the global case, and for each j there is an E1-spectral sequence
Er(D, aj) with

Ep,q
1 (D, aj) = Hp+q(Grp

P (Ã∗(D, aj)))

and converging to H̃∗(Bj \ D), where Bj is a small ball in X centred at aj . It follows
that ρ induces a morphism of E1-spectral sequences

ρp,q : Ep,q
1 (A) →

⊕
j=1,m

Ep,q
1 (D, aj)

with the property that ρp,q is an isomorphism for any p � 0 and p + q � 1.
Moreover, when each singularity (D, aj) is weighted homogeneous, it follows from the

description of the local spectral sequence Ep,q
1 (D, aj) (see [9, Example 3.6]) that all the

differentials d1 : En−1−t,t
1 (D, aj) → En−t,t

1 (D, aj) are isomorphisms for t � n − 1. In this
way we have proved the following improvement of Theorem (3.9) in [9]. (For the converse
claim in (iii), see [9, Corollary 3.10].)

Theorem 2.4.

(i) Let D be a hypersurface in Pn for n � 2, having only isolated singularities. Then
the morphism of E1-spectral sequences

ρp,q : Ep,q
1 (A) →

⊕
j=1,s

Ep,q
1 (D, aj)

is an isomorphism for any p � 0 and p + q � 1.

(ii) If, in addition, the singularities of D are weighted homogeneous, then in the spectral
sequence Ep,q

1 (A) the differential

d1 : En−1−t,t
1 (A) → En−t,t

1 (A)

is injective for t = n − 1 and is bijective for t � n.

(iii) If D is a reduced curve in P2, then D has only isolated weighted homogeneous
singularities if and only if the E1-spectral sequences Ep,q

r (U), Ep,q
r (Ã) and Ep,q

r (f)
degenerate at the E2-term, i.e. E2 = E∞ for any of these E1-spectral sequences.

This result, especially parts (ii) and (iii), is perhaps related to the results in [3] and [4].

3. Some examples of spectral sequences in the case of plane curves

Let C : f = 0 be a reduced curve in P2 of degree N . Let Cj : fj = 0 for j = 1, . . . , r be the
irreducible components of C. The complement U has at most three non-zero cohomology
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groups. The first of them, H0(U), is one dimensional and of Hodge type (0, 0), so there
is nothing of interest here. Moreover, H̃0(U) = 0.

The second, H1(U), is (r − 1) dimensional and, for r > 1, is of Hodge type (1, 1)
by Remark 2.3. It follows in this case that P 1H1(U) = F 1H1(U) = H1(U). Moreover,
H1(U) has a basis given by

ωj =
dfj

Njfj
− dfr

Nrfr
(3.1)

for j = 1, . . . , r − 1, where Nj = deg(fj) (see [9, Example 4.1]).

Example 3.1. We discuss first the case when C : f = 0 is a nodal curve in P2 of
degree N . Using [27, Corollary 0.12] for X = P2, i = 2, it follows that P 2H2(U) =
F 2H2(U), since for a nodal curve αf = 1. We now look at the non-zero terms in
the E1-term of the spectral sequence Ep,q

r (f). They are sitting on two lines given by
L : p + q = 2 and L′ : p + q = 1.

We look first at the terms on the line L. The term E2,0
1 (f) = H3(K∗)N is isomorphic as

a C-vector space with M(f)N−3, and hence has dimension g (as defined in (1.7)), which
is determined by N = deg(f) alone. Hence, the corresponding limit term E2,0

∞ (U) =
P 2H2(U) has dimension at most g. On the other hand, dimF 2H2(U) = g (see [18,
Theorem 2.2] or a direct proof in [16, Proposition 4.1]). The above argument gives an
alternative proof of the equality F 2H2(U) = P 2H2(U) in this case.

