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Abstract
Schubert polynomials are polynomial representatives of Schubert classes in the cohomology of the complete
flag variety and have a combinatorial formulation in terms of bumpless pipe dreams. Quantum double Schubert
polynomials are polynomial representatives of Schubert classes in the torus-equivariant quantum cohomology
of the complete flag variety, but no analogous combinatorial formulation had been discovered. We introduce a
generalization of the bumpless pipe dreams called quantum bumpless pipe dreams, giving a novel combinatorial
formula for quantum double Schubert polynomials as a sum of binomial weights of quantum bumpless pipe dreams.
We give a bijective proof for this formula by showing that the sum of binomial weights satisfies a defining transition
equation.
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1. Introduction

Schubert polynomials were introduced by Lascoux and Schützenberger [13], and they represent coho-
mology classes called Schubert classes of the complete flag variety. The original definition was algebraic
and relied on divided difference operators; however, multiple combinatorial formulas for the monomial
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expansion of Schubert polynomials were found [1, 14, 4, 2, 11]. Two such examples are Schubert poly-
nomials as weight-generating functions of pipe dreams (originally called RC-graphs [4, 2]), or bumpless
pipe dreams [11]. For example, for BPD(𝑤), the set of (reduced) bumpless pipe dreams of a permutation
w, one has

𝔖𝑤 (𝑥, 𝑦) =
∑

𝑃∈BPD(𝑤)

bwt(𝑃) , (1.1)

where bwt(𝑃) is a product of binomials (𝑥𝑖 − 𝑦 𝑗 ) associated to 𝑃 ∈ BPD(𝑤) [11]. These pipe dream and
bumpless pipe dream formulations generalize to some generalizations of Schubert polynomials, such as
double Schubert polynomials and double Grothendieck polynomials [10, 16].

Motivated by ideas that stem from string theory, mathematicians defined quantum cohomology rings
[15, 17]. See, for example, [7] for more on the history of quantum cohomology. In the quantum coho-
mology of the complete flag variety, the Schubert classes correspond to quantum Schubert polynomials,
another generalization of Schubert polynomials [3]. Quantum double Schubert polynomials, which gen-
eralize both quantum Schubert polynomials and double Schubert polynomials, were defined in [9, 5].
Like Schubert polynomials, there is a quantum double Schubert polynomial for each permutation w
of {1, 2, . . . , 𝑛}, denoted 𝔖𝑞

𝑤 (𝑥, 𝑦), lying in Z[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑞1, . . . , 𝑞𝑛−1]. There is no known
combinatorial formulation for the monomial expansion of quantum Schubert polynomials or quantum
double Schubert polynomials. One major difficulty is the presence of unpredictable signs in the mono-
mial expansion of 𝔖𝑞

𝑤 (𝑥, 𝑦). In this paper, we define combinatorial objects called quantum bumpless
pipe dreams (QBPDs). They are a generalization of bumpless pipe dreams, and their weight-generating
function gives the quantum double Schubert polynomials; that is,

𝔖𝑞
𝑤 (𝑥, 𝑦) =

∑
𝑃∈QBPD(𝑤)

bwt(𝑃) , (1.2)

where QBPD(𝑤) is the set of QBPDs of w and bwt(𝑃) is a product of (𝑥𝑖 − 𝑦 𝑗 )’s and 𝑞𝑖’s. This is stated
precisely in Theorem 3.4. Unfortunately, this formula has internal cancellation, but the combinatorics
seems quite natural.

We prove this formula by showing the quantity
∑

𝑃∈QBPD(𝑤)

bwt(𝑃) satisfies a defining transition

equation of the quantum double Schubert polynomials (Proposition 3.14). We do this by constructing
four bijections between terms on each side of the recursion, plus a family of additional bijections between
terms that cancel out on one side. By showing how these bijections change the binomial weights, we
establish the recursion and thus establish the main identity, Theorem 3.4.

We give the necessary background in Section 2. In Section 3, we define quantum bumpless pipe
dreams, establish fundamental combinatorial properties, and state the main theorem. In Section 3.1, we
provide a way to generate all QBPDs for a given permutation using droop moves as in [11], as well as
new moves called lift moves. In Section 3.2, we prove that the quantity

∑
𝑃∈QBPD(𝑤)

bwt(𝑃) satisfies the

stability condition (i.e., it does not change under the natural inclusion map 𝑖 : 𝑆𝑛 → 𝑆𝑛+1), which is
needed for our proof of Theorem 3.4. In Section 3.3, we prove Theorem 3.4. In Section 4, we provide
some examples of (partial) cancellations of the binomial weight of QBPDs and provide tables analyzing
the cancellations in small degrees. Finally, we provide some future directions in Section 5.

2. Background

We use the notation [𝑛] := {1, 2, . . . , 𝑛}. Let 𝑆𝑛 be the symmetric group on [𝑛] (i.e., the set of
bijections from [𝑛] to [𝑛]). To write a bijection 𝜎 : [𝑛] → [𝑛], we will use one-line notation (i.e.,
writing 𝜎(1)𝜎(2) . . . 𝜎(𝑛)). We write 𝑡𝑎𝑏 for the transposition that swaps a and b, and write 𝑠𝑖 for the
transposition 𝑡𝑖,𝑖+1. The length of 𝑤 ∈ 𝑆𝑛, denoted ℓ(𝑤), is defined as the minimum number of adjacent
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Figure 1. Rothe diagram for 4213.

transpositions 𝑠𝑖 required to express w as their product. Any way to write w as a product of exactly ℓ(𝑤)
adjacent transpositions is called a reduced word for w. Let 𝑤0 := 𝑛 𝑛−1 . . . 1 be the longest permutation
in 𝑆𝑛.

We write Z[𝑥] for Z[𝑥1, . . . , 𝑥𝑛], Z[𝑥, 𝑦] for Z[𝑥] [𝑦1, . . . , 𝑦𝑛], Z[𝑥, 𝑞] for Z[𝑥] [𝑞1, . . . , 𝑞𝑛−1] and
Z[𝑥, 𝑦, 𝑞] for Z[𝑥, 𝑦] [𝑞1, . . . , 𝑞𝑛−1].

2.1. Rothe Diagrams

Throughout this paper, we use matrix coordinate notation: (𝑖, 𝑗) means the box on row i column j.
For a permutation 𝜎 : [𝑛] → [𝑛], the Rothe diagram of 𝜎 is defined as follows. The set of boxes
{(𝑖, 𝜎(𝑖)) : 𝑖 ∈ [𝑛]} are first marked with a dot in the grid. Then, starting from each dot and ending
on edges of the grid, vertical lines are drawn downward, and horizontal lines are drawn rightward. The
resulting figure is the Rothe diagram for 𝜎.

Note that the Rothe diagram for a permutation 𝜎 can be turned into a bumpless pipe dream by
‘smoothing’ the corners into tiles, as in Figure 1. (For the definition of bumpless pipe dream, see
[11], or Definition 3.1 below.)

2.2. Double Schubert polynomials

Consider the action of 𝑆𝑛 on Z[𝑥, 𝑦] by permuting the y variables; in particular, 𝑠𝑖 swaps 𝑦𝑖 and 𝑦𝑖+1:

𝑠𝑖 𝑓 (𝑥, 𝑦1, . . . , 𝑦𝑖 , 𝑦𝑖+1, . . . , 𝑦𝑛) = 𝑓 (𝑥, 𝑦1, . . . , 𝑦𝑖+1, 𝑦𝑖 , . . . , 𝑦𝑛). (2.1)

We define divided difference operators 𝜕𝑦
𝑖 as follows:

𝜕
𝑦
𝑖 ( 𝑓 ) :=

𝑓 − 𝑠𝑖 𝑓

𝑦𝑖 − 𝑦𝑖+1
. (2.2)

The divided difference operators 𝜕
𝑦
𝑤 for 𝑤 ∈ 𝑆𝑛 are defined as follows. Let 𝑠𝑎1 · · · 𝑠𝑎𝑘 be any reduced

word for w. Then,

𝜕
𝑦
𝑤 = 𝜕

𝑦
𝑎1 · · · 𝜕

𝑦
𝑎𝑘
. (2.3)

Then, the double Schubert polynomials are defined as follows:

𝔖𝑤 (𝑥, 𝑦) =

⎧⎪⎪⎨
⎪⎪⎩

∏
𝑖+ 𝑗≤𝑛

(𝑥𝑖 − 𝑦 𝑗 ), if 𝑤 = 𝑤0,

(−1)ℓ (𝑤0)−ℓ (𝑤)𝜕
𝑦
𝑤𝑤0𝔖𝑤0 (𝑥, 𝑦), otherwise.

(2.4)

Specializing the y variables to 0 recovers the Schubert polynomials.
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2.3. Quantum double Schubert polynomials

As in [3], we define𝐸 𝑘
𝑖 (𝑥1, . . . , 𝑥𝑘 ) to be the coefficient of𝜆𝑖 in the characteristic polynomial det(1+𝜆𝐺𝑘 )

where

𝐺𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑞1 0 . . . 0
−1 𝑥2 𝑞2 . . . 0
0 −1 𝑥3 . . . 0
...

