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ON THE CONSTRUCTION OF HOLDER AND PROXIMAL
SUBDERIVATIVES

J. M. BORWEIN, R. GIRGENSOHN AND XIANFU WANG

ABSTRACT. We construct Lipschitz functions such that for al s > 0 they are s-
Holder, and so proximally, subdifferentiable only on dyadic rationals and nowhere
else. As applications we construct Lipschitz functions with prescribed Holder and
approximate subderivatives.

1. Introduction. Letf be an extended rea-valued lower semicontinuous function
defined on an openset U C R and x € U. We assume throughout that s > 0.

DerINITION 1. ¢ € Riscaled an s-Holder subgradient of f at x if f(x) is finite and
for someo > 0and 6 > 0 onehas

f(y) > f(x) +&(y—x) — oly — X" when|y — x| <.

We write & € dnsT(X). When s = 1 such a subdifferential is called a proximal subdiffer-
ential, denoted by d, f.

DEerFINITION 2. f iss-Holder smooth at x if there existsc > 0,6 > 0, and £ € R such
that
1Y) =) — &(y =X < cly—x/*"® whenever |y — x| <é.

When s = 1 we say that f is Lipschitz smooth at x. More generally, we are considering
derivatives and subdifferentials with power modulus of smoothness, [2].

In [2] Borwein and Preiss show, inter alia, that {x | dnsf(X) # § and x € U} isdense
inU. In[5] Clarke, Ledyaev and Wolenski construct aC? function, f, on R such that both
dpf and 9p(—f) are nonempty only on a set that is small in the sense of both measure
and category. In [1] Benoist shows that for every countable dense set D in R there exist
infinitely many (uncountably many as may be seen from his proof) Lipschitz functionsf,
differing by more than a constant, such that 9, f(x) = (—1,1) if x € D and 9,f(x) = 0
if X ¢ D. Benoist's proof is lengthy. A slight modification of Benoist's proof, allows us
to see that for each countable dense set D in R there exist uncountably many different
Lipschitz functions, f, such that for every s > 0 we have o f(X) = (—1,1) if x € D and
ansT(X) = 0 if x ¢ D. Moreover, we have shown in [4] that
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PrROPOSITION 1. Assume S; and S, are two arbitrary countable dense setsin R with
S NS = 0. Then there exist two countable sets D; C S, and D, C S, with D; and
D, densein R such that there exists a Lipschitz function f: R — R having the following
properties; for everys > 0
(i) ansf(X) = (=1 1) ifx € Dyand dpsf(X) =D if x € R\ D>.
(i) Ons(—F)(¥) = (—1,1) if x € Dy and dps(—F)(X) =D if x € R\ Dx.

Our goal hereisto construct Lipschitz functions, f, whose s-Holder subdifferential is
nonempty only on dyadic rationals and nowhere else. Needless to say, one may deduce
this from Benoist's result but the construction method given herein is more explicit and
much simpler, and has certain other virtues.

2. Main Result.

PROPOSITION 2. For every sequence (a,) satisfying:
O O0<y<a<---<lap— 1,
1) (2"%(1 — ap) — oo for all s> 0,
there exists a 1-Lipschitz function f: [0, 1] — R such that f(0) = 0 and f(1/2) = &, for
all s > 0wehave dnsf(x) = (—1, 1) whenx € (0, 1) isa dyadic rational, and dps f (X) = 0

when x € (0, 1) isnot a dyadic rational.

ProoF. Asin [1], f will be the limit of a sequence of functions f,, which are affine
ontheintervals[i/2", (i + 1)/2" fori = 0.1, ....2" — 1. Denote the slope of f, on this
interval by s .

Start with fo = 0. Now assume that f,,_; isaready defined. Then set f,(0) := 0 and

Sin =8y, Si+in = 2Sp-1—a, ifsp-1>0,
Sin = 2Sn-1+8n,  Sisin = —an, ifsp-1 <0,

Inthisway, f, isdefined and Lipschitz on thewholeinterval [0, 1] and satisfiesf,(2i /2") =
fao1(i/2 Y fori=0,.... -1,

2i+1 i+1
znfl on 2n71
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CLAIM 1. s, €[—an.ayforali=0,1,....,2"—-1,neN.

ProOoOF. The claimistrue for fg, f1, and if it is true for n — 1, then it is also true for
n:If sp-1 > 0, then Syin = @ and Spivan = 2Sn-1 — @ < 281 — @ < 28, — @, and
Siiv1n > 0— &y, and similarly for s n—1 < 0.