The term E1,1
1 (f) = H3(K∗)2N is isomorphic to M(f)2N−3. To compute its dimension

note that, by [18, Theorem 2.2], we have dim(I/Jf )2N−3 = Gr1F (H2(U)), where I is
the ideal in S of polynomials vanishing at all the singular points of C. It was shown
in [16, Proposition 4.1] that

dim(I/Jf )2N−3 =
∑

j=1,r

gj ,

where gj is the genus of the normalization of the curve Cj , for j = 1, . . . , r. On the other
hand, we showed in [16, Lemma 4.2] that dim(S/I)2N−3 = n(C), the total number of
nodes of C. It follows that

dim M(f)2N−3 = n(C) +
∑

j=1,r

gj . (3.2)

Moreover, the dimension of the corresponding limit term E1,1
∞ (U) = Gr1F (H2(U)) =

Gr1P (H2(U)) is
∑

j=1,r gj , as noted above.
The term E2−q,q

1 (f) = H3(K∗)(q+1)N for q � 2 is isomorphic to M(f)(q+1)N−3,
which has dimension n(C). Furthermore, the corresponding limit terms E2−q,q

∞ (U) =
Gr2−q

F (H2(U)) clearly vanish for q � 2.
We look now at the terms on the line L′. It follows from (3.2), (1.7) and the duality

dim M(fs)2N−3 = dimM(fs)N−3 that the term E1,0
1 (f) = H2(K∗)N has dimension

n(C) +
∑

j=1,r gj − g. If we compare with the proof of Proposition 4.1 in [16], we see
that the total number of nodes n(C) is given by

∑
j=1,r nj +

∑
1�i<j�r didj , where nj is
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the number of nodes on the curve Cj and dk is the degree of the curve Ck. Using both
Remark 2.3 and formula (4.1) in the proof of Proposition 4.1 in [16], we conclude that

dim E1,0
1 (f) = dimE1,0

∞ (f) = r − 1. (3.3)

The dimension of the other terms E1−q,q
1 (f) = H2(K∗)(q+1)N for q � 1 is equal to

n(C). Moreover, the corresponding limit terms E1−q,q
∞ (U) = Gr1−q

F (H1(U)) clearly vanish
for q � 1.

It follows that the differential d1 : E1,0
1 (f) → E2,0

1 (f) is the zero map (not to decrease
the dimension of E1,0

2 (f), which is the dimension of the limit), a fact not shared by curves
with general weighted homogeneous singularities as seen in Examples 3.2 and 3.3. The
other differentials d1 : E1−q,q

1 (f) → E2−q,q
1 (f) for q � 1 are all injective (any non-zero

kernel would kill some terms needed in the limit via some dr with r � 2), as happens for
any curve with weighted homogeneous singularities in view of Theorem 2.4.

Example 3.2. Consider the curve C : x(x2y + xy2 + z3) = 0, which is the union of a
smooth cubic C : x2y+xy2 +z3 = 0 and an inflectional tangent L : x = 0. It is easy to see
that for this case H̃0(U) = 0, H1(U) is one dimensional and H2(U) is two dimensional,
with classes of Hodge type (2, 1) and (1, 2). In particular, F 2H2(U) is one dimensional.

On the other hand, the spectral sequence E1(f) has the following non-zero terms: E1,0
1 ,

which is two dimensional; E2,0
1 , which is three dimensional; and all Ep,q

1 for p + q = 1 or
p + q = 2 and q > 0, which are five dimensional, since τ(C) = 5. The computation for
the other dimensions are based on formula (2.18) and a computation, using CoCoA or
Singular, of the Hilbert–Poincaré series

HP(M(f))(t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 5t5 + · · ·

with stabilization threshold st(C) = 5. It follows that d1 : E1,0
1 → E2,0

1 has a one-
dimensional kernel E1,0

2 = H1(U), and a two-dimensional cokernel E2,0
2 = P 2H2(U).

In particular, the inclusion F 2 ⊂ P 2 is strict on H2(U), as mentioned in [9, Remark 2.6].

Example 3.3. Now consider the irreducible curve C : x2y2 + xz3 + yz3 = 0, which
has two cusps A2 as singularities. It is then easy to see that H̃0(U) = 0 = H1(U), and
that H2(U) is two dimensional, with classes of Hodge type (2, 1) and (1, 2). In particular,
F 2H2(U) is one dimensional.

