
J. Fluid Mech. (2025), vol. 1019, A58, doi:10.1017/jfm.2025.10636

Turbulent dam-break waves of Newtonian and
non-Newtonian fluids

Andrea Del Gaudio
1

, George Constantinescu
2

, Francesco De Paola
1
,

Cristiana Di Cristo
1

and Andrea Vacca
1

1Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli ‘Federico II’, Naples 80125,
Italy
2Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering,
University of Iowa, IA 52240, USA
Corresponding author: George Constantinescu, sconstan@engineering.uiowa.edu

(Received 27 February 2025; revised 16 June 2025; accepted 26 August 2025)

The paper uses three-dimensional large eddy simulation (LES) to investigate the structure
and propagation of dam break waves of non-Newtonian fluids described by a power-
law rheology. Simulations are also conducted for the limiting case of a dam-break wave
of Newtonian fluid (water). Turbulent dam-break waves are found to have a two-layer
structure and to generate velocity streaks beneath the region in which the flow is strongly
turbulent and lobes at the front. The bottom part of the wave resembles a boundary layer
and contains a log-law sublayer, while the streamwise velocity is close to constant inside
the top layer. The value of the von Kármán constant is found to reach the standard value
(i.e. κ ≈ 0.4) associated with turbulent boundary layers of Newtonian fluids only inside
the strongly turbulent region near the front of Newtonian dam-break waves. Much higher
values of the slope of the log law are predicted for non-Newtonian dam-break waves (i.e.
κ ≈ 0.28) and in the regions of weak turbulence of Newtonian waves. LES shows that
a power-law relationship can well describe the temporal evolution of the front position
during the acceleration and deceleration phases, and that increasing the shear-thinning
behaviour of the fluid increases the speed of the front. The numerical experiments are then
used to investigate the predictive abilities of shallow water equation (SWE) models. The
paper also proposes a novel one-dimensional (1-D) SWE model which accounts for the
bottom friction by employing a friction coefficient regression valid for power-law fluids
in the turbulent regime. An analytical approximate solution is provided by splitting the
current into an outer region, where the flow is considered inviscid and friction is neglected,
and an inner turbulent flow region, close to the wave front. The SWE numerical and
analytical solutions using a turbulent friction factor are found to be in better agreement
with LES compared with the agreement shown by an SWE numerical model using a
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laminar friction coefficient. The paper shows that inclusion of turbulence effects in SWE
models used to predict high-Reynolds-number Newtonian and non-Newtonian dam break
flows results is more accurate predictions.

Key words: geophysical and geological flows, shallow water flows

1. Introduction
The slumping of a liquid (e.g. water) column into an ambient fluid (e.g. air) producing
a wave flowing over a solid surface has been widely studied in the literature. When the
ambient fluid is weightless and inviscid, the resulting flow is the well-known dam-break
problem, which can be schematised by the instantaneous opening of a gate delimiting
a reservoir containing the liquid. This configuration is useful to analyse the dynamics
of many unsteady, gravity-driven flows encountered in various geophysical phenomena
(Delannay et al. 2017). For example, the water wave may be caused by the collapse
of a dam or of a levee, or by a tsunami. Moreover, dam-break-like waves occur in the
presence of mud flows (Takahashi et al. 2014) and in the minerals industry, where tailings
are transported from the mine to the disposal facilities (Haldenwang et al. 2006). The
prediction of relevant hydraulic quantities associated with flood hazards and mud flows is
very important for risk analysis.

Numerous experimental studies investigated the propagation of water dam-break waves
over a fixed bottom. The main goal of these studies was to describe the wave dynamics
in terms of the macro-scale properties of the flow, e.g. water level evolution and water
wave propagation. A comprehensive review of these investigations is given by Aureli
et al. (2023). Only a limited number of investigations tried to describe the turbulence
characteristics close to the bottom wall. Fraccarollo & Toro (1995) performed point
velocity measurements at some locations using a current meter, providing time series
data of point velocity. Aleixo, Soares-Frazão & Zech (2011) measured the mean (two-
dimensional; 2-D) velocity profiles in a dam-break flow, while Aleixo et al. (2014)
measured the vertical distributions of the Reynolds stresses using particle tracking
velocimetry. Owing to the limitations of the experimental technique, the mean velocity and
Reynolds stress profiles were not resolved close to the solid bottom. LaRocque, Imran &
Chaudhry (2013a) used an ultrasonic Doppler velocity profiler to measure the vertical
distribution of the mean velocity at four different locations upstream of the removed gate.
However, the vertical velocity profiles could not be measured on the downstream side due
to the shallow depth of the wave flow. More recently, Wüthrich et al. (2018) performed
laboratory measurements of a dam-break flow using an ultrasound profiler. They were
able to measure velocity profiles behind the wavefront, which were found to be in good
agreement with Prandtl’s power law for open channel flows.

Numerically, clear-water dam-break flows have been mostly simulated using depth-
averaged, 2-D models which solve the 2-D shallow water equations (SWEs) in discrete
form (e.g. Fernández-Nieto, et al. 2010; Castro-Orgaz & Hager 2019; Bates 2022 Muchiri
et al. 2024). Moreover, approximate analytical solutions have been proposed (e.g. Hogg &
Pritchard 2004; Chanson 2009; Deng, Liu & Lu 2018). More recently, fully non-
hydrostatic Navier–Stokes solvers were used to simulate dam-break flows. This approach
leads to a more accurate description of the flow features compared with SWE-based
models, especially when the vertical flow accelerations cannot be neglected, i.e. the
pressure distribution is strongly nonhydrostatic. Both large eddy simulation (LES) and
Reynolds-averaged Navier–Stokes (RANS) equations models have been used to predict
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the temporal evolution of Newtonian dam-break flows (e.g. LaRoque et al. 2013b; Horna-
Munoz & Constantinescu 2018, 2020; Maranzoni & Tomirotti 2023; Simsek & Islek
2023). Most of the Navier–Stokes simulations of dam-break flows were performed using
an Eulerian framework in conjunction with the volume of fluid (VOF) method to capture
the evolution of the water–air interface. The simulations were generally found to reproduce
fairly well the experimental results in terms of the macro-scale properties of the dam-
break flow for both dry- and wet-bed conditions (e.g. Horna-Munoz & Constantinescu
2020; Simsek & Islek 2023). Unfortunately, a detailed characterisation of the mean and
turbulence quantities close to the solid wall has not been provided even in these studies.

Although mud is a mixture of solid and liquid phases, it has been frequently schematised
as single-phase medium with non-Newtonian behaviour. In this framework, several
rheological models have been used, based on the power law (e.g. Ng & Mei 1994) and on
the Herschel–Burkley (e.g. Huang & Garcia, 1984) and Bingham (e.g. Liu & Mei 1989)
rheological laws.

The present study is focused on a specific kind of mud, i.e. a clay–water mixture, whose
rheology is commonly described through a shear-thinning power-law model. This type
of mixture is frequently encountered in several natural settings. For example, Carotenuto
et al. (2015) reported that the landslide in Cervinara (Italy) was a mixture of water and
particles with diameters of the order of 10 μm. Zhang, Bai & Ng (2010), while discussing
the natural estuarine muds dredged from Haihe River in Tianjin, concluded that 80 % of the
particles had diameters smaller than 10 μm. Moreover, similar mixtures, i.e. slurries, are
commonly found in mine wastes (Borger, 2013). When small-sized fine particles (typically
with diameters less than 100 μm) are present, the mixture can exhibit pronounced non-
Newtonian characteristics even at relatively low concentrations (Pierson 2005).

Dam-break waves of mud mixtures have been the object of several laboratory
investigations, as reviewed recently by Aureli et al. (2023). For several mixtures with
different rheology, the free surface, the wave front propagation and the wave front profiles
have been recorded using video cameras. Due to the dimensions of the laboratory device
in which the dam break was investigated and to the rheological characteristics of the
employed mixtures, the dam-break flow was laminar in most of these experimental studies.
Several analytical (e.g. Hogg & Pritchard 2004) and SWE numerical (e.g. Balmforth
et al. 2007) studies investigated the characteristics of a mud dam-break wave. All these
researchers assumed laminar flow conditions inside the wave and the validity of the long-
wave approximation. The comparison with experimental results has shown that an SWE
model, independently of the wave fluid rheology, is able to reproduce fairly well the macro-
scale properties of the laminar dam-break wave of mud flow. More accurate numerical
results were obtained by removing the hydrostatic pressure distribution assumption (e.g.
see Shao & Lo 2003; Minussi & de Freitas Maciel, 2012; Liu et al. 2016; Schaer et al.
2018; Valette et al. 2021).

At field conditions, most mud flows are turbulent or weakly turbulent (Blight 1997;
Pirulli et al. 2017). For this reason, understanding the hydrodynamic behaviour of mud
dam-break flows generated in applications of engineering interest requires quantifying
turbulence effects.

