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Abstract

Computational immunology has been the breeding ground of some of the best bioinformatics
work of the day. By melding diverse data types, these approaches have been successful in
associating genotypes with phenotypes. However, the representations (or spaces) in which these
associations are mapped have primarily been constructed from some omics-oriented sequence
data typically derived from high-throughput experiments. In this perspective, we highlight the
importance of biophysical representations for performing the genotype–phenotype map. We
contend that using biophysical representations reduces the dimensionality of a search problem,
dramatically expedites the algorithm, and more importantly, offers physical interpretability to
the classes of clustered sequences across different layers of complexity – molecular, cellular, or
macro-level. Such biophysical interpretations offer a firm basis for the future of bioengineering
and cell-based therapies.

Introduction

The core responsibility of our immune system is to protect the body from pathogens and cancers.
The need to target and activate the immune system reproducibly has been underscored by the
recent pandemic and the rise of anticancer therapies that rely on immunological mechanisms.
This has generated a focused enthusiasm for gaining a detailed description of the immune system.
However, the human immune system is incredibly complex, and often regarded as one of the
most challenging topics in biology. The sheer size of sequence and population diversity in
proteins associated with the immune system presents a formidable obstacle to mapping their
network of interactions within a tractable space. For instance, T-cell recognition of antigens is
driven by human leukocyte antigens (HLA) genes encoding Major Histocompatibility Com-
plexes (orMHCs), which are among themost polymorphic germline genes in the human genome
that contain tens of thousands of variants across populations (Barker et al., 2023). Moreover, the
somatic hypermutations involved in the function of T-cell and B-cell receptors make them the
most polymorphic human proteins in known existence, with theoretical estimates of T-cell
receptor (or TCR) diversity reaching over 1061 potential sequences. Amore conservative estimate
places TCR diversity in the range of 107 receptors (Mora andWalczak, 2018), which still offers an
incredibly vast range of human variations. The desire to account for this diversity and predict its
associated non-linear relationships has motivated the genesis of the field of computational
immunology to develop methods to analyze and predict immune outcomes based on this data
(Figure 1). Computational immunology has transformed our understanding of the immune
system by enabling the integration ofmassive amounts of biochemical and biological data. Simple
mathematical models to study disease transmission can be traced to the early 20th century (Ross,
1911; Brauer, 2017). By leveraging population data, it clarified the relationship between the size of
mosquito populations and malaria incidence, which led to improved malaria control. The power
of computational immunology expanded significantly in the information age with the advent of
high-throughput sequencing, proteomics, and the growing availability of experimental and
clinical data further empowered by advances in computational technology. These advancements
have enabled computational techniques to tackle more complex immunological questions.
Consequently, computational immunology has now been applied to a broad spectrum of
applications including vaccine design (He and Zhu, 2015), predicting population-level mortality
rates (Wilson et al., 2021), and forecasting the outcomes of immune checkpoint blockade
therapies (Chowell et al., 2018).

Due to the availability and ease of collection of protein and amino acid sequence information,
most computational immunology approaches primarily rely on sequence data for their predic-
tions (Ansari and Raghava, 2010; Jespersen et al., 2017; Peters et al., 2020). However, recent
advances in machine learning and protein modeling have caused an explosion in the synergistic
incorporation of biophysical information and modeling into existing computational immun-
ology approaches (Andersen et al., 2006; Wilson et al., 2024). Such integrations have already
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shown a profound improvement in the accuracy of models, but also
enable novel insights into previously inscrutable mechanisms,
advancing computational immunology models into the next era.
In the following perspective, we will explore immune-related
models ranging from atomistic environments to macro-level sys-
tems, demonstrating how biophysics can be used to enhance pre-
dictive accuracy and improve our overall understanding of immune
responses.