...
...

. . .
...

0 0 0 . . . 𝑥𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)

The quantum double Schubert polynomials are defined as follows. For the longest permutation 𝑤0, we
have

𝔖𝑞
𝑤0 (𝑥, 𝑦) :=

𝑛−1∏
𝑘=1

𝐸 𝑘
𝑘 (𝑥1 − 𝑦𝑛−𝑘 , . . . , 𝑥𝑘 − 𝑦𝑛−𝑘 ), (2.6)

and, for any permutation w, we have

𝔖𝑞
𝑤 (𝑥, 𝑦) = (−1)ℓ (𝑤0)−ℓ (𝑤)𝜕

𝑦
𝑤𝑤0𝔖

𝑞
𝑤0 (𝑥, 𝑦). (2.7)

This is the definition as in [5]. Specializing the q variables to 0 recovers the double Schubert polynomials,
while specializing the y variables to 0 recovers the quantum Schubert polynomials. Setting both y and
q variables to 0 recovers the Schubert polynomials.

Theorem 2.1 (Monk’s rule for quantum double Schubert polynomials [12]). For any k and any permu-
tation w,

𝔖𝑞
𝑠𝑘 (𝑥, 𝑦)𝔖

𝑞
𝑤 (𝑥, 𝑦) =

∑
𝑎≤𝑘<𝑏,

ℓ (𝑤𝑡𝑎𝑏)=ℓ (𝑤)+1

𝔖𝑞
𝑤𝑡𝑎𝑏

(𝑥, 𝑦) +
∑

𝑐≤𝑘<𝑑,
ℓ (𝑤𝑡𝑐𝑑)=ℓ (𝑤)−ℓ (𝑡𝑐𝑑)

𝑞𝑐𝑑𝔖
𝑞
𝑤𝑡𝑐𝑑

(𝑥, 𝑦)

+

𝑘∑
𝑖=1

(𝑦𝑤 (𝑖) − 𝑦𝑖)𝔖
𝑞
𝑤 (𝑥, 𝑦),

where 𝑞𝑐𝑑 := 𝑞𝑐𝑞𝑐+1 . . . 𝑞𝑑−1.

3. Quantum bumpless pipe dreams

Definition 3.1. A quantum bumpless pipe dream (QBPD) is a tiling of an 𝑛 × 𝑛 grid filled with tiles

so that

◦ The tiling forms n pipes;
◦ Each pipe starts horizontally at the right edge of the grid and ends vertically at the bottom edge of

the grid;
◦ The pipes only move upward, downward or leftward (but not rightward) when moving from the right

edge to the bottom edge;
◦ No two pipes cross more than once.
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Figure 2. A non-example of a QBPD.

The last tile is a 2 × 1 domino tile, which occupies two vertically adjacent empty squares in the
grid. A (non-quantum) bumpless pipe dream (BPD) (as defined in [11]), is a QBPD in which the last
three tiles above ( , , and the domino tile) do not appear, so in a BPD, pipes only move downward
and leftward. The last condition that no two pipes cross more than once is the reducedness condition.
Throughout this paper, all quantum bumpless pipe dreams are reduced, though in some proofs we may
use the term ‘reduced quantum bumpless pipe dream’ to stress that the reducedness condition holds
when it is not immediately clear why.

Example 3.2. Figure 2 shows a non-example of a QBPD. The pipe starting on row 3 moves rightward
in the tiles (2, 2) and (2, 3), which violates Definition 3.1.

Definition 3.3. The binomial weight for a QBPD P, denoted bwt(𝑃), is the product of factors contributed
by the following rules:

◦ An empty tile on row i, column j contributes 𝑥𝑖 − 𝑦 𝑗 ;

◦ A domino tile whose upper cell is on row i contributes 𝑞𝑖;
◦ A cross tile on row i where the vertical strand moves upward contributes 𝑞𝑖;
◦ A southwest elbow on row i contributes −𝑞𝑖;
◦ A vertical tile on row i where the strand moves upward contributes −𝑞𝑖 .

In other words, let 𝑃(𝑖, 𝑗) denote the cell on row i column j, and let

𝐸 (𝑃) := {(𝑖, 𝑗) : 𝑃(𝑖, 𝑗) is a single empty cell},

𝑄(𝑃) := {(𝑖, 𝑗) : 𝑃(𝑖, 𝑗) is the upper cell of a domino or a tile

in which the vertical strand moves upward},

and

𝑁𝑄(𝑃) := {(𝑖, 𝑗) : 𝑃(𝑖, 𝑗) is a tile or a tile

in which the strand moves upward}.

Then,

bwt(𝑃) :=
∏

(𝑖, 𝑗) ∈𝐸 (𝑃)

(𝑥𝑖 − 𝑦 𝑗 )
∏

(𝑖, 𝑗) ∈𝑄 (𝑃)

𝑞𝑖
∏

(𝑖, 𝑗) ∈𝑁𝑄 (𝑃)

(−𝑞𝑖)

= (−1) |𝑁𝑄 (𝑃) |
∏

(𝑖, 𝑗) ∈𝐸 (𝑃)

(𝑥𝑖 − 𝑦 𝑗 )
∏

(𝑖, 𝑗) ∈𝑄 (𝑃)∪𝑁𝑄 (𝑃)

𝑞𝑖 . (3.1)
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Figure 3. QBPDs for 4213.

Figure 4. A droop move (light color indicates possibilities).

A QBPD P is said to be associated with a permutation w if the pipe starting on the right on row i
ends up on column 𝑤(𝑖).

Let QBPD(𝑤) denote the set of QBPDs associated to w. Our main result is the following:

Theorem 3.4. The quantum double Schubert polynomial indexed by 𝑤 ∈ 𝑆𝑛 is the sum of binomial
weights of all QBPDs associated to w:

𝔖𝑞
𝑤 (𝑥, 𝑦) =

∑
𝑃∈QBPD(𝑤)

bwt(𝑃) .

Example 3.5. From Figure 3, we have

𝔖𝑞
4213(𝑥, 𝑦) = (𝑥1 − 𝑦1) (𝑥1 − 𝑦2) (𝑥1 − 𝑦3) (𝑥2 − 𝑦1) + 𝑞1 (𝑥1 − 𝑦2) (𝑥1 − 𝑦3)

+ (𝑥1 − 𝑦1) (𝑥2 − 𝑦1) (−𝑞1) + 𝑞1 (−𝑞1) + (−𝑞1)𝑞2 .

As a corollary, we have the following formula.

Corollary 3.6. The quantum Schubert polynomial indexed by 𝑤 ∈ 𝑆𝑛 is the sum of monomial weights
of all QBPDs associated to w:

𝔖𝑞
𝑤 (𝑥) =

∑
𝑃∈QBPD(𝑤)

wt(𝑃),

where

wt(𝑃) :=
∏

(𝑖, 𝑗) ∈𝐸 (𝑃)

𝑥𝑖
∏

(𝑖, 𝑗) ∈𝑄 (𝑃)

𝑞𝑖
∏

(𝑖, 𝑗) ∈𝑁𝑄 (𝑃)

(−𝑞𝑖) .

3.1. Droop moves and lift moves

Droop moves on bumpless pipe dreams are defined in [11]. They are moves of the form illustrated in
Figure 4. Droop moves can be extended to the QBPD setting. We allow a droop move only if the result
is a valid and reduced QBPD.

In [11], Lam, Lee and Shimozono proved that any bumpless pipe dream of a given permutation can
be obtained from the Rothe diagram by a sequence of droops. To generate all QBPDs, we introduce
other moves called lift moves.
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Figure 5. A lift move (light color indicates possibilities).

The lift moves are moves in which a horizontal segment of a strand is ‘lifted up’ into a detour that
goes up, moves left, and then moves back down. Figure 5 shows an example of a lift move. There might
be other unpictured pipes in the picture as long as the result is a valid and reduced QBPD.

A QBPD is said to be unpaired if it has no domino tile. To generate all QBPDs, we can generate
all unpaired QBPDs and find all ways to pair empty boxes into dominos. Note that droops moves and
lift moves preserve the permutation associated to the QBPD. It turns out (Lemma 3.9 below) that all
unpaired QBPD for a permutation can be generated from the Rothe diagram using only droop and lift
moves. To prove this, we first need some technical definitions and lemmas.

Definition 3.7. A leftmost region is a region given by all columns to the left of a given column. A simple
region is a region in which the tiles containing pipes are all , , , or tiles. A strand is said to
have the simple form if it goes straight left, takes a turn, then goes straight down.

Lemma 3.8. If and tiles do not exist in a leftmost region of a QBPD, then that region of the
QBPD must be simple. Furthermore, every strand has the simple form in that leftmost region.

