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ON COMPLETELY PRINCIPALLY INJECTIVE RINGS

W.K. NICHOLSON AND M.F. YOUSIF

A ring R is called right principally injective (right P-injective) if every iZ-linear
map from a principal right ideal of R can be extended to R. If every ring homo-
morphic image of R is right P-injective, R is called completely right P-injective
(right CP-injective). In this paper we characterise completely quasi-Frobenius
rings in terms of CP-injectivity.

A ring R is called right principally injective (right P-injective) if every R-linear
map aR —• R, a 6 R, is given by left multiplication by an element of R, equivalently if
£[r(a)] = Ra for all a £ R where £(x) and r(x) denote the left and right annihilator of
a set x, respectively. We studied these rings in [8]; and commutative p-injective rings
are discussed by Camillo in [2].

A ring R is called completely right P-injective (right CP-injective) if every ring
image of R is right P-injective. Left P-injective and left CP-injective rings are denned
analogously. In general, the prefix "completely" signifies that the property in question
holds in every ring image of R. The class of completely quasi-Frobenius rings has been
studied in detail, see Faith [3]. In this paper we characterise these rings in terms of
P-injectivity.

A module M is uniserialif its submodules are linearly ordered by inclusion, and M
is serial if it is a finite direct sum of uniserial submodules. A ring R is right (uniserial)
serial if RR is a right (uniserial) serial module, with a similar definition on the left,
and a serial ring is one that is both right and left serial. A commutative uniserial
ring is called a valuation ring. A ring R is called right GPF-ring (Generalised Pseudo-
Frobenius) if R is a semiperfect right P-injective ring with essential right socle. GPF
rings were studied in great detail in [8].

THEOREM 1. Suppose R is a left perfect, right CP-injective ring. Then R is
left Artininn and left serial.

PROOF: Let A be a two-sided ideal of R. Then # = R/A is a right GPF-ring.
By [8, Theorem 2.3], Soc (j^R) is finitely generated and essential as a left ideal of R.
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It follows from [1, Proposition 5] that R is left Artinian. To show that R is left serial,
we prove the following statement by induction on the index of nilpotency of J = J(R):

If 1 = ei -f- • • • + cn in R where the ê  are orthogonal

local idempotents, then Ret is uniserial for each i.

If J = 0 this is clear because R is semisimple. In general, let 1 = e\ + • • • + en as in
(*). Writing S = SOC(RR), we have 5e< = Soc Rei and this is simple and essential
in Rei for each i by [8, Theorem 2.3]. Moreover R — R/S inherits our hypotheses
and, writing r — r + S for r E S, we have 1 = e~i + • • • + em for some m ^ n, and
R&i = Rei/Sei for each i. It follows by induction that Rei/Set is uniserial for each i,
so Rei is uniserial, as required. U

\F F
The converse to Theorem 1 is not true. Indeed, if F is a field the ring R =

0 F
is Artinian (meaning right and left Artinian) and serial, but is neither right nor left P-

injective. However we get a converse for local rings.
The following result will be needed and extends the result (see Faith [3], p.133)

that a commutative valuation ring is .P-injective if and only if every element is a zero
divisor or a unit. Let Z(RR) denote the right singular ideal of a ring R.

LEMMA 1. The following are equivalent for a left uniserial ring R.

(1) R is right P-injective.

(2) J(R) = Z{RR)

(3) If a £ R, then either Ra = R or r(a) is essential in RR .

PROOF: (1) => (2) This follows by [8, Theorem 2.1].

(2) => (3) By hypotheses J = J(R) is the unique maximal left ideal of R. Hence
Raj^R implies a 6 Z{RR) by (2).

(3) => (1) If b G £(r(a)) - Ra then Ra C Rb by hypothesis, say a = cb. Also,
r(b) D r[£(r(a))] = r(a), whence bR D r(c) = 0. Thus r(c) is not essential so Re = R

by (3). This implies that b G Ra, a contradiction. D

THEOREM 2 . Let R be a left uniserial, right perfect ring. Then:

(1) R is left Artinian and right CP-injective.