A perspective on biophysical models

Computational immunology has been dominated by bioinformat-
ics, primarily due to a push from recent findings in genomic and
proteomic technologies that compose around 31 different data-
bases today (Rigden and Fernández, 2023). Historically, it allows
the study of complex protein–protein interactions across a diver-
sity of sequences (Petrovsky and Brusic, 2002). Recently, deep
learning approaches have offered rapid access to molecular struc-
tures from sequences (Jumper et al., 2021), which has extended

the realm of bioinformatics to structure-guided models of
immune interactions (Bradley, 2023). However, the physical for-
mulation of intermolecular interactions is statistical, which entails an
ensemble description of conformations that remains obscure in
the bioinformatics approaches. These ensembles capture transi-
tion in the order–disorder transition of the molecules, flexibility,
and thermal effects, as well as solvation and microenvironmental
impacts on structure. Attempts to overcome such limitations
of traditional computational immunology open the doors for
employing biophysical tools to take MHC, TCRs, and antibody
predictions beyond the sequence-only or sequence-structure
paradigm (Raha et al., 2022; Deng et al., 2023; Demerdash and
Smith, 2024). Notwithstanding the computationally expensive
biophysical simulations, it generates unique representations and
metrics that connect collective molecular properties with pheno-
typic and even population outcomes. We break down the bio-
physical advances in the realm of atomistic, molecular, whole-
cell, and macro-level modeling, and highlight how biophysical
entities of Figure 1 are acting or can be leveraged as novel
representations for learning in computational immunology, as

Figure 1. The scales of computational immunology models from atomistic to macroscales.
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complements to the traditional sequence or structural methods
(Figure 2).

Atomistic description

We start with biophysical descriptors in computational biology
arising from detailed interactions of antibodies, MHCs, and TCRs.

Free energy description of antibodies
Since the first antibody structurewas deposited in 1976, the number of
antibody structures in the ProteinData Bank (PDB) has grown, and it
now represents approximately 2.1% of the total entries (Ferdous and
Martin, 2018). Many computational tools now use only the antibody
data, as opposed to general protein data, due to the increased per-
formance (Ponomarenko and Bourne, 2007; Młokosiewicz et al.,
2022). To this end, the Structural Antibody Database (or SAbDab)
collects, curates, and presents an ensemble of antibody structures
from the PDB (Schneider et al., 2022). Such databases allow for the

prediction of the affinity of antibody–antigen interfaces by combining
the biophysics of protein–protein interactions with deep learning
approaches (Hummer et al., 2023). In fact, a significant improvement
in the ranking and prediction of affinity predictions is observed by
combining all-atom free energy methods like Free energy perturb-
ation or FEP+ with focused machine learning approaches like
QuanSA (Cleves and Jain, 2018). Using such a combination of
biophysics and informatics, the affinity of the CR3022 antibody is
optimized to the spike protein of the SARS-CoV-2 Omicron strain,
achieving a high success rate with up to a 17-fold affinity increase (Cai
et al., 2024). Going beyond simple geometric 3D coordinate repre-
sentations of ligands (Cleves and Jain, 2018), a novel metric of
multiple-ligand alignment is employed using so-called pocket fields
to learn affinities. Unlike the learning of real geometries that are quite
high-dimensional, the learning of smoother functions like the 3D
fields (with known map to the SMILE or peptide sequences) offers
learning across a broad diversity of molecular identity and conform-
ation, without overfitting the loss function. In conclusion, the
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Figure 2. A comprehensive list of immunological problems and their biophysical representations. Illustrations – 1. Antibody (PDB-1IGT), 2. MHC (PDB-1HHK), 3. TCR (from RCSB-
PDB), 4. Viral vector ChAdOx1, 5. Whole-cell illustration, and 6. Epitope (PDB-3PP4).
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application of free energy-augmented antibody design underscores
the growing power of biophysical modeling to not only understand
but also engineer biological systems for specific therapeutic outcomes.

Structural modeling of MHC (Major Histocompatibility Complex)
In 1968, Snell examined the concept of transplantation and came
across the term histocompatibility polymorphism (Hull, 1970;
Garrido, 2024). MHC proteins play a crucial role in immune
mechanisms due to their involvement in activating T cells and B
cells (Janeway et al., 2001; Wieczorek et al., 2017). Structural
modeling of these complexes offers insights into the mechanism
of the several pathways relevant to immunogenicity (Keller et al.,
2022). The MHC protein is one of the most polymorphic proteins
in humans (Barker et al., 2023), but despite the high polymorphism,
the structure of the MHC binding groove is highly conserved
(Wilson et al., 2024). Researchers found that the second and last
residues are key anchors for peptide binding to the MHC class-I
binding groove (Janeway et al., 2001), a discovery made through
X-ray diffraction studies (Zhang et al., 1998). Since countless
peptides can bind to MHC, many generated by frameshift events,
and lack evolutionary context for multi-sequence alignments,
crystallizing all polymorphic complexes is unfeasible. A biophys-
ical approach is thus needed to model MHC–peptide complexes
for further study.