Proof. If and do not exist in some leftmost region of the QBPD, then there is also no tile,
since if a exists, then the pipe of that tile must move upward and eventually take a left to produce a

tile within the region. Thus, the only possible elbow tile is the tile, and all strands must have the
‘simple’ form in which it only has a single turn. In particular, if the region is the entire QBPD, then the
entire QBPD has the ‘simple’ form, and it is exactly the Rothe diagram. �

Lemma 3.9. All unpaired QBPDs can be generated from the Rothe diagram using a sequence of droop
and lift moves.

Proof. It suffices to show that, given any QBPD, we can use a sequence of valid inverse droop and
inverse lift moves to get back to the Rothe diagram. Given a QBPD that is not the Rothe diagram, we find
the leftmost or tile. If no such tile exists, then the QBPD is just the Rothe diagram by Lemma 3.8.
Otherwise, if there are ties, take the topmost one.

Now look at the region strictly to the left of that leftmost chosen tile. This region is free of and
tiles by definition, and thus is simple by Lemma 3.8. Let R denote this simple region. By Lemma 3.8,
every strand in R has the simple form.

We first consider the case where the leftmost chosen tile is . Call this tile e. Then, tracing this pipe
to the left, it eventually takes a turn – call this elbow a – and go straight down since this is R. Tracing
this pipe up from tile e, it eventually takes a turn – call this elbow b. Consider the rectangle bounded
by 𝑎, 𝑏, 𝑒. We claim we can undroop e into the topleft corner of this rectangle. Call this topleft corner c.
Note that every other pipe in R has the simple form, so its behavior in R is determined by the location
of its tile, which cannot be on the row of b or column of a (since the pipe would run into either a
or b otherwise). This means there are no pipes moving horizontally in the 𝑏 → 𝑐 horizontal segment,
there are no pipes moving vertically in the 𝑐 → 𝑎 horizontal segment, and c is empty. Thus, the undroop
does not conflict with other pipes. After undrooping, the changed strand is simple in R and all other
strands are still simple, so in R, they cross at most once. There could be at most one other crossing since
crossings out of R exist before the undroop. Then if any two pipes cross twice after the undroop, they
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Figure 6. Extending a 𝑛 × 𝑛 QBPD to a (𝑛 + 1) × (𝑛 + 1) QBPD.

must cross once before the undroop, which is a contradiction since the parity of the number of crossings
cannot change.

Now consider the case where the leftmost chosen tile is . Call this tile e. In this case, trace the
pipe down and find the tile and call this tile a. Trace the pipe to the left and find the turn. Call
this tile b. After b, it goes straight down since this is in R. Make the inverse lift by unlifting the 𝑒 → 𝑏
horizontal segment down to the row of a (i.e., making the pipe at a move to the left until it hits the
column of b instead of moving up to e). As in the previous case, other pipes in R have the simple form,
and the tile of another strand in R cannot be on the row of a. So, the inverse lift does not conflict
with other pipes. After inverse lifting, the strand is simple in R, so a similar argument to the previous
case shows it is reduced.

After each inverse droop or inverse lift above, the number of or tiles decreases, so we eventually
arrive at the Rothe diagram. �

3.2. Stability

Given a QBPD of 𝑤 ∈ 𝑆𝑛, we can think of w as being in 𝑆𝑛+1. In terms of QBPDs, we can extend an
𝑛 × 𝑛 QBPD P to a (𝑛 + 1) × (𝑛 + 1) QBPD as in Figure 6.

The reverse is also possible:

Lemma 3.10. Given 𝑤 ∈ 𝑆𝑛+1 such that 𝑤(𝑛 + 1) = 𝑛 + 1, for any (𝑛 + 1) × (𝑛 + 1) QBPD of w, we can
restrict it to an 𝑛 × 𝑛 QBPD of w restricted to 𝑆𝑛.

Remark 3.11. No pipes move upward in the rightmost column of any valid QBPD. This is because if
a pipe moves upward in the rightmost column, eventually, it turns left and produces a tile on the
rightmost column, which blocks the pipe that starts on that row.

Proof of Lemma 3.10. The (𝑛 + 1, 𝑛 + 1) tile is a since 𝜎(𝑛 + 1) = 𝑛 + 1. If there is a tile in the
rightmost column except for the bottom right corner that is not horizontal, let (𝑘, 𝑛 + 1) be the lowest
such tile (largest k). Then, this pipe cannot move up by Remark 3.11, so it must move down, but then it
will run into the (𝑛 + 1, 𝑛 + 1) elbow, which is a contradiction. Thus, all tiles in the rightmost column
except the bottom right corner are horizontal. Similar reasoning shows all tiles in the last row except the
bottom right corner are vertical. Thus, we can reduce the QBPD to 𝑛 × 𝑛. �

3.3. Proof of Theorem 3.4.

We write 𝜎𝑡𝑎𝑏�𝜎 for ℓ(𝜎𝑡𝑎𝑏) = ℓ(𝜎)+1 and 𝜎𝑡𝑐𝑑�𝜎 for ℓ(𝜎𝑡𝑐𝑑) = ℓ(𝜎)−ℓ(𝑡𝑐𝑑) to simplify notation.

Remark 3.12. Let 𝜎 be a permutation and 𝑎 < 𝑏. Then,

◦ 𝜎𝑡𝑎𝑏 � 𝜎 if and only if 𝜎(𝑎) < 𝜎(𝑏) and for all 𝑎 < 𝑘 < 𝑏, 𝜎(𝑘) < 𝜎(𝑎) or 𝜎(𝑘) > 𝜎(𝑏).
◦ 𝜎𝑡𝑎𝑏 � 𝜎 if and only if 𝜎(𝑎) > 𝜎(𝑏) and for all 𝑎 < 𝑘 < 𝑏, 𝜎(𝑎) > 𝜎(𝑘) > 𝜎(𝑏).

Definition 3.13. Let 𝑆∞ denote the set of permutations of Z>0 that fix all but finitely many elements.
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Proposition 3.14. Let 𝜋 be a permutation in 𝑆∞ that is not the identity, and let n be the largest number
such that 𝜋(𝑛) ≠ 𝑛. Let 𝑎 = 𝜋−1 (𝑛) and 𝑏 > 𝑎 be such that

𝜋(𝑏) = max
𝑛≥𝑖>𝑎

𝜋(𝑖) (3.2)

(i.e., the number that got mapped to the largest among those after a, except those after n). Let 𝜎 = 𝜋𝑡𝑎𝑏 .
Then, we have a transition equation for quantum double Schubert polynomials:

𝔖𝑞
𝜋 (𝑥, 𝑦) = (𝑥𝑎 − 𝑦𝜎 (𝑎) )𝔖

𝑞
𝜎 (𝑥, 𝑦) +

∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝔖𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦) (3.3)

−
∑
𝑎<𝑐,

𝜎𝑡𝑎𝑐�𝜎

𝑞𝑎𝑐𝔖
𝑞
𝜎𝑡𝑎𝑐

(𝑥, 𝑦) +
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑞𝑐𝑎𝔖
𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦).

Furthermore, (3.3), along with the base case 𝔖𝑞
id(𝑥, 𝑦) = 1, is enough to uniquely determine all the

quantum double Schubert polynomials.

Proof. Note that b is the only number greater than a (and no more than n) such that 𝜎(𝑏) > 𝜎(𝑎). Thus,
𝜋 = 𝜎𝑡𝑎𝑏 � 𝜎, and so b is the only number greater than a such that 𝜎𝑡𝑎𝑏 � 𝜎. By Theorem 2.1,

𝔖𝑞
𝑠𝑎 (𝑥, 𝑦)𝔖

𝑞
𝜎 (𝑥, 𝑦) =

∑
𝑢≤𝑎<𝑣,
𝜎𝑡𝑢𝑣�𝜎

𝔖𝑞
𝑤𝑡𝑢𝑣

(𝑥, 𝑦) +
∑

𝑐≤𝑎<𝑑,
𝜎𝑡𝑐𝑑�𝜎

𝑞𝑐𝑑𝔖
𝑞
𝑤𝑡𝑐𝑑

(𝑥, 𝑦) +
𝑎∑
𝑖=1

(𝑦𝑤 (𝑖) − 𝑦𝑖)𝔖
𝑞
𝑤 (𝑥, 𝑦) , (3.4)

and

𝔖𝑞
𝑠𝑎−1 (𝑥, 𝑦)𝔖

𝑞
𝜎 (𝑥, 𝑦) =

∑
𝑢<𝑎≤𝑣,
𝜎𝑡𝑢𝑣�𝜎

𝔖𝑞
𝑤𝑡𝑢𝑣

(𝑥, 𝑦) +
∑

𝑐<𝑎≤𝑑,
𝜎𝑡𝑐𝑑�𝜎

𝑞𝑐𝑑𝔖
𝑞
𝑤𝑡𝑐𝑑

(𝑥, 𝑦) +
𝑎−1∑
𝑖=1

(𝑦𝑤 (𝑖) − 𝑦𝑖)𝔖
𝑞
𝑤 (𝑥, 𝑦).