(2) R is left self-injective if and only if bR = Rb for all b e R.

PROOF: Write J = J{R) so that R = J ° D J D J 2 D - D J""1 D Jn D • • • is
a composition series of R. Let xi £ Jx — J1 + 1 , then J* = Rx,. Now Rxi+i = Jt+1 =
JJX = JRxi = Jxi. Thus Xi+i — Ux{, for some ti 6 J. By left T-nilpotency of J,
Jn = 0 for some n and so R is semiprimary.

CLAIM 1. If L is a left ideal of R, then L — Jm for some m = 0, 1, • • • , n.
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PROOF: If L £ 0, let L C Jm, L £ Jm+1. Then Jm+1 C L C Jm because RR is
uniserial so 1 = Jm because Jm/Jm+1 is simple.

CLAIM 2. r{Jm) = J n " m = *(J m ) for all m = 0, 1, 2, . . . , n.

PROOF: Jn~m C r( J m ) so r(Jm) = J* where < ^ n - m. But then 0 = J m + < so
m + t > n . Hence < = n - m. Similarly £(Jm) = Jn~m.

(1) J? is left Artinian by Claim 1. Since our hypotheses are inherited by images,
it remains to show that R is right P-injective. By Lemma 1, it suffices to show that
Z(RR) = J. But if a e J we have J " " 1 C r(a), so it suffices to show that J71"1 =
SOC(-RR) (SOC(.RR) is right essential because R is semiprimary). Let SOC(.RR) — Jm.

Then J m + 1 = Soc (RR) J = 0, so m ^ n - 1; as Soc (RR) ^ 0, we have m = n - 1, as
required.

(2) Since R is a left principal ideal ring (Claim 1), we show that R is left P-
injective; equivalently that r(£(b)) = bR for all b 6 R. Write Rb = Jm and £{b) = J*.
Then Jt+m = J*Rb = 0 so i + m ^ n . On the other hand J n ~ m 6 C Jn~mJm --= 0, so
J n ~ m C J*, whence n - m ^ f. It follows that t + m = n , so r[£(6)] = r ( J n ~ m ) =
jn-(n-m) = jm = Rb b y C l a i m 2 . Now (2) follows. D

If R is assumed to be both left and right P-injective in Theorem 1, we obtain a
much stronger conclusion.

THEOREM 3 . T ie following are equivalent for a ring R:

(1) R is left perfect and both right and left CP-injective.

(2) R is completely quasi-Frobenius.

PROOF: Since (2) => (1) is clear, assume (1). The hypotheses hold in any image of
R, so it suffices to show that R is quasi-Frobenius. Theorem 1 implies that R is Artinian
and serial. Moreover Z(RR) = J(R) = Z(RR) by [8, Theorem 2.1]. Now t{J) =

SOC(-RR) because R is semiprimary, whence 1{Z(RR)) = SOC(.RR). But SOC(H.R).

Z(RR) = 0 always holds, and it follows that Soc (RR) C Soc (RR) • The other inclusion
is similar, so Soc(fljR) = SOC(.RR). NOW let 1 = ei + • • • + en where the e* are
orthogonal local idempotents. Since R is left serial, it follows that Soc(itej) is simple
for each i. Similarly Soc(e,-iZ) is simple for each i. Since R is (two-sided) Artinian
and Soc (jt.R) = SOC(.RR), this implies that R is quasi-Frobenius by [6, p.342]. D

A ring R is called right 2-injective if .R-maps T —» R can be extended to R for
all 2-generated right ideals T of R. Then [8, Corollary 2.5] implies that a left perfect
right 2-injective ring is left P-injective. Hence Theorem 3 gives:

THEOREM 4 . The following are equivalent for a ring R:

(1) R is left perfect and completely right 2-injective.