On the other hand, the spectral sequence E1(f) has the following non-zero terms: E1,0
1 ,

which is one dimensional; E2,0
1 , which is three dimensional; and all Ep,q

1 for p + q = 1 or
p+q = 2 and q > 0, which are four dimensional, since τ(C) = 4. Indeed, the computation,
using CoCoA or Singular, in this case yields

HP(M(f))(t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 4t5 + · · ·

with stabilization threshold st(C) = 5. It follows that d1 : E1,0
1 → E2,0

1 is injective and
has a two-dimensional cokernel E2,0

2 = P 2H2(U). In particular, the inclusion F 2 ⊂ P 2

is strict on H2(U), as mentioned in [14, Remark 2.5].
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Example 3.4. Now consider the irreducible curve C : x3z4 + xy5z + x7 + y7 = 0,
which has a non-weighted homogeneous singularity located at (0:0:1) with Milnor number
μ = 12 and Tjurina number τ = 11. It is then easy to see that H̃0(U) = 0 = H1(U),
and H2(U) has dimension 18, with classes of Hodge type (2, 1) and (1, 2). In particular,
dim F 2H2(U) = 9.

On the other hand, the spectral sequence E1(f) has the following non-zero terms: E2,0
1 ,

which is 15 dimensional; and all Ep,q
1 for p + q = 1 or p + q = 2 and q > 0, which are

11 dimensional, since τ(C) = 11, except E1,1
1 which is again 15 dimensional. Indeed, the

computation using CoCoA or Singular in this case yields

HP(M(f))(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 25t6 + 27t7

+ 27t8 + 25t9 + 21t10 + 15t11 + 12t12 + 11t13 + · · ·

with stabilization threshold st(C) = 13. It follows that d1 : 0 = E1,0
1 → E2,0

1 is the
zero map, and hence dimE2,0

2 = 15. The other differentials d1 : E1−t,t
1 → E2−t,t

1 for
t � 1 have a one-dimensional kernel, which can be seen using Theorem 2.4 (i) and [10,
Proposition (3.4), Example (3.5) (i) and Corollary (4.3)], where it is shown that in this
case the differentials d2 : E1−t,t

2 → E3−t,t−1
2 are injective for t > 0 in the local setting. It

follows that E3 = E∞ has the following non-zero terms: E2,0
3 of dimension 14, and E1,1

3
of dimension 4. In particular, one has

dim F 2H2(U) = 9 < 14 = dimP 2H2(U).

4. The syzygies of nodal hypersurfaces

First we give a geometric interpretation of a syzygy Rm as in (1.2) in the case n = 2
using [2, § 2.1]. Let Ff be the Milnor fibre of f , which is the smooth affine surface
in C3 given by the equation f(x, y, z) = 1. Then there is a monodromy isomorphism
h : Ff → Ff given by multiplication by λ = exp(2πi/N) and an induced monodromy
operator h1 : H1(Ff ) → H1(Ff ). The eigenvalues of h1 are exactly the Nth roots of
unity, and for each k = 0, 1, . . . , N − 1 there is a rank 1 local system Lk on U such that

H∗(Ff )λk = H∗(U, Lk), (4.1)

where on the left-hand side we have the corresponding eigenspace and on the right-hand
side we have the twisted cohomology of U with coefficients in Lk (for details see [12,
Proposition 6.4.6]).

Let Lk be the Deligne extension of Lk over the nodal curve C such that the eigenvalues
of the residue of the connection are contained in the interval [0, 1). In our case, the line
bundle Lk is precisely OP2(−k) (see [2, Equation (2.1.2)]) and we have the following
relation with the Hodge filtration on H∗(Ff ):

Grp
F Hp+q(Ff )λk = Hq(P2, Ωp

P2(log C) ⊗ Lk). (4.2)

In particular, we get

Gr1F H1(Ff )λk = H0(P2, Ω1
P2(log C) ⊗ Lk). (4.3)
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Now, the curve C being nodal, it follows that H1(Ff )λk = 0 for k = 1, . . . , N − 1
(see [12, Corollary 6.4.14] for a stronger result).