Conventionally, there are three ways to model structures:
molecular dynamics, molecular docking, and homology modeling
(Bertoline et al., 2023). The unifying protocol to design a model for
MHC is as follows: the first part is to generate a peptide conform-
ation using a PDB template, the second step involves docking of the
peptide, and finally optimizing the overall structure. Multiple
sources are available to model MHC-I complexes such as Dock-
Tope, GradDock, APE-Gen, AlphaFold2, and RoseTTAfold (Rigo
et al., 2015; Kyeong et al., 2018; Abella et al., 2019; Bryant et al.,
2022). Although these methods are highly accurate, some of them
are highly computationally heavy or applicable only to the MHC
class-I molecule due to the heterodimeric binding pocket observed
in MHC class-II molecules. Recently, a state-of-the-art method,
PANDORA, shows potential to design even MHC class-II mol-
ecules, and also offers some tunability while modeling. Its energy-
based definition of loop conformations is shown to outperform
most of the methods previously introduced in terms of accuracy
and computational efficiency (Parizi et al., 2023). However, there
still is a need for a tool that models complex structures by capturing
the biophysical attributes of the peptide–MHC complex instead of
exploiting sequence similarity and templates. Large datasets to
benchmark biophysical properties across a range of MHC systems
– similar toMISATO (forMD simulations of 20,000 protein-ligand
systems) or 100-protein NMR spectra (for protein dynamics) – do
not yet exist in this space. A very promising result is that semi-
empirical quantummechanical representations can now be embed-
ded in these data sets to refine the associated protein structures.
Once similar datasets start existing for the broad class of MHC
proteins, such quantum chemistry representations can likely be
extended to the peptide–MHC predictions, for example, with
PANDORA or other tools. Ultimately, improvement to MHC
modeling and subsequent extraction of generalizable biophysical
properties will lead to better predictions of immunogenicity. High-
lighting this point, a thorough structural study demonstrated that a
non-anchor position mutation in an MHC-I peptide, presented by
an ovarian cancer tumor, modified both the structural and
dynamic properties of the bound complex. These changes resulted
in optimal confirmations for interaction and subsequent

activation of cognate T cells (Devlin et al., 2020). Such an obser-
vation would be difficult, if not impossible to determine from
sequence alone and emphasizes the value of structural consider-
ations when studying immunogenicity.

Catch bond description of TCRs
Catch bonds have been referred to as the interaction between
various biomolecules and biomolecular surfaces, where the lifetime
of the bond increases with the application of tensile force on the
bond (Marshall et al., 2003; Hertig and Vogel, 2012). The atomistic
detail of catch bond formation had remained elusive for a long
period of time, but the general explanation was given by a two-state
model or a two-pathway model. In the two-state model, the
receptor-ligand complex is theorized to exist in two distinct states,
a short-lived and a long-lived state. The application of force loosens
the interaction between the binding site and a regulatory site, which
drives the whole complex toward the long-lifetime state (Hertig and
Vogel, 2012). In the two-pathway model, the receptor-ligand com-
plex undergoes unbinding via two distinct pathways with different
Koff values, and the application of tensile force triggers the allosteric
change that leads the unbinding to happen via the pathway with a
high energy barrier, thereby the long-lifetime (Sokurenko et al.,
2008). Such catch bonding has been observed at the TCR-peptide–
MHC immune synapse, and more importantly, immunogenicity
has been attributed to the strength of the catch bond formation
(Choi et al., 2023). Hence, catch bonds offer a biophysical descrip-
tor of MHC alleles for presenting peptides to the TCRs. Interest-
ingly, unlike binding affinity, catch bonds uniquely capture the
system’s out-of-equilibrium properties. Therefore, it can capture
the state of the immune synapse under stress, which rectifies the
frozen stationary picture of complexes drawn by the affinity meas-
ures. This descriptor is computable using Steered MD simulations
(Schoeler et al., 2014) and more recently using metadynamics
methodologies (Ccoa and Hocky, 2022), offering insights into
how sequence changes reflect in non-equilibrium interaction
changes. However, both the experimental and computational bio-
physical methods for tracking catch bonds are resource-intensive,
so high-throughput measurements are yet missing, in turn impact-
ing the extensive use of this information in immunology models.
The advent of reinforcement learning with Jarzynski’s equality and
so-called stiff-spring approximations (Park and Schulten, 2004) to
formulate a space of molecular actions using steered MD simula-
tions presents a promising step forward in rapidly modeling at least
the 2-statemodel of the catch bonds as another biophysical descriptor
in computational immunology (Choi et al., 2023). A more rigorous
consideration of catch bond formation has practical implications for
enhancing T cell-based cancer immunotherapies. A recent study
showed low-affinity TCRs can be optimized to acquire catch bonding
characteristics, allowing for potent activation at relatively weak 3D
binding affinities (Zhao et al., 2022). This has the ability to drive a
strong antitumor immune response with a lower risk of potentially
life-threatening cross-reactivity.