Thisprovesin particular that: f, > f,_; on [0, 1] for all n. In order to seewhat f, looks
like, wetake a, := 1 — (15/16)". After 9 iterations, Maple givesfigure 1:

FIGURE 1: fy

CLAIM 2. Thef, areuniformly convergent to a Lipschitz function f.

ProoF. For al x, we have 0 < fy(X) — fo-1(X) < an-1/2" < 1/2", which proves
that the f,, are convergent in the uniform norm towards some f. Since | f(x) — f(y)| <
£ — 0] + [ 120 — Fa( )] + [ a(Y) — F(W)] < 2/2"+ 20+ [x—y] <2/2"+ |x—y] for
al n, f isaLipschitz function.

CLaim 3. If x € (0, 1) isadyadic rational, then dps f (X) = (—1, 1).

PrROOF. Assumex =i/2".
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CLAIM 3A. Thereexistsakg € N suchthat for al k > ko:

D f(y) > f()+ac- (y—x) foralye[xx+1/2 and}

f(y) >f(¥) —a-(y—x) foralye[x—1/2%x].

with equality for y = x £ 1/2.

PROOF. For symmetry reasons, it is enough to prove the first inequality. Sincefor all
k> n, wehavef > fi > f, and f(x) = fu(x) = fo(x) and f(x £ 1/2%) = fi(x £ 1/29),
it is sufficient to show the existence of a kg > n such that the first inequality holds
for al k > ko with f replaced by fx. For this it is enough to find a kg such that the
slope of fi, to the right of x, namely s, , is positive. The assertion then follows,
because then syn = & for al k > ko. Assume therefore that s, is negative. Then
Sl = 2S.n + ane1, and if that is still negative, then s neo = 2 n+1 + @n+2, and so on.
Also, because of Claim 1, Spine1 = 250+ @ns1 > Sin — @ + @ma > S Thisimplies
Stine2 — Sl = Sl + 82 > Sin+ @nel = Sainel — Sin > 0. Therefore, in each step
one increases the previous slope by a positive, increasing amount. After finitely many
steps the slope will then itself become positive.

CLAIM 3B. dnsf(X) C (—1.12).

PrROOF. Assume¢ € dnsf(X). That meansthat there existsao > 0 such that for k big
enough, f(x+1/2%) > f(x)+&-1/2%— o - (1/2¢)*S. We can assumek > ko, suchthat, by
Claim3A, f(x+1/2) =f(X) +ax-1/2% Thisimpliesa, - 1/2¢ > ¢-1/2¢— g - (1 /2€)¥*s
and therefore a, > ¢ — o - (1/29)°. Letting k tend to infinity, we get ¢ < 1. Moreover,
¢ = lisimpossible becauseof (2)3- (1 — a) — oo. In the sameway we prove £ > —1.

CLAM 3c. (—1,1) C ansf(X).

PrOOF. Thefirstinequality in (1) impliesf(y) > f(X)+¢-(y—x) foraly € [x, x+1/2¥]
andall ¢ < a, thesecond inequality impliesf(y) > f(x)+¢-(y—x) foraly € [x—1/2% X]
and al ¢ > —a. Joining the two intervals, we get f(y) > f(x) + £ - (y — X) for al
y € [x—1/2x+1/24 and al ¢ € [—a, a]. Taking k large enough, we find any
¢ € (—1,1) insuchaninterval. This proves Claim 3.

CLAIM 4. If xisnot adyadic rational, then dpsf (x) = 0.

PrOOF. Assumethat £ € dpsf(X); wewill show that thisleadsto acontradiction. If x
is not adyadic rational, then for every n, x liesin a uniquely determined interval of the
form[i/2". (i + 1) /2"]. Denote by p, the slope of f,, in thisinterval.

CLAIM 4A. p, — & forn— oo, infact |{ — pn| < o /(275

PROOF. Sety; :=i/2"andy, := (i +1)/2". Then

f(yD) 2 fX)+&- (1 =X —o-[yr—x*" and
F(y2) 2 f)+ € (Y2 =X =0+ [y2 — ™™,
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if nislarge enough. Sincefy(X) = f(y1) + pn- (X — y1) and fo(X) = f(y2) — pn - (Y2 — X)
and f(x) > f,(x), it follows that

fyD) > f(y) +pn- X—y) +& (Y1 —X) —o - |y — X" and
f(y2) > f(¥2) —pn- (Y2 =X +E- (Y2 —X) — - |y> — X/**S.