Assume now that we have a non-zero syzygy Rm as in (1.2) with m < N −2. Consider
the non-zero 2-form ω ∈ Ω2

m+2 given by ω = a dy ∧ dz − b dx ∧ dz + c dx ∧ dy and note
that df ∧ ω = 0. The 1-form

α =
Δ(ω)

f
(4.4)

is an element of H0(P2, Ω1
P2(log C) ⊗ Lk), with k = N − 2 − m > 0. To see this, use

the formula for dα given in [11, Equation (1.10), p. 181]. Moreover, α �= 0, since the
kernel of Δ: Ω2 → Ω1 is the free S-module spanned by σ = Δ(dx ∧ dy ∧ dz) and
df ∧ σ = Nf dx ∧ dy ∧ dz �= 0. But this is in contradiction to H1(Ff )λk = 0 in view
of (4.3).

Next we describe all the syzygies Rm as in (1.2) with n = 2 and m = N − 2. This
is the same as describing H2(K∗(f))N , and we know from the previous section that
dim H2(K∗(f))N = r − 1 (see (3.3)), i.e. this is essentially to lift the basis ωj in (3.1) to
a basis of H2(K∗(f))N . Note that

ωj =
αj

NjNrf
,

where αj = Nrf1 · · · f̂j · · · fr dfj − Njf1 · · · f̂r dfr for j = 1, . . . , r − 1, with f̂j meaning
that the factor fj is missing. Define βj = −f1 · · · f̂j · · · f̂r dfj ∧ dfr and note that

Δ(βj) = −f1 · · · f̂j · · · f̂rΔ(dfj ∧ dfr) = αj .

For r = 2, β1 is a good lifting since df ∧ β1 = 0 and we are done. However, for r > 2, βj

is not a good lifting, since in general one has

df ∧ βj = −
∑

k �=j; k �=r

f2/(fkfjfr) dfk ∧ dfj ∧ dfr = fgj dx ∧ dy ∧ dz

for some gj ∈ SN−3 that is non-zero in general. (A formula for gj is given in Theorem 4.1
using the Jacobian determinant Jac(fk, fj , fr) of the three functions fk, fj , fr with
respect to x, y and z.)

To correct this problem, we look for a modification of the form

γj = βj + hjσ,

where hj ∈ SN−3 and σ = Δ(dx ∧ dy ∧ dz) as above. Now df ∧ γj = (fgj + Nfhj) dx ∧
dy ∧ dz = 0 if we choose hj = −gj/N . The resulting γj for j = 1, . . . , r − 1 yield a basis
of H2(K∗(f))N .

Hence, we have proved the following result.

Theorem 4.1. Let C : f = 0 be a nodal curve of degree N in P2. Then, for any q < N ,
H2(K∗(f))q = 0, and H2(K∗(f))N is (r − 1) dimensional with a basis given by

γj = −f1 · · · f̂j · · · f̂r dfj ∧ dfr + hjσ
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for j = 1, . . . , r − 1. Here r is the number of irreducible components of C, fj = 0 are
reduced equations for these components, σ = Δ(dx ∧ dy ∧ dz), h1 = 0 if r = 2, and

hj =

∑
k �=j; k �=r f/(fkfjfr) Jac(fk, fj , fr)

N

if r > 2.

For an arbitrary curve C having r irreducible components Cj : fj = 0, the above
elements γj yield r − 1 linearly independent elements in H2(K∗(f))N , which are killed
by d1. It may happen that dimH2(K∗(f))N > r − 1, as we have seen in Example 3.2.

The corresponding vanishing result in the general case of nodal hypersurfaces is con-
sidered in [17], but in this general case there is no description of an explicit basis of the
lowest-degree (possibly non-zero) syzygies as in Theorem 4.1. For an alternative proof of
the vanishing part (without using Hodge theory) in a more general curve setting, see [20].

Example 4.2. In this example we look at some curves having low-degree relations Rm,
as in (1.2).

(i) It is clear that a curve C : f = 0 admits a relation of degree m = 0 if and only if,
up to a linear coordinate change, we have that the equation f is independent of z.
In this case,

HP(M(f))(t) =
(1 − tN−1)2

(1 − t)3
.

Hence, ct(C) = N − 2 (this is the minimal possible value) and st(C) = 2N − 4.