Molecular description

The translation from atomistic to molecular biophysical represen-
tation has become popular to allow algorithms to distinguish self
versus non-self interactomes. The biophysical representations of
glycans underpinning the pathogen entry path offer some stark
examples. By employing tools like variational autoencoders, the
so-called glycan shield of spike proteins was dissected to detect the
role of specific glycan size, orientation, and chemistry (Casalino
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et al., 2021). A physical interpretation of the latent spaces was
determined from protein-glycan contacts. Subsequently, we engin-
eered the glycan shield based on their contact representation to
reduce the infectivity of the NL63 coronavirus by nearly 50%
(Chmielewski et al., 2023). This idea of monitoring contacts was
also extrapolated to monitor inter-glycan interactions between the
cell surface of the influenza virus and those of chicken and human
cell surface glycocalyx (Lucas et al., 2021). Again, by translating
fluorescence signals into a contact matrix representation, support
vectormachines were successful in identifying the critical density of
glycans that make the H1N1 cells in mammalian cells show a greater
binding than when grown in egg cells. Finally, the protein–protein
contact matrices also found application in vector design for Astra-
Zeneca and J&J’s COVID vaccines, implicating platelet factor pro-
teins in blood clotting side effects of the vaccine candidate (Baker
et al., 2021). Altogether, contact matrices can offer a robust biophys-
ical representation, wherein molecular interactions can be classified
to be self or non-self.

Cellular description

Whole-cell models, though scarce, have found applications in
computational immunology. A mechanistic, multiscale mathemat-
ical model of immunogenicity for therapeutic proteins was formu-
lated by recapitulating key biological mechanisms, including
antigen presentation, activation, proliferation, and differentiation
of immune cells, secretion of antidrug antibodies, as well as in vivo
disposition of antibodies and therapeutic proteins (Chen et al.,
2014). The multiscale model structure can be represented by the
subcellular, cellular, and whole-body levels. To represent the physi-
ology ofMHC-II, a key parameter used in thesemodels involves the
number of T-epitope-MHC, in silico T cell epitope prediction and
experimental measurements of their MHC-binding affinities,
which is scaffolded within a two-compartment drug pharmacokin-
etics model. Using adalimumab as an example therapeutic protein,
the model is able to simulate immune responses against adalimu-
mab in individual subjects and in a population and also provides
estimations of immunogenicity incidence and drug exposure
reduction that can be validated experimentally (Chen et al., 2014;
Handel et al., 2020). Most of the cell models in immunology are
agent-based that use the automaton algorithm with specific mech-
anistic logics or rules. Interestingly these rules show remarkable
similarity with classical thermodynamic and kinetic principles,
such as landscapes and equations of motion (Koopmans and Youk,
2021). Such models have found applications in CD4+ T cell
responses to influenza infections, multiscale mechanistic modeling
of human dendritic cells, and have potential applications in den-
dritic cell-based targeted cell therapies (Wertheim et al., 2021;
Aghamiri et al., 2023).