The motion of non-Newtonian fluids in turbulent uniform flow conditions has been
the object of several investigations conducted in open channels, closed channels and
pressurised conduits. For steady, turbulent flow conditions, experiments (Dodge and
Metzer, 1959) have demonstrated that a unique correlation exists between the friction
factor and the generalised Reynolds number for both polymeric solutions and solid
(clay)–liquid suspensions. A similar conclusion was reached by Benslimane et al. (2016)
who conducted experiments with a mixture of bentonite and water with concentrations
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as high as 5 % (n = 0.68). Subsequently, Burger (2014) and Burger, Haldenwang &
Alderman (2015) performed an extensive experimental investigation that considered open
channels with different shapes and different clay water concentration to change the non-
Newtonian rheology of the slurry. Using the acquired data sets, a generalised friction
coefficient–Reynolds number correlation was proposed. Mitishita et al. (2021) carried
out an experimental study of fully turbulent flow of a yield stress fluid in a rectangular
duct. The experiments were performed at different Reynolds numbers and the turbulence
statistics and power spectral densities of the velocity fluctuations were analysed. LES (e.g.
Gnambode et al. 2015) and direct numerical simulations (DNS) at low Reynolds numbers
(e.g. Karahan, Ranjan & Aidun 2023) have been used to obtain a detailed description of the
wall-normal distributions of the mean velocity and of several turbulent quantities for fully
developed (steady-mean) flow of non-Newtonian fluids. Fully developed, steady turbulent
flows of slurries modelled as homogeneous single-phase fluids with non-Newtonian
rheology have been investigated using RANS (Bartosik 2010), LES (Basso, Franco & Pitz
2022) and DNS (Singh et al. 2016).

To the best knowledge of the authors, the only numerical investigation that analysed the
propagation of a turbulent dam-break wave of a power-law fluid is the recent study of Del
Gaudio et al. (2024). The study focused on the physics of the impact of a dam-break wave
containing a mixture of fine clay and water with a relatively low volume concentration
of clay (i.e. Cv < 10 %) against a vertical rigid wall. The 3-D LES simulations were
conducted using the dynamic Smagorinsky model. The VOF technique (Hirt & Nichols
1981) was used to capture the interface between the wave fluid and the surrounding air.
The geometrical set-up was identical to that used in a series of experiments conducted
with water, which were also used to validate the numerical model for Newtonian dam-
break flows. Given the relatively short distance between the gate and the downstream wall,
the simulations allowed studying only the first stages of the wave propagation in which
turbulence effects were relatively small. Strong turbulence was generated once the wave
started interacting with the vertical wall, which showed the advantages of using 3-D LES
to investigate the physics of these flows. However, the physics and evolution of a turbulent
dam-break wave of non-Newtonian fluid past its initial stages have not been investigated
yet based on eddy-resolving simulations. Two other important research questions are:
(i) to what extent can one-dimensional (1-D) shallow water models reproduce the main
behaviour (e.g. front velocity, shape of the interface) of such dam-break waves of power
law fluid in turbulent conditions?; and (ii) what features should the 1-D SWE model
include to be able to accurately predict such flow characteristics from an engineering point
of view?

Using the numerical approach proposed by Del Gaudio et al. (2024), the present
paper aims to provide an in-depth analysis of turbulent dam-break waves of power-
law fluids propagating in a long, wide and horizontal channel. Given that in practical
applications such dam-break waves (e.g. mudflow waves) develop in very wide domains,
the present simulations are conducted with no lateral walls. Rather the flow is assumed to
be homogeneous in the spanwise direction, which also allows for calculating turbulence
statistics (e.g. turbulent velocity fluctuations) at a given time instant. This set-up can be
considered as a canonical configuration for this type of flow. This is the first time that 3-D
LES is used to characterise the evolution and structure of turbulent Newtonian dam-break
waves in this canonical set-up.

The paper discusses the effects of the rheological parameters (i.e. consistency index and
power-law index) of the non-Newtonian power-law fluid on the macro-scale properties
of the wave propagation (e.g. front velocity and the power-law regimes describing the
temporal evolution of the front, the bed shear stress distributions) on the wave structure,

1019 A58-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10636


Journal of Fluid Mechanics

Case k((Pa s)n) n(−) ρ (kg m−3) μ0 (Pa s) h0(m) Re(−) Re′
c (–)

0 0.0009 1 1000 0.0009 0.2 3 10 000 2100
1 0.09 0.90 1064 0.0730 0.2 4023 2147
2 0.09 0.60 1064 0.0410 0.2 7210 2360
3 0.09 0.30 1064 0.0230 0.2 12 900 2790
4 0.09 0.10 1064 0.0160 0.2 19 104 3500
5 0.009 0.60 1064 0.0041 0.2 72 100 2360
6 0.0009 0.60 1064 0.0004 0.2 721 000 2360

Table 1. Main parameters of the test cases.

and on the vertical profiles of the mean streamwise velocity and Reynolds stresses inside
the wave. The limiting case of a water dam-break flow is also considered to better highlight
the differences between dam-break waves of Newtonian and non-Newtonian fluids. The
LES data sets are also used to investigate the predictive abilities of 1-D SWE models which
are extensively used for practical applications involving mudflows. In particular, a new 1-D
SWE model is proposed based on the laminar model of Hogg & Pritchard (2004) in which
the shape factor and the bottom stress assume turbulent conditions inside the power-law
fluid. More specifically, the shape factor is assumed to be equal to one and the bottom
stress is estimated using the empirical correlation of Dodge & Metzner (1959). Moreover,
in the SWE framework, an approximate analytical solution of the dam-break problem is
found by splitting the wave into an outer region, in which friction can be neglected, and
an inner turbulent region, close to the front of the wave, where bed friction effects are
important (Whitham 1955).

The 3-D LES model and the 1-D SWE models are described in § 2. The same
section includes results of a grid dependency study conducted for LES and describes
the geometrical and flow parameters of the Newtonian and non-Newtonian test cases.
Section 3 discusses the flow and the turbulence structure inside the dam-break wave for
both Newtonian and non-Newtonian fluids. Section 4 focuses on the temporal evolution
of the front position and the associated wave propagation regimes based on numerical
experiments conducted using 3-D LES. The same section uses the LES results to evaluate
the predictive capabilities of SWE models in terms of their ability to correctly predict
the front evolution, interface position and shape, and the bed shear stress and friction
coefficient distributions. Finally, § 5 presents some final discussion and conclusions.

2. Test cases and numerical models

2.1. Test cases
The six test cases (table 1) discussed in the present study reproduce dam-break waves of
non-Newtonian fluids with a high volume of release. The non-Newtonian fluids considered
in the simulations are characterised by a power-law rheology with a consistency index, k,
and power exponent, n. An additional test, Case 0, was conducted with a Newtonian fluid
(water). In the following, k for Case 0 is equal to the water dynamic molecular viscosity.

The computation domain in the simulations is L = 110h0 long, B = 1.5h0 wide and
H = 1.5h0 high, where h0 is the initial height of the lock region containing the wave
fluid. The lock gate is situated at x/h0 = 0 (figure 1). The length of the region containing
the lock fluid at the start of the simulations is 60h0, with the floodable area extending
to the right of the lock gate over a length of 50h0. This configuration allowed for the
discharge to be maintained close to constant at the lock gate during the simulations.
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Periodic Pressure outlet, P = 0 Pa

Solid wall, no-slip
Periodic Lock fluid h0

x/h0 = 60 x/h0 = 50

y/h0 = 1.5

z/h0 = 1.5

y

x

z

Figure 1. Sketch of the computational domain and its dimensions. View of the channel showing the initial
location and depth, h0, of the wave fluid and the boundary conditions.

The spanwise width of the channel was sufficiently large for the width-averaged solution to
be independent of the domain width and to capture the formation of a fairly large number
of near-wall streaks.

As summarised in table 1, in the clear water case (Case 0), the density and dynamic
molecular viscosity were ρ = 1000 kg m−3 and k = 0.0009 Pa s, respectively. The non-
Newtonian power-law fluids in the other six cases had a density ρ = 1064 kg m−3. Cases
1–4 considered power-law fluids characterised by four different rheological index values
(n = 0.1, 0.3, 0.6, 0.9) and the same consistency index that was 100 times higher with
respect to the water dynamic molecular viscosity (Case 0). Comparison of Cases 1, 2, 3
and 4 allows for studying the effect of varying the power-law index on the structure and
propagation of the dam-break wave. Cases 5 and 6 have the same n value as for Case 2,
but the k value is 10 and 100 times lower for Case 5 and Case 6, respectively, compared
with Case 2. Comparison of Cases 2, 5 and 6 enables understanding the effect of varying
the consistency index.

Results are presented in dimensionless form, considering the following length, time and
velocity reference scales: h0, t0 = √

h0/g and U0 = √
gh0, respectively, where g is the

gravitational acceleration.
The reference Reynolds number is defined as

Re = ρU0h0

μ0
= ρU 2−n

0 hn
0

k
, (2.1)

where μ0 = k(U0/h0)
n−1 denotes the reference dynamic molecular viscosity for power-

law fluids. In the clear water case, μ0 denotes the (water) dynamic viscosity. For
uniform conditions in a wide channel, i.e. two-dimensional steady parallel flow conditions,
a Reynolds number Re′ = (ρVu D)/(μ0) can be defined with the hydraulics diameter
D = 4hu , where hu is the uniform flow depth and Vu is the corresponding depth-averaged
streamwise velocity. The critical Reynolds number value for which the flow remains
laminar is (Mishra & Tripathi 1971)

Re′
c = 2100

(4n + 2) (5n + 3)

3 (3n + 1)2 . (2.2)

Although (2.2) is strictly valid for uniform flow conditions, the Re′
c value is assumed to

be fairly representative of critical conditions even for unsteady (e.g. dam break) flows. The
values of Re and Re′

c for each case are also included in table 1.