(3.5)

Computing 𝔖𝑞
𝑠𝑎 (𝑥, 𝑦)𝔖

𝑞
𝑤 (𝑥, 𝑦) −𝔖𝑞

𝑠𝑎−1 (𝑥, 𝑦)𝔖
𝑞
𝑤 (𝑥, 𝑦) and rearranging, we get

(𝑥𝑎 − 𝑦𝜎 (𝑎) )𝔖
𝑞
𝜎 (𝑥, 𝑦) =

∑
𝑎<𝑣,

𝜎𝑡𝑎𝑣�𝜎

𝔖𝑞
𝜎𝑡𝑎𝑣

(𝑥, 𝑦) −
∑
𝑢<𝑎

𝜎𝑡𝑢𝑎�𝜎

𝔖𝑞
𝜎𝑡𝑢𝑎

(𝑥, 𝑦)

+
∑
𝑎<𝑑,

𝜎𝑡𝑎𝑑�𝜎

𝑞𝑎𝑑𝔖
𝑞
𝜎𝑡𝑎𝑑

(𝑥, 𝑦) −
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑞𝑐𝑎𝔖
𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦) . (3.6)

By the observation that b is the only number greater than a such that 𝜎𝑡𝑎𝑏 � 𝜎, we have

(𝑥𝑎 − 𝑦𝜎 (𝑎) )𝔖
𝑞
𝜎 (𝑥, 𝑦) = 𝔖𝑞

𝜋 (𝑥, 𝑦) −
∑
𝑐<𝑎

𝜎𝑡𝑐𝑎�𝜎

𝔖𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦)

+
∑
𝑎<𝑐,

𝜎𝑡𝑎𝑐�𝜎

𝑞𝑎𝑐𝔖
𝑞
𝜎𝑡𝑎𝑐

(𝑥, 𝑦) −
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑞𝑐𝑎𝔖
𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦) , (3.7)

and rearranging gives (3.3).
For a permutation 𝜋 that is not the identity permutation, let 𝑚(𝜋) denote the largest n such that

𝜋(𝑛) ≠ 𝑛 and let 𝑝(𝜋) denote 𝜋−1 (𝑚(𝜋)). Then for any permutation 𝜏 that appears on the RHS, we have
𝑚(𝜏) < 𝑚(𝜋) or 𝑚(𝜏) = 𝑚(𝜋) and 𝑝(𝜏) > 𝑝(𝜋) unless 𝜏 = id. Thus, (3.3), along with the base case
𝔖𝑞

id(𝑥, 𝑦) = 1, is enough to uniquely determine all quantum double Schubert polynomials. �
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Remark 3.15. The usual way to obtain a transition equation from Monk’s rule is by taking a to be the
last descent of 𝜋. Here, we take 𝑎 = 𝜋−1 (𝑛) instead. This choice is deliberate: our proof of Theorem 3.4
works with this version of transition equation and not the usual version.

We give a bijective proof to show that polynomials generated by QBPDs with binomial weights
satisfying (3.3). There will be 4 bijections, each matching some subset of terms on the LHS of (3.3)
with one of the four terms on the RHS of (3.3), except for portions of the last term

∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑞𝑐𝑎𝔖
𝑞
𝜎𝑡𝑐𝑎

(𝑥, 𝑦) (3.8)

that will remain, which will be shown to cancel out using another series of bijections. The first two
bijections (to be called 𝜙𝐴 and 𝜙𝐵) are essentially the bijection in [16], which could also be viewed as
a special case of the algorithm given in [8].

Fix 𝜋 ∈ 𝑆∞ and corresponding 𝑛, 𝜎, 𝑎, 𝑏 as above. Note that we can think of 𝜋 as a permutation
in 𝑆𝑛. By Lemma 3.10, the polynomial generated by the QBPDs of 𝜋 does not depend on if we think
of 𝜋 as being in 𝑆𝑛 or in 𝑆𝑁 for any 𝑁 ≥ 𝑛. Furthermore, for any other permutation 𝜏 appearing in
(3.3), 𝑚(𝜏) ≤ 𝑛, and thus by Lemma 3.10, we can think of 𝜏 as a permutation 𝑆𝑛 without changing the
polynomial generated by the QBPDs of 𝜏. Let𝑚 = 𝜋(𝑏) = 𝜎(𝑎). For reasons that will become clear later,
it is helpful to define 𝑆 := {𝑐 < 𝑎 : 𝜎𝑡𝑐𝑎�𝜎}. Order the elements of S so that 𝑆 = {𝑎1 > 𝑎2 > · · · > 𝑎𝑘 }.
For convenience, let 𝑎0 := 𝑎. Let 𝑝𝑖 := 𝜎(𝑎𝑖), in particular 𝑝0 = 𝜎(𝑎) = 𝑚. In summary, we have the
following setup:

Setup 3.16. 𝜋 ∈ 𝑆∞, n is the largest number such that 𝜋(𝑛) ≠ 𝑛, and thus, 𝜋 ∈ 𝑆𝑛. Set 𝑎 = 𝜋−1 (𝑛) < 𝑛
so 𝜋(𝑎) = 𝑛, and

𝜋(𝑏) = max
𝑎<𝑖≤𝑛

𝜋(𝑖). (3.9)

Set 𝜎 = 𝜋𝑡𝑎𝑏 ∈ 𝑆𝑛, and 𝑚 = 𝜋(𝑏) = 𝜎(𝑎). Note that b is the only number greater than a such that
𝜎(𝑏) > 𝑚. As above, we have

𝑆 = {𝑐 < 𝑎 : 𝜎𝑡𝑐𝑎 � 𝜎} = {𝑎1 > 𝑎2 > · · · > 𝑎𝑘 }, (3.10)

and 𝑎0 = 𝑎, 𝑝𝑖 = 𝜎(𝑎𝑖) for 0 ≤ 𝑖 ≤ 𝑘; in particular, 𝑝0 = 𝜎(𝑎) = 𝑚.

Recall the matrix coordinate notation: (𝑖, 𝑗) means the tile on row i column j and [𝑎, 𝑏] × [𝑐, 𝑑]
represents the rectangle consisting of row a to b and column c to d.

Proposition 3.17. In Setup 3.16, any QBPD for 𝜋 has one of the 4 configurations in Figure 7 when
restricted to [𝑎, 𝑛] × [𝑚, 𝑛].

Proof. The Rothe diagram has configuration A, where the green pipes are straight since 𝜋(𝑎) = 𝑛 and
𝑚 = 𝜋(𝑏) > 𝜋(𝑑) for all 𝑑 > 𝑎, 𝑑 ≠ 𝑏. Since all unpaired QBPDs can be generated from the Rothe
diagram by a sequence of lift moves and droop moves, we only need to analyze what lift moves and droop
moves can do to the [𝑎, 𝑛] × [𝑚, 𝑛] region. Droop moves need an empty tile to droop onto, so if it affects
this region, then it must droop onto the empty tile at (𝑎, 𝑚), which gives configuration B. Lift moves
need to turn a tile or a tile upward, so from configuration A, only the tile on column m and row
strictly between a and b can be turned up. Thus, a droop move that changes the configuration will turn
a tile at (𝑐, 𝑚) up, for some 𝑎 < 𝑐 < 𝑏, which gives configuration C. Once we reach configuration B,
droop moves cannot change this region since there are no more empty tiles. Lift moves cannot change
the region either, since the elbow at (𝑎, 𝑚) blocks all lift moves that turn any tiles directly below it
upward. Similarly, once we reach configuration C, no more droop moves or lift moves can change the
configuration (except for possibly a lift move that turns the tile at (𝑎, 𝑚) into a tile.) Finally, since
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Figure 7. Configurations for QBPDs of 𝜋. The number of green pipes may differ, but they must go
straight as in the figure. Thin blue (in C) indicates possibilities. The numbers written on the left and at
the bottom of each diagram are row numbers and column numbers.

Figure 8. Configuration of QBPDs of 𝜎.

droop and lift moves only generate unpaired QBPDs, a fourth possible configuration is when we have
configuration A, but the empty tile on (𝑎, 𝑚) gets paired into a domino, which is configuration D. �

Proposition 3.18. In Setup 3.16, any QBPD for 𝜎 has the configuration of Figure 8 when restricted to
[𝑎, 𝑛] × [𝑚, 𝑛]:

Proof. This is the configuration for the Rothe diagram of 𝜎, by a similar argument as in the proof of
Proposition 3.17. There are no empty tiles, so droop moves cannot affect this region. Lift moves need
to turn a tile or a tile upward, but all such tiles in this region lie in the rightmost column, so they
cannot move upward by Remark 3.11. Thus, lift moves cannot change this region. �

Proposition 3.19. In Setup 3.16, for 𝑐 < 𝑎 such that 𝜎𝑡𝑐𝑎�𝜎, all QBPDs of 𝜎𝑡𝑐𝑎 have the configuration
in Figure 9 when restricted to [𝑎, 𝑛] × [𝑚, 𝑛].

https://doi.org/10.1017/fms.2024.112 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.112


12 T. Le et al.

Figure 9. Configuration of QBPDs of 𝜎𝑡𝑐𝑎 � 𝜎.