Theseare equivalenttop, — § < o - [x —y1[and § — pn < o - |y2 — X|%, which implies
theclaimsince|y1, — x| <1/2"

CLam4B. ¢=1or¢=—1.

PrROOF. Because of p, € [—1, 1], the only other possibility is |¢| < 1. Thisis only
possibleif the case p, = +a, does not occur after aninitial phase. That meansthat for n
large enough,

Pn=2Pn-1— & ifpr-1>0and
Ph=2pn-1+a, ifp1<0.

But as we saw in the proof of Claim 3A, each of these two cases can happen only
finitely many timesin arow, after which time p, changesits sign. Therefore the p, must
convergeto 0. But this is also impossible, because if we choose n large enough so that
0<ppi<eandl—a, <e thenp, =2p,_1—a, < —1+3¢, acontradiction. Similarly
for pn = 2pn-1 + an.

[Note that the arguments of Claim 4A and Claim 4B imply that f(x) = —1 or 1 for
al x € (0, 1) except for aLebesguenull set.]

CLAIM 4c. & =tlisimpossible.

PROOF. Assume ¢ = 1. Claim 4A now saysthat 1 — p, < o/(2")%. Since p, < an,
we aso havel — a, < 1 — p,. Therefore we get a contradiction to (2")5(1 — an) — oo.
Similarly for ¢ = —1.

All of this proves Claim 4. ]

THEOREM 1. There exist uncountably many different Lipschitz functions f: R — R
with f(0) = 0 such that for all s> 0 one has dnsf(X) = (—1, 1) if x is a dyadic number
and dpsf (X) = () otherwise.

PrROOF. We extend f in Proposition 2 to all of R. Since f(0) = f(1) = 0, we may
extend f periodically as a Lipschitz function. By the same arguments as in Claim 3
we have dsf(X) = (—1,1) if x is an integer. In particular, we have f(0) = 0 and
f(1/2) = f1(1/2) = a1/ 2. Changing a;, we obtain uncountably many functions, different
at 1/2 and annulling 0, such that they share the same s-Holder subdifferential for all
s> 0. n

COROLLARY 1. There exist uncountably many distinct nonnegative Lipschitz func-
tions on R of compact support such that for all s > 0 the functions share the same
s-Holder subdifferential. Moreover such a function, b, only countably hasdnsb(x) ¢ {0}.
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Proor. Defineb: R — R by b(x) := f(x) for x € [0. 1] and 0 otherwise. Thenbisa
nonnegative bump and for all s> 0

(-1,1) if x € (0,1) is dyadic,
9 b(x) = J@ if x € (0. 1) isnot dyadic,
mPO) =1 10,1) if x=0,and (—1,0] ifx=1,
{0} otherwise.
Theorem 1 assures us that we may choose uncountably many such f’s. ]

REMARK 1. (i) Notethat if f is s-Holder smooth at x then f is differentiable at x and
dnsf(X) is asingleton. All the Lipschitz functions in Theorem 1 are nowhere s-Holder
smooth for every s > 0, and therefore are nowhere Lipschitz smooth. Moreover, from
Claim 3A we see that all the Lipschitz functions in Theorem 1 achieve (strict) local
minima at dyadic rationals and nowhere else.

(ii) Dyadic translation and dilation each produce countably many different Lipschitz
functions sharing the same Holder subdifferentials. For any Lipschitz function f given
by Theorem 1, we definef: R — R by fo(X) = 2—1nf(2”x) with n € N. Then dpsfr = dps T,
and f,(0) = 0 = f(0). By theconstructionf (x) > 0if 0 < x < 1. Now fn(3) = £f(2"?) =
0# % =f(3). If nnme Nandn # m, we have f, # f, + Constant, because the periods
of f, and f,, are different.

We may also define fy: R — R by fy(X) := f(x + b) — f(b) for any dyadic number b.
Then dpsfy = dnsf, and f,(0) = f(0). For infinitely many dyadic number b, fb(%) # f(%).
If not, we have fb(%) = f(%) for all dyadic rationals except for a finite number of them.
By density we have f(3 +x) = f(X) + f(3) for all x € R. In particular, when x = 1 we
have0 = f(1) = 2f(3) = a; > 0. Thisis a contradiction.