2.2. LES solver, grid dependency study and model validation
The numerical model is the one described by Del Gaudio et al. (2024) who performed
similar LES of dam-break waves in more complex geometries. The governing equations
are the (filtered) Navier–Stokes equations and the advection equation for the volume
fraction of wave fluid, which is used to track the interface between the wave fluid and
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the surrounding air in the VOF–LES simulations. To maintain a sharp interface, a high-
resolution interface capturing scheme is employed (HRIC). The filtered continuity and
momentum equations are

∂uj

∂xj
= 0, (2.3)

ρ
∂ui

∂t
+ ρ

∂ui uj

∂xj
= − ∂p

∂xi
+ ∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
− gδi,3 − ∂σij

∂xj
, (2.4)

where p and ui represent the dimensional filtered pressure and Cartesian velocity
component in the i direction, respectively. In (2.4), δi,k denotes the Kronecker delta
function, and x1, x2, x3 correspond to the x , y and z variables, respectively. Assuming
a power law as the constitutive relation, the dynamic molecular viscosity is

μ = k
(
SijSij

) n−1
2 , (2.5)

where Sij is the filtered velocity deformation (rate of strain) tensor:

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.6)

The molecular viscosity tends to infinity near the free surface for a power-law fluid.
Following Gnambonde et al. (2015), we limited the Frobenius norm of the velocity
deformation tensor to bound the molecular viscosity. A cut off value of 10−4 was used.
The subgrid stress tensor, σij, is calculated using the dynamic Smagorinsky model (Rodi,
Constantinescu & Stoesser 2013; Gnambode et al. 2015). Its expression is σ ij = −2νt Sij =
−2CdΔ

2|S|Sij, where νt is the turbulent subgrid scale (eddy) viscosity, Δ is the local grid
spacing, |S| is the magnitude of Sij and Cd is the model parameter that is dynamically
calculated using information available from the smallest resolved scales (Rodi et al. 2013).

The VOF free surface tracking technique was successfully applied to simulate dam-
break and flood-wave flows (e.g. see Horna-Munoz & Constantinescu 2018, 2020). A pure-
advection equation is solved for the volume fraction of water (η): (∂η/∂t) + uj (∂η/∂xj ) =
0. In cells containing only water, η = 1. In cells containing only air, η = 0. A value of 0.5
was chosen for η to visualise the interface and determine the front position in LES.

The SIMPLE (semi-implicit method for pressure linked equations) algorithm is used
to integrate the discretised Navier–Stokes equations that are advanced in time using a
semi-implicit, iterative method. The third-order MUSCL scheme is used to discretise
the advective terms, the second-order central-differences scheme is used to discretise the
diffusive and pressure gradients terms, and a second-order accurate scheme is used to
discretise the time derivatives in the governing equations. A pressure outlet boundary
condition with a zero volume fraction of the liquid phase and a pressure of 0 Pa is specified
at the top boundary. No-slip conditions (i.e. zero velocity) are imposed at the bottom
boundary (horizontal channel bed) and at the left boundary. The flow is assumed to be
periodic in the spanwise (y) direction. The initial velocity field is set to zero and the lock
gate is removed instantaneously at t = 0. The time step is the same for all simulations and
it corresponds to a Courant number close to 0.2 away from the channel bed.

A finer mesh was used in regions situated close to the channel bottom, such that the
attached boundary layers and the velocity gradients were well resolved. The Cartesian-
like, unstructured mesh was refined near this boundary using 15 prism layers. This allowed
for placing the first point off the surface of the channel bottom at approximately three
wall units for the highest Reynolds number simulation. No wall functions were used.
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25
Fine mesh

Very fine mesh Fine mesh

Coarse mesh

Very fine mesh

20
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10 100 102 104

5

5

20
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0
0

x f/
h 0

z+t/t0

U +

(a) (b)

Figure 2. Grid dependency study for Case 5. (a) Non-dimensional temporal variation of the front position;
(b) non-dimensional streamwise velocity profile at section x/h0 = 12.5 when the front is situated at x f /h0 =
25. The very fine mesh contains 25 million cells, the fine mesh contains 18 million cells and the coarse mesh
contains 9 million cells.

The spanwise and streamwise sizes of a typical computational cell were of the order
of 20–30 wall units. Two hundred grid points were used to discretise the domain along
the spanwise direction. The total number of grid cells was close to 18 million for all the
simulations.

A grid sensitivity analysis was conducted. As an example, results for Case 5 are
discussed. Figure 2 shows the temporal evolution of the dimensionless front position,
x f /h0, and the profile of the spanwise averaged velocity at x/h0 = 12.5 and x f /h0 =
25 in wall coordinates (U+ = U/uτ and z+ = zuτ /νw, where U(x, z) is the dimensional
spanwise averaged velocity profile, uτ (x) is the local bed friction velocity and νw(x) is
the kinematic molecular viscosity at the channel bed). The temporal evolution of the front
position (figure 2a) is close to identical in the simulations conducted with grids containing
18 million cells and 25 million cells. Significant differences are observed between the
velocity profiles in figure 2(b) corresponding to the simulation performed using a coarse
mesh containing close to 9 million cells and the two other simulations conducted on
meshes containing more than 18 million cells. The velocity profiles inside the dam-break
wave and the front velocity in the two finer-mesh simulations are very close. So, one
can conclude that simulations performed using meshes with at least 18 million cells are
grid independent. The slope of the logarithmic region in the two finer-mesh simulations is
larger than the one expected for a Newtonian fluid (e.g. water). This behaviour is consistent
with previous findings by Gnambonde et al. (2015) for non-Newtonian shear-thinning
fluids.

The solver (STARCCM+) was extensively validated for turbulent flows involving
Newtonian fluids (water). In particular, the solver was shown to accurately predict
unsteady free surface flows in RANS-VOF simulations with a deformable free surface
(e.g. Horna-Munoz & Constantinescu 2018, 2020). Del Gaudio et al. (2024) compared
free surface deformation and wall pressures from 3-D LES of a water dam-break wave
impacting a vertical wall with laboratory experimental data. Very good agreement between
experimental data and LES predictions was observed for these variables. In the same study,
the non-Newtonian fluid rheology solver was validated using data from the dam-break
experiments conducted by Minussi & Maciel (2012). In terms of non-dimensional wall
units, the level of mesh refinement in the present simulations is similar to that used by
Del Gaudio et al. (2024) in their dam-break simulations conducted with Newtonian and
non-Newtonian fluids.
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2.3. Shallow water models

2.3.1. Governing equations
Considering a homogeneous layer of fluid flowing over a horizontal bed, without lateral
inflow or outflow, assuming that spatial variations occur over scales larger than the
flow depth, and that flow resistance due to the sidewalls and surface tension effects are
negligible, the dimensional depth-averaged momentum and mass conservation equations
are (Hogg & Pritchard 2004)

∂V

∂t
+ β

∂hV 2

∂x
+ gh

∂h

∂x
+ τb

ρ
= 0, (2.9)

∂h

∂t
+ ∂(V h)

∂x
= 0, (2.10)

where h is the flow depth, V is the depth-averaged velocity, β is the shape factor and
τb is the bottom shear stress. Independently of the fluid rheology and flow conditions,
i.e. laminar or turbulent, β and τb are evaluated assuming that the shape of vertical
velocity profile corresponds to uniform conditions. For a power-law fluid and laminar flow
conditions, the expressions for the shape factor and the bottom shear stress are (Ng & Mei
1994)

β = 2
2n + 1
3n + 2

τb = k

(
2n + 1

n

V

h

)n

. (2.11)

For clear water and turbulent flow conditions, a unitary value of the shape factor is
assumed, and the bottom shear stress is expressed as

τb = ρCf V 2, (2.12)

where Cf is the friction coefficient. For turbulent flow of a Newtonian fluid over a rough
boundary and at high Reynolds number, a constant value is generally assumed for the
friction coefficient (Hogg & Pritchard 2004). By contrast, for turbulent flow over a smooth
bottom, Cf may be evaluated using the empirical Blasius formula (Blasius, 1913). In the
case of a wide-open domain, i.e. assuming the hydraulic diameter is equal to four times
the flow depth, it reads

Cf = 0.316
8

[
μ0

4ρV h

]1/4

. (2.13)

Similarly to the clear water case, to deal with power-law fluids in turbulent flow
conditions, we assume a unitary value of the shape factor. Moreover, the bottom shear
stress is evaluated using (2.12) with the friction coefficient given by the correlation of
Dodge & Metzner (1959) modified for wide open channels:

Cf = an

2

⎡
⎢⎣ k

ρ

(
6 + 2

n

)n

22n+3V 2−nhn

⎤
⎥⎦

bn

(2.14)

with

an = 0.0665 + 0.01175n, bn = 0.365 − 0.177n + 0.062n2. (2.15)

2.3.2. Numerical solutions of the SWE
The SWE solution of the dam-break problem has been found by solving the nonlinear
hyperbolic system of (2.9)–(2.10), assuming either laminar or turbulent flow conditions
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LES Large eddy simulation
SM-LN Shallow model, laminar numerical
SM-TN Shallow model, turbulent numerical
SM-TA Shallow model, turbulent analytical
HM-LA Hogg et al. 2004 model, laminar analytical

Table 2. Acronyms of the different numerical and theoretical models.

inside the dam-break wave. A second-order (in space and in time) finite-volume scheme
was employed. The numerical fluxes were evaluated using the Harten–Lax–Van Leer
(HLL) scheme (Harten, Lax & van Leer 1983). To guarantee the second-order spatial
accuracy of the scheme, the values of the conserved variables at the two sides of the
interface were estimated using a piecewise linear reconstruction scheme with a nonlinear
min-mod limiter (LeVeque, 2011). Time integration was performed using the second-
order, two-step Runge–Kutta scheme (Gottlieb & Shu 1998). At the outlet, a nonlinear
non-reflecting characteristic boundary condition was prescribed (Nycander, Hogg &
Frankcombe 2008). Additional details about the numerical scheme can be found from
Campomaggiore et al. (2016). In what follows, the numerical results of the SWE model
corresponding to laminar and turbulent flow conditions inside the wave are denoted
SM-LN and SM-TN, respectively (table 2).

2.3.3. Novel analytical solution for a turbulent dam-break wave of a power-law fluid
The theoretical modelling of dam-break flows in canonical configurations (e.g. wide
horizontal channel, 2-D flow) based on analytically integrating the SWE equations
(2.9)–(2.10) with some additional assumptions has been the object of several studies.
The first approximate analytical solution, derived by Ritter (1982), neglects the bottom
resistance and assumes β = 1. Approximate analytical solutions for turbulent clear-water
dam-break waves have been proposed (e.g. Hogg & Pritchard 2004; Chanson 2009).
Moreover, an analytical solution for a laminar dam break wave of a power-law fluid
was derived by Hogg & Pritchard (2004). In the next sections, the analytical solution
by Hogg & Pritchard (2004) for a dam-break wave of a laminar power-law fluid will be
identified with the label HM-LA.

In the present section, an approximate analytical solution for an instantaneous-release
dam-break wave of turbulent power-law fluid propagating in a horizontal, wide channel
is deduced. The new solution is based on the conceptual model of Whitham (1955) and
can be thought as the generalisation for turbulent power-law fluids of Chanson’s (2009)
solution valid for a turbulent dam-break wave of clear water. To this aim, considering the
reference length, time and velocity scales previously indicated (i.e. h0, t0 = √

h0/g and
U0 = √

gh0), the following dimensionless quantities are defined:

x̃ = x

h0
; t̃ = t

t0
; h̃ = h

h0
; Ṽ = V

U0
. (2.16)

The SWE model for a turbulent power-law fluid, consisting of (2.9) (assuming β = 1),
(2.10), (2.12), (2.14) and (2.15) is rewritten in dimensionless form as follows:

∂ Ṽ

∂ t̃
+ Ṽ

∂ Ṽ

∂ x̃
+ ∂ h̃

∂ x̃
+ C̃f

Ṽ λ

h̃φ
= 0, (2.17)

∂ h̃

∂ t̃
+ Ṽ

∂ h̃

∂ x̃
+ h̃

∂ Ṽ

∂ x̃
= 0, (2.18)
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in which

C̃f = an

2

⎡
⎢⎣ k

ρ

(
6 + 2

n

)n

22n+3U 2−n
0 hn

0

⎤
⎥⎦

bn

; λ= bn (n − 2) + 2; φ = nbn + 1, (2.19)

and the expressions of the coefficients an and bn are given by (2.15).
Following Whitham (1955), the turbulent dam-break wave of a power-law fluid is

analysed by splitting the solution domain into an outer region, −∞ < x̃ ≤ x̃1, in which
the friction is neglected (inviscid fluid), and an inner region, close to the wave front,
x̃1 < x̃ ≤ x̃s, where the effects of bottom friction are important. The streamwise lengths
x̃1and x̃s denote the dimensionless position of the inviscid–turbulent interface and the
wave front position, respectively. Both quantities are unknown and vary with time.

In the outer region, where bottom friction is neglected (inviscid fluid), the solution of
(2.17) and (2.18) is the well-known Ritter’s solution (Ritter 1892):

h̃ I = 1
9

(
2 − x̃

t̃

)2

−∞ < x̃ ≤ x̃1, (2.20a)

ṼI = 2
3

(
1 + x̃

t̃

)
, (2.20b)

with the wave front travelling with a dimensionless celerity Ũ f,I equal to two. The
subscript ‘I’ denotes the inviscid region. Considering that the velocity does not spatially
vary inside the inner region, its value can be assumed to be equal to the (unknown)
wave front velocity Ũf (Chanson 2009). Therefore, assuming that the acceleration and
the inertial terms are negligible with respect to the flow resistance inside the inner region,
(2.17) reduces to the diffusive equation:

∂ h̃D

∂ x̃
+ C̃f

Ũλf

h̃φ
D

= 0, x̃1 ≤ x̃ ≤ x̃s . (2.21)

Integrating (2.21) between x̃1 and x̃s , and imposing the boundary condition h̃D(x̃s) = 0,

leads to the following inner region approximate solution:

h̃D =
[
C̃f (φ + 1) Ũλf

] 1
1+φ

(x̃s − x̃)
1

1+φ x̃1 ≤ x̃ ≤ x̃s (2.22a)

assuming

ṼD = Ũf . (2.22b)

The subscript ‘D’ is used for variables inside the turbulent region that are calculated by
solving the diffusive (2.21). Imposing that the inner and outer domain solutions coincide at
the interface between the two regions (h̃ I (x̃1) = h̃D(x̃1) and ṼI (x̃1) = ṼD(x̃1) = Ũf ) leads
to the following expressions for x̃1 and x̃s :

x̃1 = 1
2

(
3Ũf − 2

)
t̃, (2.23a)

x̃s = 1

2C̃f (φ + 1)

[
Ũ−λ

f 2−2φ−1(2 − Ũf
)2φ+2 + C̃f

(
φ + 1

)(
3Ũf − 2

)
t̃
]
. (2.23b)

Equations (2.23a) and (2.23b) allow for calculating x̃1(t) and x̃s(t), provided that the
wave front velocity Ũf is known. The latter is evaluated by imposing mass conservation,
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i.e. the mass of wave fluid in the inner region (x̃1 < x̃ ≤ x̃s) must be equal to the mass of
ideal (inviscid) fluid in the corresponding front region x̃1 ≤ x̃ ≤ Ũ f,I t̃ :∫ x̃s

x̃1

h̃D dx =
∫ Ũ f,I t̃

x̃1

h̃ I dx, (2.24)

with Ũ f,I = 2.
Using (2.20a), (2.22a), (2.23a) and (2.23b), the following relationship between the

dimensionless time and the wave front velocity Ũf is obtained:

C̃f (2 + φ) t̃ = Ũ−λ
f

(
1 − Ũf

2

)2φ+1

. (2.25)

For each time t̃ , the iterative solution of (2.25) provides the value of Ũf . Then, x̃s and
x̃1 are calculated using (2.23b) and (2.23a), respectively. Once Ũf , x̃s and x̃1 are known,
the free-surface profiles can be calculated using (2.20a) for −∞ < x̃ ≤ x̃1 and (2.22a) for
x̃1 ≤ x̃ ≤ x̃s .

The present analytical solution for turbulent clear water can be applied for analysing the
wave propagating over a smooth wall by accounting for the friction coefficient variability
along the current (Chanson 2009). Indeed, by adopting the Blasius formula (2.13) to
estimate the friction coefficient, the analytical solution of a dam-break wave propagating
over a smooth bed is given by (2.25), (2.20a) and (2.22a) assuming

C̃f = 0.316
8

[
μ0

4ρU0h0

]1/4

λ= 7/4 φ = 5/4. (2.26)

In the next sections, the SW analytical solution of a turbulent dam-break wave of clear
water and power-law fluid propagating over a smooth bed will be identified with the label
SM-TA.

As a final remark, we point out that because 0 ≤ Ũf ≤ 2, one can deduce two asymptotic
expressions of the front velocity valid for high and respectively for low values of the wave
front velocity. It is worth pointing out that high/low values of the wave front celerity
correspond to small/high values of the time. Indeed, for high Ũf values (i.e. close to 2), the
second term on the right-hand side of (2.25) tends to vanish, while the first term remains
bounded. For such conditions, (2.25) may be approximated as follows:

C̃f (2 + φ) t̃ =
(

1 − Ũf

2

)2φ+1

. (2.27)

The front velocity can then be calculated as

Ũf = 2 −
[
C̃f (2 + φ) t̃

] 1
2φ+1

. (2.28)

Meanwhile, for small Ũf . values (i.e. close to 0), the second term on the right-hand
side of (2.25) remains finite, while the first term tends to diverge. For such conditions, the
approximation of (2.25) becomes

C̃f (2 + φ) t̃ = Ũ−λ
f , (2.29)

which leads to the following expression of the wave front velocity:
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P

Figure 3. Variation of the P ratio (2.31) with the wave front velocity, Ũ f , for different values of the
rheological index, n.