Figure 10. Configuration for QBPDs of 𝜎𝑡𝑎𝑐 � 𝜎.

Proof. Since 𝜎𝑡𝑐𝑎 � 𝜎, we have 𝜎(𝑐) < 𝜎(𝑎) = 𝑚, so this is the configuration of the Rothe diagram
of 𝜎𝑡𝑐𝑎, where the pipe starting on row a goes to column 𝜎(𝑐) < 𝑚 and the pipe starting on row 𝑐 < 𝑎

goes to column m. There are no empty tiles, and all tiles or tiles are in the rightmost column, so
by the same reasoning as in Proposition 3.18, droop and lift moves cannot change this configuration.
Thus, all QBPDs of 𝜎𝑡𝑐𝑎 have this configuration. �

Proposition 3.20. In Setup 3.16, for 𝑐 > 𝑎 such that 𝜎𝑡𝑎𝑐�𝜎, all QBPDs of 𝜎𝑡𝑎𝑐 have the configuration
as in Figure 10 when restricted to [𝑎, 𝑛] × [𝑚, 𝑛].

Proof. Since 𝜎𝑡𝑎𝑐 � 𝜎, we have 𝑚 = 𝜎(𝑎) > 𝜎(𝑡) > 𝜎(𝑐) for all 𝑎 < 𝑡 < 𝑐 by Remark 3.12, but
𝜎(𝑏) > 𝜎(𝑎), so 𝑐 < 𝑏. Thus, the Rothe diagram of 𝜏 := 𝜎𝑡𝑎𝑐 has the configuration as in Figure 10,
with the tile at (𝑎, 𝑚) being a tile. Droop moves cannot change this region since there are no empty
tiles. For lift moves, the only tiles or tiles not on the rightmost column are on column m. Now,
for 𝑎 < 𝑦 < 𝑐 since 𝜏(𝑎) < 𝜏(𝑡), the pipe at (𝑡, 𝑚) cannot be turned upward using a lift move since it
would intersect with the pipe starting at row a. Thus, the only droop move that can change the region is
to turn the tile at (𝑎, 𝑚) upward, which changes it into a tile. After this, no more droop or lift moves
can change the region. �

We now analyze QBPDs for permutations of the form 𝜎𝑡𝑐𝑎 � 𝜎, 𝑐 < 𝑎.

Proposition 3.21. In Setup 3.16, we have the following properties:

(a) If 𝑆 ≠ ∅, then 𝑎1 = 𝑎 − 1.
(b) 𝑝𝑘 > 𝑝𝑘−1 > · · · > 𝑝1 > 𝑝0 = 𝑚.
(c) If 𝑎𝑖 < 𝑗 < 𝑎𝑖−1 for some i, then 𝑚 < 𝜎( 𝑗) < 𝑝𝑖−1.
(d) If 𝑎𝑖 < 𝑗 < 𝑎 for some i and 𝑗 ≠ 𝑎𝑖−1, then 𝑚 < 𝜎( 𝑗) < 𝑝𝑖−1.
(e) If 𝑎𝑖 < 𝑗 for some i and 𝜎( 𝑗) > 𝜎(𝑎𝑖−1), then 𝑗 = 𝑏.
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Figure 11. Configurations of QBPDs of 𝜎𝑡𝑎−1,𝑎.

Proof. For (a), if S is not empty, suppose 𝑠 ∈ 𝑆. Then by Remark 3.12, 𝜎(𝑠) > 𝜎(𝑡) > 𝜎(𝑎) for any
𝑠 < 𝑡 < 𝑎. In particular, if 𝑠 ≠ 𝑎 − 1, then 𝜎(𝑎 − 1) > 𝜎(𝑎), which means 𝜎𝑡𝑎−1,𝑎 �𝜎. Thus, 𝑎 − 1 ∈ 𝑆
(and if 𝑠 = 𝑎 − 1, we also have 𝑎 − 1 ∈ 𝑆). By the ordering, 𝑎1 = 𝑎 − 1.

For (b), for each 1 ≤ 𝑖 ≤ 𝑘 , note that 𝜎𝑡𝑎𝑖𝑎 � 𝜎. So, by Remark 3.12, we have 𝜎(𝑎𝑖) > 𝜎(𝑎) and
𝜎(𝑎𝑖) > 𝜎(𝑡) > 𝜎(𝑎) for all 𝑎𝑖 < 𝑡 < 𝑎. In particular, if 𝑖 > 1, we have 𝜎(𝑎𝑖) > 𝜎(𝑎𝑖−1), which is
𝑝𝑖 > 𝑝𝑖−1, and if 𝑖 = 1, we have 𝜎(𝑎1) > 𝜎(𝑎), which is 𝑝1 > 𝑝0 = 𝑚.

For (c), the statement is vacuously true when 𝑖 = 1 since 𝑎1 = 𝑎0 − 1, so fix 𝑖 > 1 and j such that
𝑎𝑖−1 < 𝑗 < 𝑎𝑖 . We have 𝜎𝑡𝑎𝑖𝑎�𝜎, so by Remark 3.12, we have 𝜎(𝑎𝑖) > 𝜎(𝑡) > 𝜎(𝑎) for all 𝑎𝑖 < 𝑡 < 𝑎.
In particular, 𝜎( 𝑗) > 𝜎(𝑎) = 𝑚. Now, suppose for contradiction that 𝜎( 𝑗) > 𝜎(𝑎𝑖−1). Consider the set

𝑋 := {𝑞 < 𝑎𝑖−1 : 𝜎(𝑞) > 𝜎(𝑎𝑖−1)}. (3.11)

Note that 𝑗 ∈ 𝑋 . Let h be the maximum element of X. Then, 𝑎𝑖−1 > ℎ ≥ 𝑗 > 𝑎𝑖 . We will show
that ℎ ∈ 𝑆, contradicting the fact that S has no element strictly between 𝑎𝑖 and 𝑎𝑖−1 by the ordering.
Consider any r such that ℎ < 𝑟 < 𝑎. If 𝑟 > 𝑎𝑖−1, we have 𝑎𝑖−1 < 𝑟 < 𝑎, and 𝜎𝑡𝑎𝑖−1𝑎 � 𝜎, so by
Remark 3.12, we have 𝜎(ℎ) > 𝜎(𝑎𝑖−1) > 𝜎(𝑟) > 𝜎(𝑎). If 𝑟 = 𝑎𝑖−1, then 𝜎(ℎ) > 𝜎(𝑎𝑖−1) > 𝜎(𝑎) by
assumption. If 𝑟 < 𝑎𝑖−1, then ℎ < 𝑟 < 𝑎𝑖−1, so 𝑟 ∉ 𝑋 (since h is maximum of X). So, 𝜎(𝑟) < 𝜎(𝑎𝑖−1),
and thus, 𝜎(ℎ) > 𝜎(𝑎𝑖−1) > 𝜎(𝑟) > 𝜎(𝑎). Thus, we showed that for any ℎ < 𝑟 < 𝑎, we have
𝜎(ℎ) > 𝜎(𝑟) > 𝜎(𝑎). Since we have 𝜎(ℎ) > 𝜎(𝑎), Remark 3.12 gives 𝜎𝑡ℎ𝑎 � 𝜎, so ℎ ∈ 𝑆.

For (d), the statement is also vacuously true when 𝑖 = 1, and when 𝑖 > 1, by (c), we only need
to consider the case 𝑎𝑖−1 < 𝑗 < 𝑎. However, we have 𝜎𝑡𝑎𝑖−1𝑎 � 𝜎. Then, by Remark 3.12, we have
𝜎(𝑎𝑖−1) > 𝜎( 𝑗) > 𝜎(𝑎), which is 𝑚 < 𝜎( 𝑗) < 𝑝𝑖−1.

For (e), by (d), we only need to consider 𝑗 ≥ 𝑎. We have 𝜎( 𝑗) > 𝜎(𝑎𝑖−1) by assumption and
𝜎(𝑎𝑖−1) ≥ 𝜎(𝑎) by (b), so 𝑗 ≠ 𝑎, and thus, 𝑗 > 𝑎. However, recall that b is the only number greater
than a such that 𝜎(𝑏) > 𝜎(𝑎), so 𝑗 = 𝑏. �

Proposition 3.22. In Setup 3.16, if 𝑆 ≠ ∅, any QBPD for 𝜎𝑡𝑎−1,𝑎 has one of the two configurations in
Figure 11.

Proof. The Rothe diagram has configuration 𝑋1. Droop moves cannot change the region, and the only
tile that could possibly be turned upward by a lift move is the tile at (𝑎 − 1, 𝑝1). If it got turned up by
a lift move, we get configuration 𝑌1. When we reach configuration 𝑌1, no more droop or lift moves can
change the configuration. �

Proposition 3.23. In Setup 3.16, for 𝑖 > 1, any QBPD for 𝜎𝑡𝑎𝑖𝑎 has one of the two configurations as in
Figure 12.
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Figure 12. Configurations of QBPDs of 𝜎𝑡𝑎𝑖𝑎 � 𝜎, 𝑖 > 1.