Macro description

The integration of molecular immunology concepts into macro-
level analyses has already demonstrated significant potential in
elucidating disease associations. A notable example is the use of
patient-specific MHC genotypes to predict disease risk. For
instance, large-scale analyses involving 9,176 cancer patients
revealed that MHC-I genotypes were predictive of the tumor muta-
tional landscape (Marty et al., 2017). This study found that onco-
genic mutations were more likely to occur in regions not presented
by the patient’s MHC-I molecules, suggesting that gaps in antigen
presentation contribute to tumor evolution. Similarly, patients

undergoing immune checkpoint blockade therapies have shown
improved responses when their MHC-I genotype allows for the
presentation of a more diverse array of potential peptides (Chowell
et al., 2019). More recently, bio-physical approaches have been
applied to link MHC-I genotypes with disease risk and progression
(Wilson et al., 2024). Recently, we created a diverse protein ensem-
ble of 5,281 MHC-I protein binding grooves, generating 211,240
structural models, which were subsequently translated into a sim-
plified representation of electrostatic properties (5,281 averaged elec-
trostatic maps). A subset of these maps, those with known MHC-I
bindingmotifs, was used to train an Inception neural network capable
of predicting MHC-I binding motifs from electrostatic maps alone.
Beyond the ability to perform high-throughput proteome-scale bind-
ing predictions, the predicted binding motifs were utilized to con-
struct interaction networks that accurately classified HIV disease
progression and immune checkpoint therapy response. At the popu-
lation level, applications of MHC-I genotype analysis have revealed
further insights. A consensus MHC-I prediction model, ensem-
bleMHC, demonstrated that populations enriched for MHC-I alleles
capable of strongly binding multiple peptides from SARS-CoV-2
structural proteins exhibited lower mortality rates during the pre-
vaccination phase of the COVID-19 pandemic (Wilson et al., 2021).
This suggests that MHC-I diversity and peptide-binding capacity at
the population level may serve as predictors of disease outcomes in
emerging viral threats. These findings highlight some of the promise
of MHC genotype-based analysis in both disease risk assessment and
therapeutic strategy development.MHCanalysis can aid in predicting
susceptibility to autoimmune diseases and cancer while also inform-
ing vaccine design by optimizing patient antigen selection.

Outlook: Future inspired by the past of functional
representations

Most of the biophysics, including the powerful integrative models
we know, is predicated upon the sequence! structure! function
! phenotype paradigm. With the maturation of machine learning
techniques and the availability of data at various scales, researchers
(particularly bioinformaticians) have been trying to bridge gaps
between the different tiers of this process, starting from the age-old
genotype–type modeling to CASP and AlphaFold’s sequence struc-
ture up to recent attempts to go from sequence to ensemble.
However, physical causality is often missing in the traditional
bioinformatics models, thus far sidelining the role of AI-driven
advances only to predictions of the forward direction. So, it is high
time that we introduce physical ideas to conceive generative models
that backmap phenotypes down to an ensemble of structures and
sequences. Model representations play a central role in this map-
ping process. Although the traditional sequence of 3D coordinate
structural representations requires an enormous amount of train-
ing data and is prone to overfitting, they nonetheless offer the most
extensive models. In contrast, the thermodynamic or kinetic rep-
resentations, using ideas of entropy or committor functions are
quite generalizable across application domains but lack the physical
interpretability (Mehdi et al., 2024). Loosely, they draw analogies to
the plane wave basis set representations that find application in
several areas of quantum mechanics (Nagy and Jensen, 2017).
However, akin to how quantum mechanics was represented in
the molecular systems using the Gaussian-like basis set represen-
tations, we posit that biophysical representations offer a segue for
representing the deep learning models in the molecular space. To
this end, we highlight a number of representations that are either
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being used or hold the potential for multiscale applications in
computational immunology. Similar to howGaussian orbitals offer
physical interpretation of highly resolved electronic structures (e.g.
using themolecular orbital theory), biophysical functions offer inter-
pretability. These functions, such as pocket fields, QM/MM charge
density, binding affinity, catch bonding, contact matrices, and
molecular electrostatics are deeply rooted in physical theories. These
theories (thermodynamic integration, electronic structure theory,
equilibrium and non-equilibrium statistical theories, linear response
theories, polymer folding, and continuum mechanics) can be pro-
jected onto structure and function. Essentially, they offer a physical
basis to the loss functions and the latent spaces that enable learning
both the data and the context. So, we propose a sustained intellectual
effort in this direction.
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