Ũf =
(

1

C̃f (2 + φ) t̃

) 1
λ

. (2.30)

To better illustrate this behaviour, one can consider the ratio between the two terms on
the right-hand side of (2.25):

P =
(

1 − Uf
2

)
Uλf

2φ+1

. (2.31)

The value of this ratio indicates which of the two terms is predominant and, based
on this, which of the two approximate solutions given by (2.27) and (2.29) should be
applied. Figure 3 reports the P ratio as a function of the wave front velocity, Ũf , for several
values of the rheological index, n. Results indicate only a weak variability of P with n.
Moreover, figure 3 can be used to estimate the applicability range of the two limiting
expressions deduced for Ũf , i.e. (2.28) and (2.30). Assuming that a difference of two
orders of magnitude allows neglecting one term with respect to the other one on the right-
hand side of (2.25), the lower and upper bounds for the applicability of (2.28) and (2.30)
are Ũ min

f = 1.4 ÷ 1.5 and Ũ max
f = 0.03 ÷ 0.06, respectively. In terms of the propagation

time, the maximum time when the asymptotic solution given by (2.28) is valid, t̃max , and
the minimum time after which the asymptotic solution given by (2.30) is valid, t̃min, can
be found using (2.25) and setting Ũf = Ũ min

f and Ũf = Ũ max
f , respectively.

Compared with the SM-TN numerical solutions that are based on solving the full
shallow water equations, the newly proposed analytical model shows significantly better
agreement in terms of the predicted free-surface profiles compared with those given by
the classical Ritter solution for non-Newtonian cases. The new analytical model slightly
underpredicts the front speed given by the SM-TN solution. The effect is stronger for low
values of n. The new analytical model correctly predicts the shape of the dam-break wave
near its front for all n values. Moreover, for values of n between 0.3 and 0.9, the free
surface profiles predicted by the new analytical model and by the corresponding SM-TN
solution are in good quantitative agreement over the whole length of the wave.

3. Flow and turbulence structure inside the dam-break wave
The main goal of this section is to investigate flow and the turbulent structure of high
volume of release turbulent dam-break waves with a Newtonian and a non-Newtonian
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Figure 4. Streamwise (spanwise-averaged) velocity profiles for Case 0 (n = 0) and Case 5 (n = 0.6)
at x/h0 = 12.5 when the front is situated at xf /h0 = 25. The dotted lines mark the start of the constant velocity
layer.

rheology. Given the unsteady nature of these flows, very little information is available
from experimental investigations on the vertical profiles of the streamwise velocity and
Reynolds stresses inside the wave. Of particular interest is to investigate whether, or
not, the velocity profile inside the wave region where the flow is turbulent resembles
that observed in Newtonian turbulent boundary layers over a horizontal bed or in fully
developed open channel flow where a logarithmic region is present until close to the edge
of the boundary layer or the free surface of the open channel. A first important finding
of the present numerical experiments conducted with both Newtonian and non-Newtonian
fluids is the existence of a close to constant streamwise velocity layer at the interface
between the wave and the surrounding air (z = zmax) and some variable vertical location
inside the wave. Figure 4 shows the vertical profiles of the (spanwise-averaged) streamwise
velocity component at a streamwise location situated behind the front. The velocity is
normalised using the depth and spanwise averaged velocity near the top of the wave,
UB(x, t). The profiles show such a layer is present for both Newtonian (Case 0) and non-
Newtonian (Case 5) dam-break waves. As will be discussed in the next two subsections, for
both Newtonian and non-Newtonian cases, a logarithmic velocity layer is present beneath
the constant velocity layer in the region where the flow inside the wave is turbulent, but
the slope of the log law for the velocity profiles at different locations along the wave is
generally different from that observed in turbulent, steady boundary layers of Newtonian
fluids and varies with the distance from the front.

3.1. Newtonian dam-break wave
Case 0 is used to illustrate the internal flow structure for a dam-break wave of Newtonian
fluid (water) where the flow is strongly turbulent inside the wave. The streamwise velocity
increases fairly monotonically inside the wave as the front is approached (figure 5a),
which means the turbulence will be stronger in regions situated closer to the wave front.
Three-dimensional turbulent flow structures are present along the entire wave at the air–
fluid interface. These structures are driven by the mean shear between the wave fluid
and the surrounding air. As for the well-documented case of gravity currents (e.g. see
Constantinescu 2014; Tokyay, Constantinescu & Meiburg 2012; Dai & Huang 2022), the
instabilities present near the front of the wave generate lobe and cleft structures (figures 5b
and 5c). Such structures were already observed for high-Reynolds-number dam-break
waves by Del Gaudio et al. (2024) for the case of waves propagating into a channel of
limited width. The absence of sidewalls in the present simulations conducted with periodic
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x/h0
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Figure 5. Visualisation of the instantaneous flow structure of the dam-break wave for Case 0. (a) Non-
dimensional streamwise velocity in the vertical plane y/B = 0.5; (b) streamwise non-dimensional velocity
component in a horizontal plane situated at approximately 20 wall units from the channel bed; (c) near-wall
streaks visualised using a Q iso-surface (Q = 500). The black arrow shows the position of the front of the wave
(xf /h0 = 25). The red arrows point towards the lobes and cleft structures at the front. The vertical red dashed
lines show the locations of the velocity and turbulent shear stresses profiles in Figure 6.

boundary conditions in the spanwise direction does not have a significant effect on the
development of these structures at the front of the wave.

Figures 5(b) and 5(c) also reveal the presence of near-bed coherent structures in the form
of parallel streaks of higher and lower streamwise velocity near the channel bed, similar
to those observed in turbulent boundary layers and fully developed turbulent flows in open
channels. In the case of a turbulent dam-break flow, the streaks extend for some finite
distance behind the front and gradually vanish at large distances from the front (e.g. see
figures 5(b) and 5(c) where streaks are not present for x/h0 < 5). This happens because,
far from the wave front, the mean streamwise velocity inside the wave is not large enough
to generate a sufficiently strong turbulent flow that can result in the formation of near-
bed streaks. The average width of the streaks is close to 500 wall units (∼0.05B). So,
these streaks are much larger in terms of their wall unit dimensions compared with those
observed in fully turbulent boundary layers and channel flows. This is expected, as the
flow conditions behind the front of the current are not exactly equivalent to those in the
aforementioned statistically steady turbulent flows. Such large streaks were also observed
behind the front of Newtonian high-Reynolds-number gravity currents in the large eddy
simulations of Ooi, Constantinescu & Weber (2009) and Tokyay & Constantinescu (2015).
Given the reduced height of the wave close to the front, the streaks of high and low velocity
affect the flow structure until close to the wave interface inside this region.

The flow structure inside turbulent dam-break waves is investigated based on the
spanwise-averaged streamwise velocity profiles and primary turbulent shear stress profiles,
u′w′, where the overbar denotes spanwise averaging and the velocity fluctuations in
the streamwise and vertical directions are denoted u′ and w′, respectively. A log-law
region is present inside the turbulent dam-break wave in Case 0 (figure 6a–6c). The
non-dimensional spanwise-averaged streamwise velocity profiles are plotted in inner co-
ordinates at three streamwise locations extending from the lock gate to x/h0 = 12.5 at the
time when the front is situated at xf /h0 = 25. The vertical coordinate in wall units is z+ =
z.uτ (x)/νw(x). In Case 0, νw(x) is a constant equal to the kinematic molecular viscosity
of the water. Each velocity profile displays two main distinct regions: a boundary layer
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Figure 6. Vertical profiles of the non-dimensional mean streamwise velocity and primary turbulent shear stress,
u′w′, for Case 0. Results are shown when the front is situated at x f /h0 = 28. (a) Streamwise (spanwise-
averaged) velocity profile at x/h0 = 0 (lock gate), κ = 0.28; (b) streamwise (spanwise-averaged) velocity
profile at x/h0 = 8, κ = 0.28; (c) streamwise (spanwise-averaged) velocity profile at x/h0 = 12.5, κ =
0.40; (d) comparison of Case 0 velocity profile at x/h0 = 12.5 with velocity profile measured by Wuthrich
et al. (2018). The blue dashed line corresponds to a power-law profile, U/UB = (h/H )1/8; (e) u′w′ profiles;
( f ) u′w′ profiles in wall coordinates. The horizontal dotted lines in panels (e) and ( f ) correspond to the
boundary between the logarithmic layer and the constant velocity layer of the dam-break wave.

containing the wall viscous, buffer and log-law (sub) layers followed by a constant velocity
layer that extends up to the wave interface with the air (see also discussion of figure 4). At
the lock gate (figure 6a), where turbulence is weak, the thickness of the viscous sublayer is
large as it extends up to approximately 20 wall units away the bed surface. The viscous sub-
layer extends up to approximately 5 wall units at the other two streamwise locations where
the turbulence is much stronger (figure 6e) and velocity streaks are present. The main
observation related to the presence of a log-law layer in Newtonian dam-break flows is
that the slope of the logarithmic velocity profile (i.e. 1/κ) decreases with the distance from
the lock gate. The velocity profiles at x/h0 = 0 and 8 suggest a value of κ close to 0.28.
However, in the near-front region of high streamwise velocity and strong turbulence, κ

approaches to the von Kármán constant value associated with steady turbulent flows (e.g.
κ ≈ 0.4 at x/h0 = 12.5 in figure 6c). In this region of strong turbulence, the log-layer
extends over close to 40 % of the wave height, zmax (see also Case 0 velocity profile in
figure 4).