(ii) The curve C : xpyq + zN = 0 for p + q = N admits an obvious relation of degree 1,
namely,

qxfx − pyfy = 0.

In this case, ct(C) = N − 1.

(iii) The curve C : zp(xq + yq) + xN + yN = 0 for p + q = N admits an obvious relation
of degree 2p, namely,

zp−1x(qzp + Nyp)fx + zp−1y(qzp + Nxp)fy − 1
p
(qzp + Nyp)(qzp + Nxp)fz = 0.

It is easy to see that this relation is not a consequence of the trivial relations Tij

in (4.5). On the other hand, a computation in the case N = 7, p = 4 shows that

HP(M(f))(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 25t6 + 27t7

+ 27t8 + 25t9 + 21t10 + 16t11 + 12t12 + 9t13 + 8t14 + · · ·

with stabilization threshold st(C) = 14. It follows that ct(C) = 10, which implies
via (1.3) that mdr(C) = 5, i.e. the above relation does not in general have minimal
degree. However, this is the case for p = N − 2, when the curve C has a node at
(0:0:1) and the corresponding relation has degree 2N − 4.

This is a very special case of Theorem 1.5 stated in § 1, which we now prove.
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Proof. Choose the coordinates on Pn such that H0 : x0 = 0 is transverse to D, i.e. the
intersection H0 ∩ D is smooth. It follows as in [6] that the partial derivatives f1, . . . , fn

of f form a regular system in S; in particular, they vanish at a finite set of points on Pn,
say p1, . . . , pr. Some of these points, say pj for j = 1, . . . , q, are the nodes on D, i.e. the
points in the set N . It follows that the divisors Dj : fj = 0 for j = 1, . . . , n intersect
transversely at any point pj ∈ N . To see this, one may work in the affine chart x0 = 1,
where x1, . . . , xn may be used as coordinates, and use the definition of nodes as the
singularities where the hessian of a (local) equation is non-zero.

Assume that we have a non-zero element in Hn(K∗(f))nN−n−1−k for some 0 � k � s,
with s = nN − 2n − 1. This is the same as having a relation

Rm : a0f0 + a1f1 + · · · + anfn = 0,

where the aj ∈ S are homogeneous of degree m = s − k and Rm is not a consequence of
the relations

Tij : fjfi − fifj = 0. (4.5)

Since pj is not a singularity for D for j > q, it follows that f0(pj) �= 0 in this range.
Hence, for j > q, the relation Rm implies that the germ of the function induced by a0

at pj (dividing by some homogeneous polynomial bj of degree m such that bj(pj) �= 0)
belongs to the ideal in Opj spanned by the local equations of the divisors D1, . . . , Dn.

We now apply the Cayley–Bacharach theorem as stated in [21, Theorem CB7].
Let Γ be the zero-dimensional subscheme of Pn defined by the partial derivatives

f1, . . . , fn. Let Γ ′ and Γ ′′ be the subschemes of Γ , residual to one another in Γ , and such
that the support of Γ ′ is the set N ′ = {pq+1, . . . , pr} and the support of Γ ′′ is the set N .
Intuitively, Γ ′ is the ‘restriction’ of the scheme Γ to N ′, and Γ ′′ is the ‘restriction’ of the
scheme Γ to N . In particular, the scheme Γ ′′ is reduced.

Note that the above discussion implies that the dimension of the family of hypersur-
faces a0 of degree m = s − k containing Γ ′ (modulo those containing all of Γ ) is exactly
the dimension of Hn(K∗(f))nN−n−1−k.

On the other hand, for s as above and 0 � k � s, the Cayley–Bacharach theorem
states that this dimension is equal to the defect def Sk(N ), thus proving the first claim
in Theorem 1.5.

Next we have

dim Hn(K∗(f))j = dimHn+1(K∗(f))j+N − dim Hn+1(K∗(fs))j+N

= dimM(f)j+N−n−1 − dim M(fs)j+N−n−1.