(2) R is completely quasi-Frobenius.
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If R is commutative, the hypotheses in (1) of Theorem (3) can be relaxed. A
commutative ring R is called min-injective if, for each minimal ideal K of R, each
.R-linear map K —> R is multiplication by an element of R (equivalently ann2 K = K

where ann2 K = ann (annK)). R is called a min-CS ring if each (minimal) ideal is
essential in a direct summand of R. Note that Z the ring of integers is completely
min-injective and completely min-cs, but it is not P-injective.

The following Lemma will be needed.

LEMMA 2 . Every commutative, semiprime P-injective ring R is (von Neumann)
regular.

PROOF: Given a £ R we have ann (a2) C ann (a) because R is semiprime. Hence

<r: a2 R —» aR is well-defined by <r(a2r) = ar. Since R is P-injective, a = b- is

multiplication by b £ R. Hence a = o-(a?) = ba2 = aba. D

THEOREM 5 . The following are equivalent for a commutative ring R:

(1) R is completely quasi-Frobenius.
(2) R is perfect and completely min-injective.

(3) R is perfect and is a completely min-cs ring.

(4) R has Krull dimension and is completely P-injective.

(5) R is completely GPF-ring.

PROOF: Clearly, (1) implies each of (2), (3), (4) and (5).

(2) =>• (1) It is routine to verify that a finite product of commutative rings is min-
injective if and only if each factor is min-injective. Hence we may assume that R is
local. Moreover (2) is inherited by ring images, so it suffices to show that R is quasi-
Frobenius. Now S — Soc (R) is essential in R (R is perfect) and S is homogeneous
(two isomorphic simple ideals are equal because R is min-injective). It follows that
5 is simple, so R is uniform. Furthermore, each non-zero iZ-module has a maximal
submodule (R is perfect) so R is Noetherian by a theorem of Shock [9]. As J(R) is
nil, this implies that R is semiprimary, hence Artinian. Now R is quasi-Frobenius by
[6, p.342].

(3) => (1). As (3) is inherited by ring images, we show that R is quasi-Frobenius.
Write S = Soc(i?) and J = J(R). We have 5 = ann J (as R/J is semisimple) and it
follows that ann2 S — S. This gives:

CLAIM 1. ann2 K = K for all simple ideals K.

PROOF: First if C 5 so ann2 if C ann2 S = S, whence ann2 K is semisimple.
Since K C ann2 K, it suffices to show that K C ann2 if is an essential extension. But
K C Re is essential for some e2 = e £ R, so K C ann2 K C ann2 Re = Re.

The claim shows that R is min-injective, so (2) => (1) completes the proof.
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(4) => (1). As (4) is inherited by images, we show that R is quasi-Frobenius.

CLAIM 2. Every prime ideal of R is maximal.

PROOF: R/P is regular by Lemma 2, and so is semisimple (it has Krull-dimension

and so is finite dimensional). Since P is prime, R/P is simple.

Writing J = J(R), it follows from Claim 2 that J is nil and so is nilpotent (see

[4]). Furthermore, R/J is regular (by Lemma 2) and finite dimensional (it has Krull

dimension), and so is semisimple. Thus R is semiprimary and we are done by (2) =>•

(5) => (2). By [8, Theorem 2.3] and [1 , Proposition 5], R is Artinian. Since

GPi^-rings are P-injective we are done. U

REMARKS, (i) It is easy to see that every regular ring is a left and right CP-injective

ring and by Theorem 3 the converse is not true. In fact Zqt , where q is a prime number,

is a commutative CP-injective ring which is not regular.

(ii) In [2, Remark 2 on p.36] Camillo has an example of a commutative, semipri-

mary, local P-injective ring which is not injective.

(iii) See Faith [3, Proposition 25.4.6B, p.238] for a complete description of the class

of completely QF-rings. They are precisely the Artinian principal ideal rings.
\F F]

(iv) The ring R = \ , where F is a field, is an Artinian completely CS-ring
[° J

which is not right min-injective. However, every proper homomorphic image of R is

injective.

(v) In general a module RM is called a (min) CS-module if every (simple) sub-
module of M is essential in a summand of M. (min) CS-modules are called (simple)-
extending modules by Harada [5]. For a full account of CS-modules see Mohamed and
Miiller [7].
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