(iii) Note that the proximal normal cone and approximate normal conefor alocally
Lipschitz function f are:

N+ (% F(9) = {t(¢, =1) : € € Bpf(x),t >0} U {(0,0)},
NG (X F(9) = {t(. 1) : € € daf(x).t > 0} U {(0, 0)}.

We thus see that the Lipschitz functions in Theorem 1 have the following properties:

{t¢. -1 :-1<¢<1Lt>0pU{(0,0)} ifxisdyadic,

2 N (xf(9) = { {(0.0)} otherwise.

Gt (6 F09) = {t(¢. -1 : —1< ¢ <1t>0}uU{(0.0)} foreveryx €R.

It iswell known that the set of pointsin the boundary of epi f for which N’.jp” (x. f(x)) #
{(0.0)} isdensein bdry(epi f). (2) showsthat { (x.f(x)) : N5, (x.f(x)) # {(0,0)}} may
be countable. Indeed by appropriately choosing {a,} we may ensure that both x and f (x)
are dyadic rationals, and so the proximal normal cone is non-trivial only at a subset of
the dyadic rationals in the plane. For s > ¢ > 0 an appropriate sequence is given by
an = 1— (1 — 279" for k asufficiently large integer.
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(iv) If f is differentiable at x € U, then dnsf(X) C {f'(X)}. Therefore dpsf is
singleton or empty almost everywhere, and there is no Lipschitz function f such that
dnsf(X) = (—1, 1) for every x € R.

3. Further applications. Theorem 1 allows us to construct Lipschitz functions
with prescribed Holder subdifferentials. In the sequel we assume0 < s < 1. Given aset
D c Randafunctionf definedon R, by f ~* we denote the inverse function of f, and we
definef~1(D) := {x | f(x) € D}.

DEFINITION 3. Assume h:U — R. h is said to be C1® on U provided that h is
differentiable on U, with i’ being locally s-Holder continuouson U, i.e., for eachx € U
there existsK > 0 such that | (y) — h'(2)| < K|y — Z|° whenever y and z are near x.

An application of the mean value theorem shows that each C'° function defined on
U is everywhere s-Holder smooth.

LEMMA 1. A vector v is an s-Holder subgradient of f at x if and only if on some
neighbourhood of x thereis a C*S function h < f with h(x) = f(x), ’(X) = v.

PrROOF. Suppose there exists an h being C1S with v = h(x), h(x) = f(x), andf > h
on a neighbourhood of x. Choose > 0 such that h’ is s-Holder continuous with Holder
constant K and exists by the mean value theorem an » between x and y with

h(y) = [h(y) —h(x) = N'()(y —X)] + h(x) + K () (y — X)
(') — W () (y = %) +h(x) + N (x)(y —¥)
> —Kly = x|*** +h(x) + ' (x)(y — X

Since f(y) > h(y) > f(x) + W(X)(y — X) — K|y — x|**s fory € (x — 6, x +6), we have
v € dpsf(X). Conversely, from Definition 1 we need to verify that h: R — R defined by
h(y) :=f(X) + &(y — X) — o]y — x|**S is C1S with respect to y.

ClaM 1. Ifo0<s<1,then(1+tpS <1+t5for0 <t < +o0.

PROOF. Let¢(t) := 1+t5—(1+t)°. Theclaimfollowsfrom: ¢/(t) = s(ts1—(1+t)>*) >
0and $(0) = O,

CLAIM 2. h(t) :=f(x)+¢ -t —o - [t|*S isdifferentiable and h' is s-Holder continuous.
PROOF.

E+o(l+9)(—t)° ift<0
¢ ift=0.

() Ifty >t > 0, by Claim 1 we have

E—o@l+9t  ift>0
wm:{

-6 =6t /t)° — 1] <5t/ — 1)° = (h — t)".

Thecasethat 0 > t; > ty issimilar.
(i) If eithert; ortyisO, thent] —t5 < |ty — to| isclearly true.
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(iii) 1f t; > 0> ty, then
ti + (—tz)s < |t1 — tzls + |t1 — tz|S = 2|t1 — tzls.

Hence |W(t1) — h'(t2)| < 2(1 + S)o|ty — tp|* for t; and t near O. n

In R we know that ¢ € 9 ~f(x), the Dini subdifferential, if and only if there is another
locally Lipschitz function h such that (i) f(y) > h(y) for al y near x, h(x) = f(x), and
(i) K (x) = ¢ and i’ is continuous at x. Comparing this with Lemma 1 we see that the
more restrictive the subdifferential the more restrictive the derivative of h.