Figure 6(d) shows that the predicted non-dimensional velocity profile at x/h0 = 12.5 in
Case 0 is in good qualitative agreement with that measured in a lab experiment conducted
by Wuthrich et al. (2018) for a turbulent dam-break wave propagating over a smooth,
horizontal channel. Wuthrich et al. (2018) showed that their streamwise velocity profiles
were well approximated by a power-law function with an exponent of 1/8, which also cor-
responds to a log-law region with a value of κ close to 0.4. At larger distances from the bed,
the velocity inside the wave was close to constant. The 1/8 power-law profile also provides
a good approximation of the numerically predicted velocity profiles inside the log-law
layer in the region where the flow inside the wave is strongly turbulent (e.g. see figure 6c).
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Near the lock gate, where turbulence is weak, turbulent shear stresses are found to be
negligible (see profile of the primary turbulent shear stress u′w′ at x/h0 = 0 in figure 6e).
In the near-front region, where the turbulence inside the wave is strong (e.g. at x/h0 = 12.5
in figure 6f ), the peak of u′w′ occurs at approximately 100 wall units, which is comparable
to the distance where the log-law layer starts of approximately 80 wall units (figure 6c).
This behaviour is consistent with what is observed in turbulent boundary layers and fully
developed open channel flows. At higher elevations, the turbulent shear stresses decay
monotonically with increasing distance from the smooth bed and reach a minimum value
slightly above the interface between the log-law layer and the constant velocity layer.
Interestingly, despite the fact that the mean streamwise velocity is close to constant,
the shear stress inside the constant velocity layer increases as the wave–air interface is
approached. This is consistent with the presence of smaller-scale deformations along this
interface in figure 5(a).

3.2. Non-Newtonian dam-break wave
Case 5, which is characterised by a relatively high Reynolds number (Re = 7.2 ×104,
ReMR = Re = 2.73 ×105), is used to discuss the spanwise-averaged flow and turbulence
structure inside non-Newtonian dam-break waves. Case 5 shows many similarities with
Case 0 representing a Newtonian dam-break wave. For example, the friction-velocity
Reynolds numbers at x/h0 = 12.5 are very close in the two simulations (Reτ ≈ 500, where
Reτ = uτ δ/νw and δ is the local thickness of the boundary layer).

Figures 7(a) and 7(b) show the presence of a log-law region inside the non-Newtonian
dam-break wave. As for the case of a wave of Newtonian fluid, turbulence is very weak
near the lock gate in Case 5, as illustrated by the very low values of the primary turbulent
shear stress at x/h0 = 0 in figure 7(c). The velocity profiles are qualitatively similar at
x/h0 = 0 in the Case 5 and Case 0 simulations with a thick viscous sublayer extending
until z+ ≈ 20, a relatively thin log-law sublayer where κ ≈ 0.28, and a thick constant
velocity layer extending until the air–water interface. It is relevant to point out that the
velocity profiles near the lock-gate have a similar behaviour in the non-Newtonian and
Newtonian cases even though the dynamic molecular viscosity, μ, varies by more than
one order of magnitude in between the channel bed and the air–water interface (e.g. see
profile of μ/μw at x/h0 = 0 in figure 7(e), where μw is the dynamic molecular viscosity
at the channel bed) in Case 5.

The predicted profiles at x/h0 = 12.5 when the front is situated at x/x f = 25 in
figures 6 and 7 are used to illustrate differences between the structure of non-Newtonian
and Newtonian dam-break waves in the regions where the wave flow is strongly turbulent.
In both Case 0 and Case 5 simulations, the viscous sublayer extends until z+ ≈ 5. Though
a well-developed log-law sublayer is present in both simulations, this layer starts at z+ ≈
80 in Case 0 and at z+ ≈ 100 in Case 5. Also, the thickness of the log-law sublayer decays
in the non-Newtonian case. For example, the interface with the constant velocity layer is
situated around z/zmax = 0.41 (z+ ≈ 850) in Case 0 and z/zmax = 0.32 (z+ ≈ 1000) in
Case 5. This effect is consistent with the observed behaviour of non-Newtonian shear-
thinning fluids that are characterised by a flattened velocity profile due to the increase
of the dynamic molecular viscosity away from the wall (e.g. see profile of μ/μw at
x/h0 = 12.5 in figure 7e).

While inside the regions of the dam-break wave generated in Case 0, where turbulence
is strong the slope of the log law corresponds to κ ≈ 0.4, the predicted value of κ is
close to 0.26 in the non-Newtonian dam-break wave generated in Case 5 (figure 7b).
This value is slightly lower than the value observed at x/h0 = 0 in Case 5 (figure 7a).
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Figure 7. Vertical structure of the mean flow and primary turbulent shear stress, u′w′, for Case 5. Results
are shown when the front is situated at xf /h0 = 25. (a) Streamwise (spanwise-averaged) velocity profile at
x/h0 = 0 (lock gate), κ = 0.28; (b) streamwise (spanwise-averaged) velocity profile at x/h0 = 12.5, κ =
0.26; (c) u′w′ profile at x/h0 = 12.5, (d) u′w′ profile at x/h0 = 12.5 in wall coordinates; (e) non-dimensional
(spanwise-averaged) dynamic molecular viscosity profiles. The horizontal dotted lines in panels (c), (d) and
(e) correspond to the boundary between the logarithmic layer and the constant velocity layer of the dam-break
wave.

The fact that the slope of the log law (i.e. 1/κ) in regions where the flow is strongly
turbulent is significantly higher for non-Newtonian dam-break waves compared with the
value observed for Newtonian waves is not surprising and is consistent with the behaviour
observed for simpler steady turbulent flows. For example, values of κ close to 0.26 were
reported for non-Newtonian fluids with a power law index n = 0.5 in steady turbulent
pipe-flow experiments by Rudman et al. (2004) and in LES of the same type of flows by
Gnambode et al. (2015).

In the region of strong turbulence inside the wave, the peak of u′w′ is situated at
approximately 100–200 wall units from the channel bed in Case 5 (figure 7d), which is
comparable to the value (∼100 wall units) predicted for the Newtonian dam-break wave
in Case 0. Moreover, in both simulations, the primary shear stress decays monotonically
inside the log-law sublayer and reaches its minimum slightly above the boundary between
the log-law sublayer and the constant velocity layer. The values of u′w′ are negligible
inside the lower part of the constant velocity layer (figure 7d), which was not the case for
the Newtonian dam-break wave (figure 6e). Though in both simulations, u′w′ increases
rapidly inside of the top part of the constant velocity layer (z/zmax > 0.8), the rate of
increase is lower for the non-Newtonian dam-break wave due to the weaker instabilities
developing along the air–fluid interface in this case.

4. Dam-break wave dynamics
In addition to investigating the wave dynamics and, in particular, the temporal evolution
of the front position during the different phases of the wave propagation, this section uses

1019 A58-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10636


Journal of Fluid Mechanics

t/t0
10 155

t/t0

x f
/
h 0

(a) (b)

LES

Ritter

SM-TN

SM-TA

LES
Ritter
SM-TN
SM-TA

30

20

10

10 1550 0

20

1.5

1.0

0.5

U
f/

U
0

Figure 8. Temporal evolution of the (a) non-dimensional front position and (b) front velocity for Case 0.
Results of the shallow-water turbulent numerical model (SM-TN) and analytical solutions (SM-TA, Ritter) are
compared with LES predictions.

the 3-D LES as numerical experiments with respect to which the predictive abilities of
simpler SWE numerical models (SM-LN and SM-TN, see § 2.3.2) and analytical solutions
(SM-TA, Ritter, Hogg & Pritchard, see § 2.3.3) are assessed.

4.1. Newtonian dam-break waves
Case 0 is used to illustrate the temporal evolution of the front position, the wave shape
and the bed shear stress characteristics in turbulent dam-break waves of Newtonian fluids.
It also serves as a limiting case to discuss dam-break waves of non-Newtonian fluids.
The performance of turbulent SWE analytical (SM-TA) and numerical (SM-TN) models
is discussed. For the sake of completeness, the comparison with the Ritter solution is also
included.