Proof. Let 𝜏 = 𝜎𝑡𝑎𝑖𝑎. If 𝑡 > 𝑎𝑖 and 𝜎(𝑡) > 𝜏(𝑎𝑖−1) = 𝑝𝑖−1, then 𝑡 = 𝑏 by Proposition 3.21 (e). Since
𝜏(𝑡) = 𝜎(𝑡) except when 𝑡 ∈ {𝑎, 𝑎𝑖} and 𝜏(𝑎) = 𝜎(𝑎𝑖) = 𝑝𝑖 > 𝑝𝑖−1, we have if 𝑡 > 𝑎𝑖 and 𝜏(𝑡) > 𝑝𝑖−1,
then 𝑡 ∈ {𝑎, 𝑏}. Thus, the Rothe diagram for 𝜏 has configuration 𝑋𝑖 with the tile at (𝑎𝑖 , 𝑝𝑖−1) being a
tile. Now, no droop moves could affect the [𝑎𝑖 , 𝑛] × [𝑝𝑖−1, 𝑛] region. For lift moves, the only tiles that
could be turned up are tiles on column 𝑝𝑖−1 and 𝑝𝑖 . For 𝑎𝑖 < 𝑡 < 𝑎, since 𝜏(𝑡) = 𝜎(𝑡) > 𝜎(𝑎) = 𝜏(𝑎𝑖),
the pipe starting on row t cannot intersect with the pipe starting on row 𝑎𝑖 , so we cannot use a lift move
on tiles at (𝑡, 𝑝𝑖−1) or (𝑡, 𝑝𝑖). Thus, the only possible tiles that can be turned up using lift moves are
at (𝑎𝑖 , 𝑝𝑖−1) or (𝑎𝑖 , 𝑝𝑖), which gives the configuration 𝑋𝑖 with (𝑎𝑖 , 𝑝𝑖−1) being a tile or configuration
𝑌𝑖 . After this, the tiles shown in configuration 𝑌𝑖 cannot be further changed. The configuration 𝑋𝑖 with
(𝑎𝑖 , 𝑝𝑖−1) being a tile also cannot be changed further. �

We now start giving bijections between QBPDs and give the relationships between their bwt’s (as
defined in Definition 3.3). Define pipe i to be the pipe starting at row i. Write QBPD(𝑤, 𝐻) for the set
of QBPDs for w with configuration H. For example, QBPD(𝜋, 𝐴) denotes the set of QBPDs of 𝜋 with
configuration A.

Lemma 3.24. In Setup 3.16, there is a bijection 𝜙𝐴 : QBPD(𝜋, 𝐴) → QBPD(𝜎) such that
(𝑥𝑎 − 𝑦𝑚) bwt(𝜙𝐴(𝑃)) = bwt(𝑃) for all 𝑃 ∈ QBPD(𝜋, 𝐴).

Proof. Recall that 𝜋 = 𝜎𝑡𝑎𝑏 and 𝑚 = 𝜎(𝑎) = 𝜋(𝑏). Also recall Configuration A from Proposition 3.17,
and recall Proposition 3.18. The bijection 𝜙𝐴 is formed by making the change in Figure 13.

All the changed pipes are completely in the changed region and one can see that they do not cross
any pipe twice on both sides of the bijection. To reverse the map, we simply need to make the reverse
change, so this is a bijection. The LHS has one more empty cell at (𝑎, 𝑚) compared to the RHS, so we
have (𝑥𝑎 − 𝑦𝑚) bwt(𝜙𝐴(𝑃)) = bwt(𝑃) for all 𝑃 ∈ QBPD(𝜋, 𝐴). �

Lemma 3.25. In Setup 3.16, there is a bijection 𝜙𝐵 : QBPD(𝜋, 𝐵) →
⋃
𝑐<𝑎

𝜎𝑡𝑐𝑎�𝜎

QBPD(𝜎𝑡𝑐𝑎) such that

bwt(𝜙𝐵 (𝑃)) = bwt(𝑃) for all 𝑃 ∈ QBPD(𝜋, 𝐵).

Proof. The bijection 𝜙𝐵 is formed by making the change in Figure 14. Let c be the row at which the
pipe of the elbow at (𝑎, 𝑚) on the LHS of the bijection starts. Then 𝑐 < 𝑎, and if 𝑐 < 𝑡 < 𝑎, then pipe
t must either pass through a cell in column m that is above the (𝑎, 𝑚) elbow or eventually become one
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Figure 13. The bijection 𝜙𝐴.

Figure 14. The bijection 𝜙𝐵.

of the vertical green pipes. If it passes through a cell in column m that is above the (𝑎, 𝑚) elbow, it gets
above pipe c, but it started below pipe c, so 𝜎(𝑡) < 𝜎(𝑐). Otherwise, if it eventually becomes one of
the vertical green pipes, then 𝜎(𝑡) > 𝜎(𝑎). Thus, 𝜎𝑡𝑐𝑎 � 𝜎. The new pipe a in the RHS crosses some
vertical green pipe before reaching (𝑎, 𝑚) and after this, it cannot cross these vertical green pipes again
since pipes do not move right, and after (𝑎, 𝑚), it took the path of the old pipe c which will not cross
any pipes twice. By similar reasoning, the new pipe c (which ends up in column m) also does not cross
any other pipe twice, so the QBPD on the RHS is a reduced QBPD for 𝜎𝑡𝑐𝑎.

We show that this is a bijection by showing the reverse operation: given a QBPD of 𝜏 = 𝜎𝑡𝑐𝑎 � 𝜎
for some 𝑐 < 𝑎, we do the reverse change from the RHS to the LHS (this is well defined by Proposition
3.19). Note that, for a QBPD of 𝜏, the pipe ending at column m starts at row c, and no pipe starting at
row 𝑡 < 𝑎 and ending at column 𝜏(𝑡) < 𝑚 simultaneously crosses pipes a and c since otherwise we
have 𝑎 < 𝑡 < 𝑐 and 𝜏(𝑎) < 𝜏(𝑡) < 𝜏(𝑐), contradicting 𝜏 = 𝜎𝑡𝑐𝑎 � 𝜎. So, doing the reverse change will
not make these pipes intersect with pipe c twice. Any pipe that starts at row 𝑡 > 𝑎 or ends at column
𝜏(𝑡) > 𝑚 is a green pipe in the configuration, and doing the reverse change from RHS to LHS cannot
make any green pipe intersect with pipe c twice. Thus, doing the reverse change from RHS to LHS gives
a reduced QBPD for 𝜋 since all the changed pipes do not cross any other pipe twice. The LHS and the
RHS have the same set of tiles that contribute weight, so the weights are the same. �

Lemma 3.26. In Setup 3.16, there is a bijection 𝜙𝐶 : QBPD(𝜋, 𝐶) →
⋃
𝑐>𝑎

𝜎𝑡𝑎𝑐�𝜎

QBPD(𝜎𝑡𝑎𝑐) such that

−𝑞𝑎𝑐 bwt(𝜙𝐶 (𝑃)) = bwt(𝑃) for all 𝑃 ∈ QBPD(𝜋, 𝐶).

Proof. The bijection 𝜙𝐶 is formed by making the change in Figure 15. When we make the change from
the LHS to the RHS, note that the new pipe a (pipe a on the RHS) crosses the same pipes as old pipe c
in the same column, except for pipe t with 𝑎 < 𝑡 < 𝑐. Thus, if the QBPD on the LHS is reduced, then the
one on the RHS is reduced since all changed pipes cannot intersect with any other pipe twice. For the
inverse map, given a reduced QBPD of 𝜏 = 𝜎𝑡𝑎𝑐 �𝜎, we have for all 𝑎 < 𝑡 < 𝑐, 𝜏(𝑎) < 𝜏(𝑡) < 𝜏(𝑐) by
Remark 3.12, so pipe c and pipe a do not intersect with pipe t. Then, doing the reverse change does not
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Figure 15. The bijection 𝜙𝐶 .

Figure 16. The bijection 𝜙𝐷 .

make the new pipe c intersect with any other pipe twice, and the new pipe a and b also do not intersect
with any other pipe twice, so doing the reverse change gives a reduced QBPD for 𝜋. The LHS has a
or in which the pipe moves upward at (𝑎, 𝑚) contributing −𝑞𝑎 and, for 𝑎 < 𝑡 < 𝑐, there is a tile
at (𝑡, 𝑚) in which the vertical pipe moves upward, which contributes 𝑞𝑡 . These tiles are not present in
the RHS. Thus, the weight is multiplied by −𝑞𝑎𝑐 . �

Lemma 3.27. In Setup 3.16, there is a bijection

𝜙𝐷 : QBPD(𝜋, 𝐷) → QBPD(𝜎𝑡𝑎−1,𝑎, 𝑋1)𝜎𝑡𝑎−1,𝑎�𝜎 (3.12)

such that 𝑞𝑎−1 bwt(𝜙𝐷 (𝑃)) = bwt(𝑃) for all 𝑃 ∈ QBPD(𝜋, 𝐷). Here, the notation
QBPD(𝜎𝑡𝑎−1,𝑎, 𝑋1)𝜎𝑡𝑎−1,𝑎�𝜎 means the set QBPD(𝜎𝑡𝑎−1,𝑎, 𝑋1) if 𝜎𝑡𝑎−1,𝑎 � 𝜎 and the empty set
otherwise. (If the set is empty, this will be the trivial bijection between two empty sets.)