LEMMA 2. (i) Letgand g~* both be C1S. Then
Insf og(¥) =g (ansf(2)  withz=g(x).

In particular dnsf o g(x) = @ if and only if dnsf(2) = @ where z = g(x).
(ii) Let gbeCYsandf belocally Lipschitz If g'(x) = 0, then dnsf o g(x) = {0}.

PROOF. (i) Suppose for a C*S function h we have f(y) > h(y) for y near g(x)
and f(g(x)) = h(g(x)). Then f(g(y)) > h(g(y)) for y near x. Since the map y —
H(a(y))d'(y) is s-Holder continuous around x, Lemma 1 shows that h'(g(x))g'(x) €
dnsf 0 g(X), thus g'(X)ans f(2) C dpsf o g(X) with z= g(x). Conversely let £ € dnsf o g(X).
Then there exists h being C* such that f(g(y)) > h(y) for y near x. We have f(y) >
h(g=*(y)) forynear g(). Sincethemapy — h'(g=*(y))(g™%)'(y) iss-Holder continuous
around g(x), Lemma 1 shows (h o g*l)’(g(x)) = (X)/d(X) € ansf(2) with z = g(x),
so we have h'(X) € g'(X)ons f(2) with z = g(X). That is dnsf o g(X) C g'(X)ons f(2) Wwhere
z=9(x).

(if) Assumethe Lipschitz constant of f around g(x) is K and the s-Holder constant of
g around x is K. By the mean value theorem there exists ;) € [x. x + h] with

|f og(x+h) —f og()| <K|g(x+h)—gx)| =K|g(n)-h—g ) hl <KKh™.
Thismeans0 € x5 o g(x). On the other hand,

fog(x+h)—fog(X
h

<K

N

h

|9(X +h) —g(x)

we have (f o g)’(x) = 0. Hence dns f o g(x) = {0}. "

It is well known that for a real-valued function g with domain an open interval, A,
theinverse g~ existsif and only if g is strictly monotone on A. If we assumethat g is
Cland g'(X) # 0theng* existslocally around x. In Lemma 2(i) we only need to assume
that g~* existslocally.

LEMMA 3. Let U be an open subset of R. Suppose that f: U — (—oo, +oo] is lower
semicontinuous, and x € U. Suppose further that g is s-Holder smooth at x. Thenf + g
is ssHolder subdifferentiable at x if and only if f is ssHolder subdifferentiable at x.
Furthermore

Ans(f +9)(X) = s f(X) + g'(X).
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ProOF. It suffices to show dps(f + g)(X) C dnsF(X) + Insg(X). Let & € dps(f + g)(X).
By assumption there exist o1, 02, 6 > 0 such that

—a1ly — X¥* < g(y) — g(¥) — IRy — X) < a1]y — x[**S,
f(y) +a(y) — F(X) — g(x) + a2ly — X|** > £(y — %),

whenever |y — x| < é. Then

f(y) = () + (o1 + o2)ly — x|**®
> f(y) = F(9 + o2ly — X[ +9(y) — 9() — g (})(y — ¥)
> (£~ g(0)(y — %)
Note that if dpsf(X) # 0, then aps(f + g)(X) # B, conversely if dns(f + g)(X) # B then
f = (f +g) — g showsapsf(X) # 0. .
We may now formulate our main application:

THEOREM 2. Assume f,g:R +— R are locally s-Holder continuous functions with
f > gandf # g. DefineF, G: R — R by

F(x) = /Oxf(s)ds and G(x) := /Oxg(s)ds.

Set D; := {x | x € R is dyadic}. Then there exist uncountably many locally Lipschitz
functions h, differing by more than a constant, on R with

(9. F(9) ifx e {y|g(y) <F(M}N(F —G)(Dy),
Insh(x) = § 0 ifx € {y|g(y) <f(y}\(F—G) (D),
{g(x)} if f(x) = g().