Figure 8(a) compares the temporal evolution of the front position predicted by LES
with those given by the SM-TA and SM-TN models and Ritter’s solution for Case 0. LES
results show two distinct phases. During the initial acceleration phase, when the fluid
inside the wave increases its velocity by releasing potential energy, the turbulence and
viscous dissipation are negligible. The accelerating phase is followed by a deceleration
phase, starting at approximately t/t0 = 8 (figure 8b), during which bed friction effects are
important. In contrast, the SW-TA and SW-TN models predict that the deceleration phase
starts very soon after the release of the lock. This happens because the bottom turbulent
shear stress is applied starting at t/t0 = 0.

During the deceleration phase, the temporal evolution of the front position predicted by
LES can be described by a power-law relationship x f /h0 = γ (t/t0)α . Since in practical
applications one is generally interested in characterising the dam-break evolution at large
times after the gate opening, the predictive capabilities of the shallow models are mainly
assessed based on how well they can predict the values of α and γ inferred from LES (i.e.
α = 0.885 and γ = 2.38). The SWE analytical and numerical models predict fairly close
values of the power-law exponent (0.8 < α < 0.87, see table 3).

Another important requirement for SWE numerical simulations is to accurately predict
the sediment entrainment capacity in applications where the dam-break wave propagates
over an erodible bed. Figure 9 compares the distributions of the non-dimensional bed shear
stress predicted by LES and the SM-TN model in between the lock gate and the front when
xf = 25h0. LES predicts a close to linear decay of the bed shear stress from the lock gate
until close to the front, with local variations due to the resolved turbulent eddies inside

1019 A58-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10636


A. Del Gaudio, G. Constantinescu, F. De Paola, C. Di Cristo and A. Vacca

CASE k [(Pa s)n] n [–] ReMR α α α γ α γ α γ α γ

(LES) (LES) (SM- (SM- (SM- (SM- (SM- (SM- (HM- (HM-
LN) LN) TN) TN) TA) TA) LA) LA)

0 9.00×10−4 1 2.18×105 0.885 2.38 — — 0.870 1.80 0.801 2.52 — —
1 9.00×10−2 0.9 4.12×103 0.830 1.94 0.797 2.32 0.850 1.74 0.861 1.65 0.85 2.08
2 9.00×10−2 0.6 2.15×104 0.886 2.01 0.784 3.31 0.867 1.82 0.865 1.73 0.82 2.98
3 9.00 ×10−2 0.3 1.26×105 0.916 2.31 0.782 4.73 0.885 1.94 0.866 1.85 0.79 4.5
4 9.00×10−2 0.1 5.70×105 0.968 2.05 0.820 4.64 0.903 1.98 0.867 1.91 0.82 4.66
5 9.00×10−3 0.6 2.73×105 0.892 1.98 0.815 4.56 0.882 1.89 0.876 1.82 0.82 4.52
6 9.00 ×10−4 0.6 2.97×106 0.957 2.08 0.825 6.67 0.902 1.92 0.890 1.86 0.82 6.86

Table 3. Power-law coefficients predicted by the different simulations and analytical solutions during the
deceleration phase. Values predicted by the Hogg & Pritchard (2004) solution (HM-LA) are also reported.
ReMR is the spanwise- and streamwise-averaged Metzner Reynolds number (Dodge & Metzner 1959) calculated
when xf /h0 = 25.

3010 200

x/h0

τ/
(ρ

U
02
)

0.032

0.016

0.024

0.008

LES

SM-TN

Figure 9. Non-dimensional (spanwise-averaged) bed shear stress distribution for Case 0. The model predictions
of the shallow-water turbulent numerical model (SM-TN) are compared with LES predictions when
xf /h0 = 25.

the wave. Except for the larger amplification of the bed shear stress very close to the front,
the use of a turbulent-flow friction coefficient leads to very close agreement of the SM-TN
model with LES.

Given that the passage of a dam-break wave can induce severe flooding, it is important
to also discuss how well SWE models predict the free surface profile. In addition to the
SM-TN and SM-TA profiles, figure 10 also includes Ritter’s solution. Consistent with
figure 8, the front in Ritter’s solution has travelled a considerably larger distance compared
with the wave predicted by LES. However, the water depth in Ritter’s solution is very
small in between x/h0 ≈ 19 and the front so, overall, Ritter’s solution provides a good
approximation to the free surface profile predicted by LES. Although the propagation
length of the wave is underpredicted in the SM-TN simulation, the flow depth is
reproduced quite accurately until the front region. Qualitatively, the analytical model SM-
TA shows a similar behaviour, though it slightly overestimates the flow depth over part
of the wave body compared with SM-TN. Overall, the use of a friction formula based
on turbulent flows results in fairly accurate predictions of the water–air interface and bed
shear stress distributions beneath the deeper parts of the wave.
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Figure 10. Top (free surface) boundary of the dam break wave for Case 0. LES predictions are compared with
the shallow-water turbulent numerical model (SM-TN) and analytical solutions (SM-TA, Ritter) at t/t0 = 11.2.
The vertical arrows show the position of the front predicted by the different models.
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Figure 11. Effect of the power law index, n, on the temporal evolution of the non-dimensional front position.
Vertical arrows show the onset of the deceleration phase.

4.2. Non-Newtonian dam-break waves: power-law index effect
As shown in figure 11, the temporal evolution of the non-dimensional front position in
the LES (Case 1 to Case 4) conducted with a constant value of the consistency index
(k = 0.09) is strongly influenced by n. Lower values of n, corresponding to a stronger
shear-thinning behaviour of the fluid, result in a faster wave propagation after the end of
the acceleration phase. These findings are consistent with the theoretical understanding of
non-Newtonian rheology, where shear-thinning fluids experience reduced resistance under
high-shear conditions. In particular, near the front, where strong shear is generated inside
the wave, a faster propagation of the front with decreasing n is observed in the simulations.
LES results show that the temporal evolution of the front position during the deceleration
phase is well described by the power-law relationship discused for waves of Newtonian
fluids and that α increases monotonically with decreasing n (table 3). Moreover, for very
small values of n, the power law exponent approaches a value of one (α = 0.968 for
n = 0.1). Varying n while keeping the consistency index constant has only a small effect
on the value of the power-law parameter, γ (table 3).

In the following discussion, results of the SM-LN and SM-LA are included to highlight
the inconsistencies that may arise from neglecting the presence of turbulence in SWE
models. The use of a laminar friction coefficient in the SM-LN simulation leads to an
increased velocity of the front compared with LES, while the opposite is observed for
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Figure 12. Temporal evolution of the non-dimensional front position predicted by LES, the shallow-water lam-
inar (SM-LN) and turbulent (SM-TN) numerical models, and by the analytical solution (SM-TA). (a) Case 1;
(b) Case 3.
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Figure 13. Friction coefficient distribution for Case 1. The LES predictions are compared with those of the
SM-LN and SM-TN numerical models when xf /h0 = 22.5.

the SM-TN simulation using a turbulent friction coefficient (see results in figure 12 for
Case 1 and Case 3). The predictions of the SM-TA solution using the turbulent friction
coefficient are close to those given by the corresponding SM-TN numerical model. For all
non-Newtonian dam-break cases, SM-TA is slightly more dissipative than SM-TN, which
explains the faster propagation of the front predicted by SM-TN in figure 12(b).

The implementation of the friction coefficient formula (2.14) for turbulent condition
significantly improves the accuracy of the SWE model in predicting the propagation of
the front especially for lower values of n. For example, results for Case 3 (n = 0.3) in
figure 12(b) show that compared with LES, the overprediction of the front position by SM-
LN is approximately 50 % larger than the underprediction of the front position by SM-TN.
For higher values of n like Case 1 (n = 0.9) in figure 12(a), SWE model predictions are in
good agrement with LES for both types of friction coefficients, with SM-TN and SM-TA
showing slightly better agreement with LES than SM-LN.

The better performance of the SM-TN model to predict the front propagation is primarily
due to ability of the Dodge and Metzner formula to more accurately capture the distribution
of the friction coefficient beneath the turbulent dam break wave, as illustrated in figure 13
for Case 1 (n = 0.9). Conversely, the SM-LN model underestimates the resistance.

For non-Newtonian fluid cases, the relative performance of the SWE models with
respect to LES in predicting the free surface profile and the depth levels inside the wave
is similar to that observed for Newtonian fluid cases (figure 10). For example, the SM-TN
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Figure 14. Top (free surface) boundary of the dam break-wave for Case 2 shown at t/t0 = 14. The vertical
arrows show the front position predicted by LES and the different SWE models.
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Figure 15. Power-law coefficient during the deceleration phase as a function of the power law index, n, for the
different models.

model gives the closest predictions of the depth levels inside the wave generated in Case 2
compared with LES (figure 14). The SM-LN model underestimates the wave depth over an
important fraction of the wave’s length. Meanwhile, the SM-TA model overestimates the
wave depth. Ritter’s solution significantly overestimates the propagation distance of the
front. This is fully expected, given that there is no deceleration phase in Ritter’s solution
(α = 1). However, it is interesting that the wave-depth levels predicted by Ritter’s solution
away from the front region provide a good approximation to LES predictions, better than
that shown by the SM-LN model.