Moreover, j � n(N − 1) is equivalent to j + N − n − 1 > (n + 1)(N − 2), and hence
dim M(f)j+N−n−1 = τ(D) = |N | and dimM(fs)j+N−n−1 = 0, thus proving the second
claim in Theorem 1.5. �

Example 4.3. We use the notation from Theorem 1.5 and set T = (n + 1)(N − 2).

(i) If |N | = 1, then def Sk(N ) = 0 for k � 0, and therefore we have ct(D) = st(D) = T .

(ii) If |N | = 2, then def S0(N ) = 1 and def Sk(N ) = 0 for k � 1. It follows that
ct(D) + 1 = st(D) = T .
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(iii) If |N | = 3, and the three nodes are not collinear, then def S0(N ) = 2 and
def Sk(N ) = 0 for k � 1. It follows that ct(D) + 1 = st(D) = T unless n = 2,
when ct(D) = st(D) = T − 1.

For three collinear points, def S0(N ) = 2, def S1(N ) = 1 and def Sk(N ) = 0 for
k � 2. It follows that ct(D) + 2 = st(D) = T and dimM(f)T−1 = n + 2.

To have some explicit examples of these two distinct situations, consider the fol-
lowing two curves of degree N = 4:

C : f = (x3 + y3 + z3)x = 0

and

C ′ : f ′ = x2y2 + y2z2 + x2z2 − 2xyz(x + y + z) − (2xy + 3yz + 4xz)2 = 0.

The curve C then has three collinear nodes and the corresponding Hilbert–Poincaré
series is

HP(M(f))(t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 4t5 + 3t6 + · · ·

with st(C) = 6. In fact, the coefficients of tk for 0 � k � 2N −4 = 4 are determined
by Theorem 1.2 and the remaining terms are determined by Theorem 1.5.

In the same way, one may obtain

HP(M(f ′))(t) = 1 + 3t + 6t2 + 7t3 + 6t4 + 3t5 + · · ·

with st(C ′) = 5, using the fact that C ′ has three non-collinear nodes located at
(1:0:0), (0:1:0) and (0:0:1).

(iv) Here is one example of a sextic curve with six nodes. Consider the curve

C : f = x2(x + z)2(x − z)2 − y2(y − z)2(y2 + 2z2) = 0.

The curve C then has six nodes, three of them on the line y = 0 (namely, (0:0:1),
(1:0:1) and (−1:0:1)) and the other three on the line y − z = 0 (namely, (0:1:1),
(1:1:1) and (−1:1:1)). The corresponding Hilbert–Poincaré series is

HP(M(f))(t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 18t5 + 19t6

+ 18t7 + 15t8 + 10t9 + 7t10 + 6t11 + · · ·

with st(C) = 11. This result follows exactly by the same argument as above, using,
in addition, the equalities def S0(N ) = 5, def S1(N ) = 3, def S2(N ) = 1 and
def Sk(N ) = 0 for k � 3.

Remark 4.4. Let C : f = 0 be a degree N curve in P2 such that any singular point
of C that is not a node is a unibranch singularity, and let N denote the set of its nodes.
Then def Sk(N ) = 0 for k > N − 3 and def SN−3(N ) = r − 1, where r is the number of
irreducible components of C.
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This can be derived as follows. Let I ′ be the ideal of functions in S vanishing at the
points in N . It was then shown in [24, Proposition 3.6] that there is a minimal resolution

0 →
⊕
i=1,t

S(−bi) →
⊕

j=1,t+1

S(−aj) → S → S/I ′ → 0

such that 0 < aj < N for any j, 0 < bi � N for all i and

|{i : bi = N}| = r − 1.

In fact, [24, Proposition 3.6] is stated only for curves with nodes and ordinary cusps, but
the only point in the proof where one uses the ordinary cusps is to derive the equality (10),
which may also be obtained in our slightly more general setting from [11, Diagram 3.14,
p. 201].

The above resolution implies that the Hilbert–Poincaré series of S/I ′ is given by the
following equality:

HP(S/I ′)(t) =
1 −

∑
j taj +

∑
i tbi

(1 − t)3
.