PrROCOF. By Theorem 1 we may choose a Lipschitz H on R with

0.1) ifxe Dy,
@ onsH09 = { é) gl hioder

Sincef # g, for some xo we have f(Xg) > g(Xo). Thereexistsé > 0 such that f > g on
[Xo — 8,%0 + 6]. Since H is periodic, by translation and dilation (see Remark 1(ii)) we
may assume at least one period of H is a subset of [(F — G)(xo — &), (F — G)(Xo + 8)].
Now (F — G)' = f — gimpliesthat F — G is C'S. When f (x) # g(x) we have (F —G)' # 0
around x, and the inverse function theorem in [7] showsthat F — G islocally invertible
around x and the local inverseis C1S around (F — G)(X). By Lemma 2 we have

(0.f() —g() if F(X) — G() € D1 and f(x) > g(x),
dpsH o (F—G)(x) =1 0 if F(x) — G(x) & Dy and f(x) > g(X),
{0} if £(x) = 9(x).
Since G is C*S, it follows from Lemma 3 that
( (g(x).f(x)) if F(X) — G(X) € D1 and f(xX) > g(x),
Is(G+Ho(F—G))(x) =4 0 if F(x) — G(X) ¢ D1 and f(X) > g(x),
( {o()} if £(x) = 9(x).
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Denoteh := G+ H o (F — G). Therefore,

(909.f(9) if x {y|f(y) > 9(y)} N (F — G) (D),
) Insh(x) = 1 0 itx e {y[f(y) > o} \ (F—G)*(Dy),
{90} it £(3) = 9(x).

By Theorem 1 plus translation and dilation we can choose uncountably many L ipschitz
functions Hy, different from H by more than a constant, which satisfy (3) and have at
least one period as a subset of [(F — G)(xg — 0), (F — G)(% +9)]. Then hi:R — R
defined by hy(x) := (G + Hy o (F — G))(x) also satisfies (4). Now there exist y1.y» €
[(F — G)(X0 — 6). (F — G)(%o + )] such that H(y1) — Ha(y1) # H(y2) — Ha(y2). Write
yi = (F — G)(x). Then (h — h)(x1) = (H — H1) o (F — G)(x1) = (H — Hi)(y1) #
(H —Hi)(y2) = (H — Hi) o (F — G)(x2) = (h — hy) (). =

REMARK 2. Assume that f,g:R +— R are locally s-Holder continuous with f # g.
With the same notations Theorem 2 becomes:

ahsh(x)
(min{g(). f®)}. max{g®).f(9)}) ifx € {y|a(y) #f(¥)}N(F —G) Dy,
=10 if x e {y| a(y) Zf(¥)} \ (F —G) (D),
{93} if f(x) = 9(x).

Asanexample, letf. g: R — R begivenby f(x) := sin(x/2) and g(x) := 1/2. Thenthere
exist uncountably many Lipschitz functions, h, on R differing by more than constants
such that dph(x) =

if x € R\ Awith sinx non-dyadic,

(min{sin®(x/2), 1/2}, max{sin’(x/2),1/2}) if x € R\ Awith sinx dyadic,
0
{ {1/2} if x € A,

where A := {kr + /2 | kisany integer}.
Note that, in general, if f > g on R, the strict monotonicity of F — G shows:

D := {x| (F(X) — G(X)) € D1} iscountable,

and we have the following Corollary:

COROLLARY 2. Supposef andgarelocally s-Holder continuousfunctionswithf (x) >
g(x) for all x € R. Then there exists a countable dense set D C R such that there exist
uncountably many locally Lipschitz functions h, differing by more than a constant, on R
with
9(.f(x) ifxeD,

=
Ish() [ 0 otherwise.
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Recall the approximate subdifferential [9, 8] and the symmetric subdifferential [10]
aregiven by:

8ah() = {1im & = & € aph(x). % — x. h(x) — h(3)}.
8sh(X) 1= 9ah(x) U (—da(—h)(X)).

If hisLipschitz near x, we havethe Clarke subdifferential : 9:h(x) = co 9;h(x) where*co”
standsfor the convex hull. Borwein and Fitzpatrick [3] have shown that in onedimension
the symmetric subdifferential and the Clarke subdifferential are the same. The fact that,
when s = 1, Theorem 2 holdsfor the proximal subdifferentials shows:

CoROLLARY 3. Suppose f and g are locally Lipschitz functions on R with f # g.
Then there exist uncountably many locally Lipschitz functions, differing by more than a
constant, on R such that they share the same approximate subdifferential everywhere.
For each such Lipschitz function h one has:

dch(¥) = ash(X) = dah(x) = co{g(x). f(x)} for everyx € R.
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