The power-law relationship xf /h0 = γ (t/t0)α that provides a good approximation of the
front evolution during the decelleration phase in the LES performed with non-Newtonian
fluids can also be used to approximate the front evolution predicted by the SWE models.
Figure 15 summarises the variation of α with n obtained using LES, SWE numerical
models, and the analytical outputs of the model proposed in this work (SM-TA) and that
of Hogg & Pritchard (2004) for laminar dam-break flows (HM-LA).

SWE models that assume a turbulent friction coefficient (SM-TA and SM-TN) show
a monotonically decreasing α with increasing n, as also predicted by LES. The main
difference is the rate of decrease, with the SM-TA model showing the smallest rate of
change of α with n. The largest differences in the predicted α values by the three models
are observed for low values of n. This is explained by the inability of SWE models to
predict the correct value of the friction coefficient in very shear-thinning fluids. Both
models that assume laminar condition, SM-LN and HM-LA, predict that α decreases with
n for low values of the power law index, while for n > 0.3, an increase is observed.
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Figure 16. Effect of the consistency index, k, on the evolution of the non-dimensional front position. Vertical
arrows show the onset of the deceleration phase.
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Figure 17. Temporal evolution of the non-dimensional front position predicted by LES and some of the SWE
numerical models and analytical solutions. (a) Case 2; (b) Case 6.

4.3. Non-Newtonian dam-break waves: consistency index effect
The consistency index, k, characterises the fluid’s resistance to deformation. Lower values
of k indicate reduced molecular viscosity and an increased contribution of inertia in non-
Newtonian fluid flows. Figure 16 compares the front propagation in LES conducted with
n = 0.6. Compared with Case 2, the value of k was 10 times smaller in Case 5 and 100
times smaller in Case 6, resulting in higher Reynolds numbers (table 1). As shown in
figure 16, the main effect of decreasing k is an acceleration of the front after the end of
the acceleration phase once inertia effects dominate inside the body of the turbulent wave.
The highest value of α (= 0.957) is observed for the highest Reynolds number simulation
(Case 6, see table 3). This suggests that in the limit of a very small k, or infinite Reynolds
number, α will approach one, which is consistent with Ritter’s inviscid solution.

As observed in § 4.2, the use of a laminar friction coefficient results is a faster
propagation of the front compared with LES, while the opposite is true for SWE models
using a turbulent friction coefficient. For both Case 2 and Case 6, the SM-LN model
consistently shows larger differences with LES compared with those shown by the SM-
TN model (figure 17). Moreover, the predictions of the analytical model using a friction
coefficient based on (2.14) are very close to those obtained using a full SWE numerical
model, as can be seen from comparing SM-TA and SM-TN predictions in figure 17.
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Figure 18. Power-law coefficient during the deceleration phase as a function of the consistency index, k, for
the different models.

An important finding is that for a constant n, the absolute diference between the predictions
of the numerical and analytical SWE models and those of LES is increasing with
increasing Reynolds number (i.e. with decreasing k), as can be seen by comparing results
for Case 2 and Case 6 in figures 17(a) and 17(b), respectively.

Similar to LES, all SWE models predict a monotonic decrease of α with increasing
k, as shown in figure 18. The largest differences with LES are shown by the SM-LN
model while, as indicated in table 3, the effect of k on α is negligible for the HM-LA
solution (α ≈ 0.82 for the cases with n = 0.6). Except for very high Reynolds numbers,
the α2 values predicted by the numerical and analytical SWE models using a turbulent
friction coefficient are very close (i.e. less than 3 % difference) to the value obtained
from LES. For both SM-TN and SM-TA, the difference increases to 6 %–7 % for k =
0.0009 (Pa s)0.6. This value is significantly lower than the difference of approximately
14 % observed between the α values predicted by LES and the SM-LN model for
k = 0.0009 (Pa s)0.6.

5. Summary and conclusions
The present study based on fully three-dimensional LES conducted at moderate and
high Reynolds numbers showed that turbulence affects both the structure, and the
propagation of Newtonian and non-Newtonian dam-break waves over a long horizontal
surface. As direct numerical simulations of high-Reynolds-number dam-break waves are
computationally too expensive, the use of 3-D LES using a dynamic model that can
recognise regions where the flow is non-turbulent was critical to capture the correct flow
physics. This is because the front part of such dam-break waves is strongly turbulent, while
turbulence effects are generally small at large distances behind the front. Based on the 3-D
simulation results, the paper reports several new main findings related to the structure and
temporal evolution of turbulent dam-break waves over a horizontal smooth surface.

A first finding is that such waves are characterised by a two-layer structure. The vertical
profiles of the spanwise-averaged streamwise velocity revealed the presence of a boundary-
layer like region near the bed surface containing a log-law sublayer and of a constant
velocity layer on top of it that extends until the fluid–air interface (i.e. the free surface).
A second set of findings concerns the values of the von Kármán constant in the law of the
wall and the variation of the primary shear stress. This information can be used in simpler
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SWE numerical and theoretical approaches used to model the spatio-temporal evolution
of dam break waves and to estimate quantities of engineering interest.

For Newtonian dam-break waves, the von Kármán constant was found to vary along the
wave. More precisely, the standard value of 0.4 associated with turbulent boundary layers
of Newtonian fluids was found to fit the velocity profiles only in the strongly turbulent
regions situated near the front of the wave. However, its value decayed to approximately
0.28 in regions situated far from the front where turbulence effects were weak. Inside the
strongly turbulent regions, the primary Reynolds shear stress peaked inside the boundary
layer at approximately 100 wall units from the bed surface before reaching negligible
values at the interface with the constant velocity layer. It then started increasing again
inside the constant velocity layer.

In the case of turbulent dam-break waves of power-law fluids, the slope of the log law
was found to vary less along the body of the wave. The von Kármán constant values
(κ = 0.26–0.28) were close to previously reported values for steady turbulent flows of
power-law fluids (e.g. pipe flows). Present results suggest that the reduction of κ inside the
log-law sublayer is a general characteristic of turbulent flows involving non-Newtonian
fluids. The behaviour of the primary Reynolds shear stress inside the boundary layer
was qualitatively similar to that observed for waves of Newtonian fluids. Meanwhile, the
values of the Reynolds shear stress remained very low inside most of the constant velocity
layer in the high-Reynolds-number simulations conducted with a power-law fluid. The
values of the Reynolds shear stress near the fluid–air interface were much smaller in the
simulations performed with a non-Newtonian fluid, consistent with the weaker instabilities
developing along the fluid–air interface compared with dam-break waves of Newtonian
fluids. Another noticeable effect was the increase of the thickness of the constant velocity
layer with decreasing power-law index in shear-thinning fluids. This effect was linked
to the increase of the dynamic molecular viscosity away from the wall which induces a
flattened streamwise velocity profile.

The third fundamental finding relates to the temporal evolution of the front position
during the deceleration phase which can be well described by a power-law relationship
for both Newtonian and non-Newtonian dam-break waves propagating over a smooth
horizontal surface. The effect of increasing the shear-thinning behaviour of the fluid was
investigated by performing a series of simulations with decreasing power-law index, n,
while keeping the consistency index, k, constant. The main effect of decreasing n was to
increase the speed of the front. Most of the differences built during the deceleration phase
were due to the monotonic increase of the power-law exponent during the deceleration
phase, α, with decreasing n. For very small values of n, LES predicted α ≈ 1, which
is consistent with the inviscid flow limit when the front velocity remains constant.
Decreasing k for constant n resulted in an acceleration of the front once inertia effects
dominate inside the body of the wave (i.e. during the deceleration phase). The decrease of
k is associated with an increase of the Reynolds number. LES predicted an increase of α

with decreasing k. Based on the present results (i.e. α = 0.957 for k = 0.0009 (Pa s)0.6), it
is expected that α will approach one in the limit of an infinite Reynolds number, which is
consistent with Ritter’s inviscid solution.

Given that SWE-based models are widely used for engineering predictions of these
flows (e.g. mudflows), it is important to have a clear idea of the accuracy of these models
in predicting relevant quantities of interest used to evaluate the impact of the wave
propagation on the environment and for hazard assessment. A main finding of the present
study is that using a turbulent friction factor in SWE numerical models yields more
accurate results for dam-break waves where at least the front part of the wave is turbulent.
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As part of the present study, a novel 1-D SWE analytical model was proposed. The
model employs a unitary value of the shape factor and a friction coefficient regression
valid for a power-law fluid in the turbulent regime. The temporal evolution of the front
predicted by the approximate analytical solution accounting for turbulent flow conditions
was found to be in good agreement with that given by the corresponding SWE numerical
model. In general, both the numerical and analytical solution of the newly proposed model
show significantly better agreement with LES compared with the laminar SWE model.
This is true not only for the temporal evolution of the wave front, but also for the bed shear
stress distribution along the wave, which is an important quantity in applications where
such waves propagate over an erodible bed. As such, this study shows that inclusion of
turbulence effects in SWE theoretical models used to predict high-Reynolds-number non-
Newtonian dam-break waves should increase the predictive capabilities of such models.
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