Proof. The bijection 𝜙𝐷 is formed by making the change in Figure 16. We first show that if there exists
a QBPD of configuration D, as in Figure 7, then we can deduce that it has the configuration as in the
LHS of Figure 16 and that 𝜎𝑡𝑎−1,𝑎 � 𝜎. Let (𝑎 − 1, 𝑝) be the rightmost cell in row 𝑎 − 1 that is not
or . Note that 𝑝 < 𝑛 since, at the rightmost column, pipe 𝑎 − 1 cannot move up (Remark 3.11) or
down (due to the elbow right below), and 𝑝 > 𝑚 since (𝑎 − 1, 𝑚) is occupied by a domino. Then, for
𝑝 < 𝑡 < 𝑛, the pipe 𝑎 − 1 moves horizontally through (𝑎 − 1, 𝑡) and the green pipes coming from below
must cross with it, so these tiles must be tiles. Now, at (𝑎 − 1, 𝑝), we must have the elbow since
it is not and (𝑎, 𝑝) is a tile. For 𝑚 < 𝑡 < 𝑝, the green pipes below must pass vertically through
(𝑎 − 1, 𝑡) since the rightmost pipe that turns with a elbow would meet the elbow at (𝑎 − 1, 𝑝). (Note
that turning with elbow is not possible since the pipe would be moving rightward—recall that pipes
move from the right edge to the bottom edge.) Thus, we have the configuration as in the LHS.
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Figure 17. The bijection 𝜙𝑖 .

Note that this means 𝑝 = 𝑝1 = 𝜎(𝑎 − 1) > 𝑚 = 𝜎(𝑎), so 𝜎𝑡𝑎−1,𝑎 � 𝜎. Thus, if 𝜎𝑡𝑎−1,𝑎 � 𝜎, this
means there are no QBPDs of 𝜋 with configuration D, so the bijection would just be the trivial bijection
between two empty sets.

Now, consider the case when there exists QBPDs of 𝜋 with configuration D. In this case, the
changed pipes all lie entirely in the rectangle, so we can see directly from Figure 16 that starting with
a reduced QBPD on the left results in a reduced QBPD on the right and vice versa. Note that the LHS
has an extra domino compared to the RHS, so we have 𝑞𝑎−1 bwt(𝜙𝐷 (𝑃)) = bwt(𝑃) for all QPBDs
𝑃 ∈ QBPD(𝜋, 𝐷). �

Lemma 3.28. In Setup 3.16, for each 𝑖 > 1, there is a bijection 𝜙𝑖 : QBPD(𝜎𝑡𝑎𝑖𝑎, 𝑋𝑖) →

QBPD(𝜎𝑡𝑎𝑖−1𝑎, 𝑌𝑖−1) such that bwt(𝜙𝑖 (𝑃)) = −𝑞𝑎𝑖𝑎𝑖−1 bwt(𝑃) for all 𝑃 ∈ QBPD(𝜎𝑡𝑎𝑖𝑎, 𝑋𝑖). In partic-
ular, since there is no 𝑋𝑘+1, the set QBPD(𝜎𝑡𝑎𝑘𝑎, 𝑌𝑘 ) is empty.

Proof. The bijection 𝜙𝑖 is formed by making the change in Figure 17. We first claim that all QBPDs of
𝜎𝑡𝑎𝑖−1𝑎 that have configuration𝑌𝑖−1 actually have the configuration as in the RHS of Figure 17. Note that
configuration 𝑌𝑖−1 and the RHS of Figure 17 agree on the region [𝑎𝑖−1, 𝑛] × [𝑝𝑖−1, 𝑛] (whether 𝑖 − 1 = 1
or 𝑖 − 1 > 1; see Figure 12 and Figure 11). Now, for a QBPD that has configuration 𝑌𝑖−1, let (𝑐, 𝑝𝑖−1) be
the first tile that is not a when tracing the 𝑎𝑖−1 pipe upward from (𝑎𝑖−1, 𝑝𝑖−1). Then, for the rows j with
𝑐 < 𝑗 < 𝑎𝑖−1, there are pipes moving horizontally through ( 𝑗 , 𝑝𝑖−1), and for 𝑝𝑖−1 < 𝑡 < 𝑛, there are pipes
moving vertically through (𝑎𝑖−1, 𝑡). All of these horizontal and vertical pipes are pairwise distinct since
pipes do not move right, so they must all cross each other. So, the region [𝑐+1, 𝑎𝑖−1−1]× [𝑝𝑖−1+1, 𝑛−1]
must be filled with tiles. This means the region [𝑐 + 1, 𝑎𝑖−1 − 1] × {𝑛} must be filled with tiles.
Now, for row c, let (𝑝, 𝑐) be the first tile where pipe c does not move horizontally. Note that 𝑝 < 𝑛 since,
at (𝑐, 𝑛), the pipe cannot move upward (Remark 3.11), and it cannot move downward since it would meet
the elbow at (𝑏, 𝑛). Note that 𝑝 > 𝑝𝑖−1 since (𝑐, 𝑝𝑖−1) is not a tile and is occupied by pipe 𝑎𝑖−1. At
(𝑐, 𝑝), there is pipe c coming horizontally from the right and the tile (𝑐+1, 𝑝) right below is a , so we
must have an elbow since (𝑐, 𝑝) is not a . For 𝑝 < 𝑡 < 𝑛, the tile at (𝑐, 𝑡) must be a since there is
pipe c moving horizontally and there is a vertical pipe below. For 𝑝𝑖−1 < 𝑡 < 𝑝, at (𝑐, 𝑡), the green pipes
below must keep going straight since the rightmost green pipe that turns with a elbow would run into
the elbow at (𝑐, 𝑝). (Note that turning with a elbow is not possible since the pipe would be moving
right.) Now, let 𝜏 = 𝜎𝑡𝑎𝑖−1𝑎. Then, since pipe 𝑎𝑖−1 crosses pipe t at (𝑡, 𝑝𝑖−1) for 𝑐 < 𝑡 < 𝑎𝑖−1, we have

https://doi.org/10.1017/fms.2024.112 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.112


18 T. Le et al.

𝑚 = 𝜎(𝑎) = 𝜏(𝑎𝑖−1) < 𝜏(𝑡) = 𝜎(𝑡) < 𝑝𝑖−1 = 𝜎(𝑎𝑖−1) . (3.13)

For all 𝑎𝑖−1 < 𝑡 < 𝑎, we have 𝜎(𝑎𝑖−1) > 𝜎(𝑡) > 𝜎(𝑎) by Remark 3.12, and we proved above that, for all
𝑐 < 𝑡 < 𝑎𝑖−1, we have 𝜎(𝑎𝑖−1) > 𝜎(𝑡) > 𝜎(𝑎). Furthermore, we have 𝜎(𝑐) > 𝜎(𝑎𝑖−1) > 𝜎(𝑎). Thus,
𝜎(𝑐) > 𝜎(𝑡) > 𝜎(𝑎) for all 𝑐 < 𝑡 < 𝑎, so 𝑐 ∈ 𝑆. Since 𝑐 < 𝑎𝑖−1, then 𝑐 = 𝑎 𝑗 for some 𝑗 > 𝑖 − 1. In
particular, 𝑎𝑖 exists, implying that 𝑖−1 < 𝑘 (recall that 𝑆 = {𝑎1 > 𝑎2 > · · · > 𝑎𝑘 }). As a result, the set of
QBPDs of 𝜎𝑡𝑎𝑘𝑎 with configuration 𝑌𝑘 is empty. For 𝑐 < 𝑡 < 𝑎𝑖−1, since 𝜎(𝑡) < 𝜎(𝑎𝑖−1), we have 𝑡 ∉ 𝑆
and 𝑐 ∈ 𝑆, so we have 𝑐 = 𝑎𝑖 . Thus, 𝑝 = 𝜏(𝑎𝑖) = 𝑝𝑖 . Thus, we have the configuration as in the RHS.

Now, if we start with a QBPD on the LHS and make the changes in Figure 17, the changed pipes
on the RHS are all in the region (and thus can be seen to not intersect any other pipe twice) except the
new 𝑎𝑖−1 pipe. This new 𝑎𝑖−1 pipe intersects with some vertical green pipes, but it will not intersect
with them again since pipes do not move right, and then it intersects with pipe t for 𝑎𝑖 < 𝑡 < 𝑎𝑖−1. After
this, it takes on the path of the old 𝑎𝑖 pipe, so it remains to check that this old 𝑎𝑖 pipe does not intersect
with pipe t for 𝑎𝑖 < 𝑡 < 𝑎𝑖−1. Let 𝑤 = 𝜎𝑡𝑎𝑖𝑎. We have 𝑤(𝑎𝑖) = 𝜎(𝑎) < 𝜎(𝑘) for all 𝑎𝑖 < 𝑡 < 𝑎 since
𝜎𝑡𝑎𝑖𝑎 � 𝜎, so we have that old pipe 𝑎𝑖 does not intersect pipe t for 𝑎𝑖 < 𝑘 < 𝑎𝑖−1.