Since N is a finite set of points, it follows that this series can be rewritten as

HP(S/I ′)(t) =
Q(t)
1 − t

,

where Q(t) is a polynomial in t of degree at most N − 2, the coefficient cN−2 of tN−2

being exactly r − 1. It follows that dim(S/I ′)k = |N | for k � N − 2 and that

dim(S/I ′)N−3 = |N | − cN−2 = |N | − r + 1,

which proves our claim since one has def Sk(N ) = |N | − dim(S/I ′)k for any k.
Alternatively, one may complete the proof using the formula for the defect or super-

abundance def Sk(N ) as the difference between the Hilbert polynomial and the Hilbert
function given just before the statement of Lemma 3.4 in [24].

Note that the other main results of our paper do not extend to this more general
setting. For instance, the curve C constructed in Example 4.2 (ii) for p = 2, q = 3, N = 5
has as singularities two unibranch singularities located at (1:0:0) and (0:1:0) and has a
relation of degree 1, i.e. H2(K∗(f))3 �= 0, and hence Theorem 4.1 and its consequence,
Theorem 1.2, fail in this case.

Moreover, Example 3.3 shows that the spectral sequences considered in § 2 in the
presence of even ordinary cusps may exhibit different behaviour than in the case of nodes.
Indeed, the differential d1 : E1,0

1 → E2,0
1 is trivial for a nodal curve and it is non-trivial

in Example 3.3.
The same example shows that Theorem 1.5 also fails in this more general setting, since

dim H2(K∗(f))4 = 1 and def S1(N ) = |N | − dim(S/I ′)1 = 0 − 0 = 0 since N = ∅.
The resolutions constructed in [16] for the Jacobian ideals of Chebyshev curves show

that there are no similar results to [24, Proposition 3.6] for such Jacobian ideals, not
even for nodal curves.
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Remark 4.5. For a nodal 3-fold D : f = 0 in P4 of degree N , the fact that D is
factorial (i.e. the quotient S/(f) is a unique factorization domain) can be expressed
as a vanishing property of a certain defect, namely, def S2N−5(N ) = 0 (see Cheltsov’s
paper [5, Remark 1.2]). It follows that [5, Theorem 1.4] can be restated as saying that
def S2N−5(N ) = 0 when |N | < (N − 1)2, which in turn may be restated in view of
Theorem 1.5 as saying that the corresponding space of syzygies R2N−4 is trivial in such
a case. On the other hand, [17, Theorem 2.1 (ii)] implies that Rm = 0 for m < 2N − 4
and for any nodal 3-fold D in P4 of degree N .

5. The spectral sequence in the case of a nodal surface

Let S : f = 0 be a nodal surface in P3 of degree N . Then S is a Q-homology manifold
satisfying b0(S) = b4(S) = 1, b1(S) = b3(S) = 0 and the middle Betti number b2(S) is
computable. For example, using the formula b2(S) = b2(Ss)−n(S), where Ss is a smooth
surface in P3 of degree N , the corresponding second Betti number is given by

b2(Ss) =
(N − 1)4 − 1

N
+ 2

and n(S) = τ(S) is the number of nodes, i.e. the cardinal of the set of nodes N of S.
It follows that the complement U has at most two non-zero cohomology groups. The
first of them, H0(U), is one dimensional and of Hodge type (0, 0), and so does not
interest us. The second one, H3(U), is dual to H3

c (U)(−3), and H3
c (U) is isomorphic to

coker(H2(P3) → H2(S)), the morphism being induced by the inclusion i : S → P3. It
follows that the mixed Hodge structure on H3(U) is pure of weight 4 with

h4,0(H3(U)) = h0,4(H3(U)) = 0,

h3,1(H3(U)) = h1,3(H3(U)) = h2,0(S) = h2,0(Ss) = pg(Ss),

where the geometric genus of Ss is given by

pg(Ss) =
(

N − 1
3

)

and
h2,2(H3(U)) = h1,1(S) − 1 = h1,1(Ss) − n(S) − 1.

In particular, we have P 1H3(U) = F 1H3(U) = H3(U), as in Remark 2.3.
We now look at the non-zero terms in the E1-term of the spectral sequence Ep,q

r (f).
They are sitting on two lines, given by L : p + q = 3 and L′ : p + q = 2.