If we start with a QBPD on the RHS and make the reverse changes, the only changed pipe that could
possibly intersect another pipe twice is the new pipe 𝑎𝑖 . However, this pipe first intersects some green
vertical pipes and never intersects them again since pipes do not move right. After this, it takes on the
path of the old 𝑎𝑖−1 pipe, which does not intersect any other pipe twice. The RHS has a or in
which the pipe moves upward at (𝑎𝑖 , 𝑝𝑖−1), which contributes −𝑞𝑎𝑖 and for 𝑎𝑖 < 𝑡 < 𝑎𝑖−1, there is a
tile at (𝑡, 𝑝𝑖−1) in which the vertical pipe moves upward which contributes 𝑞𝑡 ; these tiles are not present
in the LHS. Thus, the weight is multiplied by −𝑞𝑎𝑖𝑎. �

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let

𝑇𝑤 :=
∑

𝑃∈QBPD(𝑤)

bwt(𝑃). (3.14)

By Proposition 3.14, it suffices to show that 𝑇𝑤 satisfies (3.3). We have

𝑇𝜋 =
∑

𝑃∈QBPD(𝜋)

bwt(𝑃)

=
∑

𝑃∈QBPD(𝜋,𝐴)

bwt(𝑃) +
∑

𝑃∈QBPD(𝜋,𝐵)

bwt(𝑃) +
∑

𝑃∈QBPD(𝜋,𝐶)

bwt(𝑃)

+
∑

𝑃∈QBPD(𝜋,𝐷)

bwt(𝑃) +
𝑘∑
𝑖=2

∑
𝑃∈QBPD(𝜎𝑡𝑎𝑖𝑎 ,𝑋𝑖 )

𝑞𝑎𝑖𝑎 (bwt(𝑃) − bwt(𝑃)) . (3.15)

Applying Lemmas 3.24, 3.25, 3.26, 3.27, 3.28 to the 5 summations, respectively, we get that

𝑇𝜋 = (𝑥𝑎 − 𝑦𝑚)𝑇𝜎 +
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑇𝜎𝑡𝑐𝑎 −
∑
𝑎<𝑐,

𝜎𝑡𝑎𝑐�𝜎

𝑞𝑎𝑐𝑇𝜎𝑡𝑎𝑐 +

𝑘∑
𝑖=1

∑
𝑃∈QBPD(𝜎𝑡𝑎𝑖𝑎)

𝑞𝑎𝑖𝑎 bwt(𝑃)

= (𝑥𝑎 − 𝑦𝑚)𝑇𝜎 +
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑇𝜎𝑡𝑐𝑎 −
∑
𝑎<𝑐,

𝜎𝑡𝑎𝑐�𝜎

𝑞𝑎𝑐𝑇𝜎𝑡𝑎𝑐 +
∑
𝑐<𝑎,

𝜎𝑡𝑐𝑎�𝜎

𝑞𝑐𝑎𝑇𝜎𝑡𝑐𝑎 , (3.16)

as desired. �
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4. Cancellation analysis

There is no cancellation in the bumpless pipe dream formula for the double Schubert polynomials.
Quantum bumpless pipe dreams provide a combinatorial formula for the monomial expansion of the
quantum double Schubert polynomial, but this formula is not cancellation-free. In this section, we give
some analysis of how much cancellation occurs and what kind of cancellation occurs for quantum double
Schubert polynomials.

Table 1 lists all the permutations in 𝑆4 for which the QBPD formula gives cancellation when
computing the quantum double Schubert polynomials. In 𝑆4, cancellations occur infrequently due to
the limited number of QBPDs generated by permutations. Conversely, in 𝑆5 and 𝑆6, the frequency of
cancellations rises alongside the number of distinct QBPDs, as cancellations manifest between these
distinct QBPDs.

Example 4.1. Permutation 615432 has 97032 monomials in its quantum double Schubert polynomial,
while the total number of monomials generated from QBPDs is 140052. 21510 pairs of monomials
cancel out, and the number of QBPDs is 1038. This is the permutation with the most cancellation in 𝑆6.

As shown in Table 2, the number of cancellations per permutation grows larger with greater n. These
cancellations increase with the number of QPBDs that are generated by a permutation. In particular, we
can observe that there are several ways that cancellations occur. Two QBPDs could completely cancel
each other out in both the single and double quantum Schubert polynomial case, as in Figure 18, or
they could partially cancel. In the case of partial cancellation, Figure 19 illustrates the cancellation of
binomial terms and no cancellation in monomial terms, while Figure 20 illustrates the cancellation of
monomial terms but not binomial terms.

We attempted to find natural classes of permutations that are cancellation-free; however, we were
unable to do so. Grassmannian, 132-avoiding, dominant, and vexillary permutations all fail to be
cancellation-free in general. However, we do observe that simple cycles of the form (𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑘)

Table 1. Nonzero cancellations for QBPDs in 𝑆4, when considering the generated quantum double Schubert
polynomial..

Permutation Monomials QBPD Monomials Cancellations Number of QBPDs

[4, 1, 3, 2] 50 54 2 9
[3, 1, 4, 2] 18 20 1 4
[1, 4, 3, 2] 46 48 1 9
[2, 1, 4, 3] 12 14 1 5

Table 2. Cancellations in 𝑆𝑛 for 𝑛 = 3, 4, 5, 6..

Total Average per Permutation Permutation of Max Max

𝑆3 0 − − −

𝑆4 5 0.208 [4, 1, 3, 2] 2
𝑆5 1350 11.25 [5, 1, 4, 3, 2] 153
𝑆6 570549 792.43 [6, 1, 5, 4, 3, 2] 21510

Figure 18. Two QBPDs for 2143 whose binomial weights cancel each other out completely. The left
contributes −𝑞1, and the right contributes 𝑞1.
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Figure 19. Two QBPDs for 1432 whose monomial weights do not cancel out, but binomial weights
partially cancel out. The left QBPD contributes 𝑥1𝑞1−𝑦2𝑞1, and the right QBPD contributes−𝑥3𝑞1+𝑦2𝑞1.

Figure 20. Two QBPDs for 12543 whose monomial weights cancel each other out, but binomial weights
do not cancel completely. The left QBPD contributes 𝑥3𝑞1−𝑦4𝑞1, and the right contributes−𝑥3𝑞1+𝑦2𝑞1.

or of the form (𝑡, 𝑡 + 𝑘, 𝑡 + 𝑘 − 1, . . . , 𝑡 + 1) in cycle notation, as well as the longest permutation 𝑤0, are
cancellation-free.

Proposition 4.2. The QBPD formula for the quantum double Schubert polynomials is cancellation-free
for the following classes of permutations: the longest permutation 𝑤0 of each 𝑆𝑛, as well as cycles of
the form (𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑘) and (𝑡, 𝑡 + 𝑘, 𝑡 + 𝑘 − 1, . . . , 𝑡 + 1) in cycle notation for 𝑘 ≥ 1.

Proof. For the longest permutation 𝑤0 of each 𝑆𝑛, the Rothe diagram is the only unpaired QBPD. As a
result, there are no tiles contributing a −𝑞𝑖 factor to the weight, so there are no cancellations.

The simple cycle of the form (𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑘) has a Rothe diagram with only one single column
of empty tiles at column t. Any unpaired QBPDs can then be obtained using only droop moves. As a
result, there are no tiles contributing a −𝑞𝑖 factor to the weight, and therefore no cancellations.

The simple cycle of the form (𝑡, 𝑡 + 𝑘, 𝑡 + 𝑘 − 1, . . . , 𝑡 + 1) has a Rothe diagram with only one single
row of empty tiles at row t. Any QBPDs can then be obtained using droop moves or lift moves that lift
up the strand by at most one row. Thus, the only tiles that can contribute q variables are tiles, so there
are also no cancellations. �

5. Future Directions

This paper provides a bumpless pipe dream formulation for quantum double Schubert polynomials,
but we were unable to find a cancellation-free formula. Obtaining such a formula for quantum double
Schubert polynomials would be desirable.

The authors also attempted to find a quantum (non-bumpless) pipe dream formulation for the quantum
double Schubert polynomials, generalizing the usual pipe dream formulation of Schubert polynomials as
in [4, 2], but were not able to do so successfully. A canonical weight-preserving bijection between pipe
dreams and bumpless pipe dreams was given in [6]; however, it only preserves the x’s weight. It would
be interesting to come up with a pipe dream formulation for quantum double Schubert polynomials,
and it would also be interesting if there is a canonical bijection from such objects to the QBPDs in this
paper that preserves the monomial weights.
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