We look first at the terms on the line L. The term E3,0
1 (f) = H4(K∗)N is isomorphic as

a C-vector space to M(f)N−4, and hence has dimension pg = pg(Ss). The corresponding
limit term E3,0

∞ (U) = P 3H2(U) therefore has dimension at most pg. On the other hand,
the above formulae for hp,q(H3(U)) imply that dimF 3H2(U) = pg. In this case we
conclude by Theorem 2.1 that F 3H3(U) = P 3H3(U).
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The term E2,1
1 (f) = H4(K∗)2N is isomorphic to M(f)2N−4. Theorem 1.5 and Grif-

fiths’s results for the smooth case in [23] imply that

dim M(f)2N−4 = M(fs)2N−4 + def S2N−4(N ) = h1,1(Ss) − 1 + def S2N−4(N ). (5.1)

The term E1,2
1 (f) = H4(K∗)3N is isomorphic to M(f)3N−4, and hence

dim M(f)3N−4 = M(fs)3N−4 + def SN−4(N ) = pg + def SN−4(N ). (5.2)

The term E3−q,q
1 (f) = H4(K∗)(q+1)N for q � 3 is isomorphic to M(f)(q+1)N−4,

which has dimension n(S). Moreover, the corresponding limit terms E3−q,q
∞ (U) =

Gr3−q
P (H2(U)) clearly vanish for q � 3.
We look now at the terms on the line L′. By Theorem 1.5, the term E2,0

1 (f) = H3(K∗)N

has dimension def S2N−4(N ). On the other hand, E2,0
∞ (f) = 0, which implies, in view of

the equality E3,0
∞ (f) = E3,0

1 (f) established above, that in fact def S2N−4(N ) = 0.
The dimension of the term E1,1

1 (f) = H3(K∗)2N is equal to def SN−4(N ), again by
Theorem 1.5. And, again, E1,1

∞ (f) = 0 implies, in view of the equality E3,0
∞ (f) = E3,0

1 (f)
established above, that the differential d1 : E1,1

1 (f) → E2,1
1 (f) is injective.

The dimension of the other terms E2−q,q
1 (f) = H3(K∗)(q+1)N for q � 2 is equal

to n(C), and the corresponding differentials d1 : E2−q,q
1 (f) → E3−q,q

1 (f) are injective
by Theorem 2.4 (ii).

In this way we have proved the following theorem.

Theorem 5.1. Let S : f = 0 be a nodal surface in P3 of degree N and let N denote
the set of its nodes. The following statements then hold.

(i) The E1-spectral sequences Ep,q
r (U), Ep,q

r (Ã) and Ep,q
r (f) degenerate at the

E2-term, i.e. E2 = E∞ for any of these E1-spectral sequences.

(ii) The subspace P 3H3(U) = F 3H3(U) of H3(U) has dimension

pg =
(

N − 1
3

)
.

(iii) We have that

dim Gr2P (H3(U)) = h1,1(Ss) − 1 − def SN−4(N )

and
dim Gr2F (H3(U)) = h1,1(Ss) − 1 − n(S).

In particular, P 2H3(U) = F 2H3(U) if and only if the nodal surface S is smooth
or N < 4.

(iv) def S2N−4(N ) = 0.
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Remark 5.2.

(i) Let I be the homogeneous ideal in S of polynomials vanishing on the set of nodes N .
The above formulae imply that

dim Gr2F (H3(U)) = dim(I/Jf )2N−4,

which is a special case of [18, Theorem 2.2].

(ii) The ideal I defined in (i) also occurs in the following formula, which is again a
consequence of Theorem 5.1:

dim P 2H3(U) − dim F 2H3(U) = dim(S/I)N−4.

When the number of nodes is large, this difference can also be very large. For
instance, if S is a Chebyshev surface in P3 whose affine equation is

TN (x) + TN (y) + TN (z) + 1 = 0,

where TN (t) is the degree N Chebyshev polynomial in C[t], then IN−4 = 0 (see [17,
Proposition 3.1]). It follows in this case that

dim P 2H3(U) − dim F 2H3(U) = dimSN−4 =
(

N − 1
3

)
.
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